W TEE S ENE 86— 9
N =T 7 2T 29
(1998. 1. 29)

Information Flow Control in Distributed Systems

Masashi Yasuda, Takayuki Tachikawa, and Makoto Takizawa

Tokyo Denki University
E-mail {masa, tachi, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of multiple objects. Each object is manipulated
through an operation supported by the object and then the operation may further invoke operations of other
objects, i.e. nested operations.. Purpose-oriented access rules indicate what operation in each object can
invoke operations of other objects. Information flow among the objects occurs if the requests and responses
of the operations carry data. Only the purpose-oriented access rules which imply legal information flow
are allowed. In this paper, we discuss how to specify the access rules so that the information flow occurring
in the nested invocation of the operations is legal.

DE Y AT LI BT BIESR RIS
ZH E% I WAT &R ®
FREBRARFHTERRETER
SEICHIZ, BBOF TV Mo B AV THEEREELTA v -V ORREF) L TERE
N2, ¥ 7Ty PIF— VS L BRBBEREOFICLVERESL, A7V s MCLhREE N 8BKE
HETBLTOARETLI LN TED, T, BEREIILLBOF 7V 27 P I RET 2 RERH LT

UPHTZLNHD, ChEANRTREHE L), RBOA 7V MPBRBMETLIRET TR, A7V
FERCBAARERIERBEEBILETAZLFERTH S, ARL TR, BWRHOT 7/ LAWBETVICEY

BELWT Y -!:xﬂﬁlw)%x?:Xmﬁﬁﬁmoﬁyﬁﬁﬁbcowrﬁ L5,

1 Introduction
In client-server systems, the application pro-
grams in the clients manipulate the resources in

the servers. Units of the resources like databases
are named objects. It is significant to consider

what subject s can access what object o by what
operation t in the access control model. An access
rule is given in a tuple (s,0,t) [6]. The system is
secure if and only if (iff) every object is accessed
only according to the access rules. However, the
access control model cannot resolve the contain-
ment problem [6] where the information illegally
flows among subjects and objects. The lattice-
based model [1,5] aims at protecting against illegal
information flow among the entities. One security
class is given to each entity in the system. A flow
relation among the security classes is defined to
denote that information in one class s; can flow
into s3. In the mandatory model [1,9], the access
rule (s,o,t) is specified so that the flow relation
between the subject s and the object o holds. For
example, s can read o only if the security class of
o can flow to the class of s. Here, only read and
write are considered as access types of the objects.
In the role-based model [10,13], a role is defined in
a set of operations on objects. The role represents
a function or job in the application. The access
rule is defined to bind a subject to the roles.
Distributed applications are modeled in an
object-based model like CORBA [7]. Here, the
system is a collection of objects. Each object is an
encapsulation of more abstract data structure and
operations than read and write. The objects are
manipulated only through operations supported
by themselves. The access rules are defined based
on the operation types. For example, a person s
may withdraw money from a bank o in order to

do house-keeping. However, s cannot get money
from o to go drinking. Thus, it is essential to
discuss the purpose of s to access o by t. The
purpose-oriented model [12] is proposed where an
access rule shows for what each subject s manip-
ulates an object o by an operation ¢ of o so as to
keep the information flow legal. The purpose of
8 to access o by t is modeled to be what opera-
tion u of s invokes t to manipulate o. That is, the
purpose-oriented access rule is specified in a form
(s : u, o:t). In the object-based system, on re-
ceipt of a request op from an object oy, an object
0, computes op and then sends back the response
of op to 0;. Here, if the request and the response
carry data, the data in o; and o, is exchanged
among 0; and o,. Furthermore, the operations are
nested in the object-based system. Even if each
purpose-oriented rule between a pair of objects
satisfies the information flow relation, some data
in one object may illegally flow to another object
through the nested invocation of operations. In
this paper, we discuss what the information flow
is legal in the nested invocations in the purpose-
oriented model of the object-based system.

In section 2, we present the purpose-oriented
model in the object-based system. In section 3, we
discuss the legal information flow in the purpose-
oriented model.

2 Purpose-Oriented Models
2.1 Mandatory model

An access rule (s,o0,t) means that a subject s
can manipulate an object o by an operation type
t [6]. The basic model implies a containment prob-

lem, where illegal information flow occurs. The
lattice-based model [1,5] is proposed to keep the
information flow legal in the system. Here, one
security class is given to each entity. For each en-
tity e; in E, let A(e;) denote a security class given
to €;.

The legal information flow is denoted by the.

can-flow relation “—” [1,5]. A security class sy

and sg, 51 can flow to sz (s3 — s3) iff the infor-

mation in an entity of s; can flow into an entity of

8. 81 and sy are equivalent (s; = $2) iff 81 — sz
and s3 — s;. — is reflexive and transitive.
[Definition] For every pair of security classes s;
and s; in S, 57 < 53 iff s — s3 but 55 5 5.0
Here, sy dominates sy (s1 X sa) iff s1 < s2
or s; = s3. $ = s; means that sy is more
sensitive than s,. For example, suppose there
are primitives of information: Network(XN) and

Database(D). There are classes § = {¢, {N},:

{D}, {N, D}}. Here, a X 8 if o C . For ex-
ample, {N} < {N, D}. (5,%,U,n) is a lattice
where U and N are the least upper bound (lub)
and the greatest lower bound (glb), respectively.

For example, information in a subject s can flow.

to both object o1 and oq if A(s) = Ao1) N A(o2).

In the mandatory model [1,9], the access rule
is defined so as to satisfy “<”. We have to decide
if & subject s can manipulate an object o by an
operation ¢. There are three types of operations,
ie. T = {read, write,modify}. If s reads o, the
information in o is derived by s, i.e. information
in o flows to s. Hence, A(s) > /\(o) is reqmred to
hold. If s writes o, the data of s is stored in o, i.e.
information in s flows to 0. Hence, A(s) < A(0).
Lastly, the s’s modification of 0 means that s reads
data from o and then writes the result obtained
from the data into o. Hence, A(s) X A(o) and A(s)
> A(0), i.e. A(s) = Mo).

2.2 Object-based model

The object-based system is composed of multi-
ple objects.. Each object o; supports more abstract
data structure and operations than read and write
considered in the mandatory model. In addition,
0; is encapsulated so that o; can be accessed only
through the operations supported by o;.

Suppose an object s invokes op; to manipulate
another object o;. ‘First, we assume that all op-
erations in the system are unnested. s sends a
request message q of op; to 0;. On receipt of ¢, o;
computes op; and sends the response r backtos. ¢
carries the input' of op; and r carries back the out-
put of op;. In addition, op; may change the state
of o; by using the input. Here, the information in
s may flow into o; if ¢ carries some data in s. op;
may derive the data from o; and then return the
data to s. Here, the information in o; may flow
out to s if r carries the data derived by op; from
0;. Thus, it is significant to make clear the input
and output of op; to clarify the information flow
relation between s and o,. Each operation op; of
0; is characterized by (1) input data (I;), (2) out-
put data (O;), and (3) state transition of o;. The
input data I; exists if some data flows from s to o;.
For example, I; exists if the request of op; includes
the data. The output data O; exists if some data

in o; flows out to s. For example, O; is the data
carried by the response of op;. In this paper, we
make the following -assumptions:

[Assumptions]
" (1) The communication among the objects is se-

cure, e.g. messages are encrypted [6].
(2) Each operation op; of o; is reliable, i.e. op;
does not malfunction. O

-~ Only data stored in o; can flow out from o; to s

and the data in s can flow to o; in the computa.txon
of the operation of o;.

The operations op; of the objects are classi-
fied into the following flow types 7(op;) from the
information flow point of view [Figure 1]: non-
flow (NF), flow-in (FI), flow-out (FO), and ﬂow—
in/out (FIO). In the NF operation op;, there is
no information flow from or to o;. In addition,

_op; does not change o;. Even if the input data I;

exists, no information in s flows to o; unless op;
changes o;. Similarly, no information in o; flows
out to s unless the output data O; is derived from
o;. If op; is internally realized by read or write,

_op; reads data from o; or changes o;. In addition,

some data may be brought to op; from s. How-
ever, unless the data is brought between s and o;,
there is no information flow between s and 0. -

I op, Iy op;
{ . {
0; o,
9 9
- "*(1y Nor-flow (NF} (2) Flow-in (FT)
1, %, I oP;
f ~f
0; o;
o : 0,
{4), Flow-in/out (FIO)

(3) Flow-out (FO)
Figure'1: Information flow.

The FI operation op; changes o; by using I;
which includes information in s. Hence, the infor-
mation in s may flow into 0;. write is an example
of the FI. In addition, o; is updated without I,.
For example, a count-up operation does not have
the input but changes the counter.

The FO operation op; does not change o;. . The
output O; of op; carries the information in o; back
to s. Here the information i in 0; may flow to s.

" read is FO on the file,

The FIO operation op; changes o; by using I;
and sends O; including the information irf o; back

" to s. Not only the information in § may flow into

o0; but also the information in o; may | flow out to
s. In modify, s first reads O, in o; a.nd writes to
o0;. FIO may not carry I; llke FL

The subject s is allowed to manipulate o; by
an operation op; of o; according to the following
rules. '
[Extended access rules]
(1) 7(op:) € {NF, FI} only if A(s) X A(0:).
(2) 7(op;) € {NF, FO} only if A(s) = A o;).

(3) 7(op;) € {NF, FI, FO, FIO} only .if A\(s) =
A(Oi).D . . . E

The types of operations and the security class
A(0;) of the object o; are specified when o; is de-
fined based on the semantics of o0;. Each time s
accesses o; by op;, op; is accepted if 7(op;) and
A(o;) satisfy the access rules. If satisfied, op; is
allowed to be computed in o;.

{Example 1] We consider an example of a World
Wide Web (WWW) [2] object w accessed from
two hosts h; and hy. Here, w is an abstraction
of the httpd server’s service supporting GET and
POST methods. GET is an FO type operation
because the output data is derived from w. POST
is FI because w is changed by using the input data.
If A(h1) X A(w) and A(hz) = A(w), h; can POST
but cannot GET data in w, and -hy can GET but
cannot POST data in w. w can also support ab-
stract operations like Common Gateway Interface
(CGI). In the CGI, the users can define operations
in the access configuration file such as .htaccess to
manipulate the page objects. Here, .htaccess in-
cludes the following :)

(Limit GET), allow from h;, deny from h;,
(/Limit). '
(Limit POST), allow from h,, deny from h,,
(/Limit). O ‘
2.3 Purpose-oriented model

First, we define secure objects.
[Definition] An object o; is secure iff
(1) o; can be only accessed through the opera-

tions supported by o;,)

(2) no operation of o; malfunctions, and
(8) a'pair of operations op; and op; can exchange

“data only through the state of o;. O
If data d flowing from an object o; to another o,
is neither derived. from o; nor stored in o;, it is
meaningless to consider the information flow from
o0; to o;. If data derived from o; is stored in 0j, the
data may flow out to other objects. We assume
that every object is secure. Co

In the access control model, an access rule
(s,0;,0p;) means that a subject s manipulates an
object o; through an operation op;. Suppose a
person p accesses a bank account object b of p. p
can withdraw money from b if p uses the money
to do the house-keeping. However, p cannot get
money from b to go drinking. In order to make the
system secure, it is critical to consider a purpose
for which s manipulates o; by ¢; in' addition to dis-
cussing whether s can manipulate o; by t;. Sup-
pose o; manipulates o;; by invoking an operation
opi; of o;;. Here, the purpose of o; for manipulat-
ing o;; is modeled to show which operation in o;
invokes op;; of 0;;. Hence, the access rule is writ-
ten in a form (o; : op;, 0;; : op;;) in the purpose-
oriented model while (0;,0;;, 0p;;) is specified in
the mandatory model. op; shows the purpose for
which o; manipulates o;; by op;;. Here, o; and o;;
are named parent and child objects of the access
rule, respectively.
[Purpose-oriented (PO) rule] The access rule

{o; : op;, 05 ¢ Op,‘j) means that o; can manipulate -
E-Iij through an operation op;; invoked by op; of o;.

[Example 2] Suppose a person object p can with-
draw money from a bank account b of p [Fig-
ure 2]. This is shown in an access rule (p : house-
keep, b : withdraw). However, an access rule
(p, b, withdraw) in the access control model only
shows that p can withdraw money from b. O

Figure 2: Purpose-oriented access control.

3 Information Flow

We discuss what purpose-oriented rules are al-
lowed to be specified from the information flow
point of view.

3.1 Computation model

Each object o computes an operation op on re-
ceipt of a request op. o creates a thread of op
named an instance of op. op may invoke oper-
ations op,,...,0p; where each op; is computed on
an object o;. There are synchronous and asyn-
chronous ways for op to invoke op;. In the syn-
chronous invocation, op waits for the completion
of op;. In the asynchronous one, op does not wait
for the completion of op;, i.e. op; is computed in-
dependently of op. Furthermore, there are serial
and parallel invocations. In the serial invocation,
op serially invokes opy,...,0p;, i.e. op invokes op;
after the completion of op;.-,. ‘Hence, the infor-
mation carried by the response of op;_; may flow
to op;. On the other hand, op invokes opy, ...,
op; in parallel. Each op; is computed on o; inde-
pendently of another op;. This means that the
information carried by the response of op; does
not flow to op; while flowing to op.

In this paper, we consider the serial and paral-
lel synchronous invocations. The invocations of
opy,...,0p; by op are represented in an ordered
invocation tree. In the invocation tree, each

" branch (op — op;) shows that op invokes op;. In

addition, opy .. .,0p; are partially ordered. If op; is
invoked before op;, op; precedes op; (op; — op;).
For example, suppose a user serially invokes two
operations op; and op,. op, invokes op;o and op;3
in parallel after op;;. ‘This is represented in the

invocation tree as shown in Figure 3. “—” shows

the computation order of the operations. We as-
sume that no operation instance appears multiple
times in the tree. .

3.2 Nested invocation

In the object-based system, the operations are
invoked in the nested manner. Suppose an object
o invokes an operation op; in o;. op; further in-
vokes operations op;, ..., 0py; where each op;; is
in 0;;. op; in 0; communicates with o and o,; while
exchanging data with o. Hence, op; is modeled to

O,

N

op, op

/NG /N

0p;~~9%P;; OP;3 0Py OPp
_/

Figure 3: Invocation tree.

be a collection of inputs oy, a3, and a3, and out-
puts (1, B2, and- B3 as shown in Figure 4. Here,
a; means the input data I; from o to op;. For ex-
ample, the request of op; carries the input data as
o;. 5, means the output data to 0. The response
of op; is an example of B;. (B, shows that o; is up-
dated by using data carried by f;. For example,
the data of 3, is stored in 0;. a; means that the
information derived from o; is stored in op;. B3
means that some data is output to o;;. For ex-
ample, the request of another operation op;; with
the input I;; is sent to 0;;. as shows that some
output is carried to o; from o;;. For example, the
response with the output data is sent from op;;.

Figure 4: Input and output.

3.3 Invocation graph

An invacation graph is introduced to show the
information flow relation among operations. Each
node indicates an operation. There are request
(Q) and response (S) edges. If an operation op;
of an object o; invokes op; of o, there is a Q edge
from op; to op; denoted by a straight arrow line,
i.e. a connection between 83 of op; and a; of op;.
There are the following points to be discussed on
the Q edge ;
(1) whether or not op; sends data in o; to op;,

an
(2) whether or not op; changes the state of o;.

Hence, there are four types of Q edges as shown
in Figure 5. The first type (1) is named QNN.
op; sends a request message op; without data to
o; and op; does not change o;. That is, A5 of op;*
and a; of op; do not carry data. In addition, 3z of
op; does not carry data. There is no information
flow from o; to o0;. ‘The second (2) is QON. op;
sends a request op; with data to o; but op; does
not change o;. Although some data is: derived
from o;, the data does not flow to 0;. The third
(3) is QNI op; changes o; while op; does not send
data to 0;. Some data flows into o; but the data
does not flow out from o;. The last (4) is named
QOI. Here, op; sends data to o; and op; changes

0;. Some data in o; flows to o;. a and B3 of op;
and ; and B, of op; carry data.

(1) QNN 3 QNI
(2) QON @ Qol

Figure 5: Request (Q) edges.

Next, let us consider the response (S) edges
which show information flow carried by the re-
sponses from o; to 0;. The S edges are indicated
by dotted arrow line. There are the following
points to be discussed on the S edges ;

(1) whether or not op; sends data in o; to op;,

and
(2) whether or not op; changes the state of o;.

Here, there are four types of S edges as shown
in Figure 6. The first type (1) is referred to as
SNN, where no information flow from o; to o;.
The second (2) is SNO, where op; sends o; the
response with data derived from o;, but op; does
not change o;. The third (3) is SIN. op; changes
o; but op; sends the response without data to o;.
The fourth (4) is SIO. Here, op; sends back the
response with data derived from o; to o; and op;
changes o;. That is, data in o; flows to o;.

(1) SNN (3) SIN
@X <@ @@
(2) SNO (4) SIO

Figure 6: Response (S) edges.

If op; invokes op;, a couple of Q and S edges
exist. There are sixteen possible couples for each
invocation. One couple is denoted in a form a/B,
where @ € {QNN, QNI, QON, QOI} and 8 €
{SNN, SNO, SIN, SIO}.

3.4 Flow graph

The nested invocation is represented in an in-
vocation tree as presented in the previous subsec-
tion. Here, suppose that an operation op; invokes
op; in an invocation tree T. There are a Q edge
Q;; from the parent op; to the child op; and an
S edge S;; from op; to op;. Thus, each branch
between op; and op; represents a couple of Qi;
and S,; edges between op; and op;. Here, let root
(T) denote a root of the tree T'. In order to an-
alyze the information flow among the operations,
a flow graph F is obtained from the invocation
tree T' by the following procedure.
[Construction of flow graph]

(1) Each node in F indicates an operation of T
(2) For each node op, connected to the parent by
QNI or QOI edge in T, a path P from root

(T) to opq is obtained. For each node op, in
P, there is a directed edge op; — opg in F
if there is a QON or QOI edge from op; to a
child node in P [Figure 7 (1)].

(3) For each node op, in T, op., — op., if op,
and op., are descendents of op, in T, which
are included in different subtrees of op,, opc,
has an SNO or SIO edge with the parent of
op,, and op., has a QNI or QOI edge with
the parent of op., and op., precedes op., in
T [Figure 7 (2)].

(4) opy — ops if op1 — op2 — ops [Figure 7 (3)].

Let us consider a leaf node op; in the invoca-

tion tree T. A leaf node does not invoke other
operations. If op; is invoked with some data and

sends back the response, op; may forward the in-
put data carried by the request to the parent of
op;. Therefore, we have to consider the following
additional rules for each leaf node op;.

(5) For each node op; connected to the parent by
an SNO or SIO edge in T, a path P from root
(T) to op, is obtained. For each node opy in
P, there is a directed edge op; — opy in F if
there is an SIN or SIO edge from a child node
to op, [Figure 7 (4)].

(6) For each leaf node op;, a path P from root
(T) to op; is obtained. For every node op,
in P, op, --» opy if op, is connected with the
child in a-QON or QOI edge. For each node
opg in P, there is a directed edge op; - opa
in F if opy is connected to the child in an SIN
or SIO edge. For each node op, in P, there is
a directed edge op, — opy if (1) op, --» op; or
ops — opy and (2) op; --» opg [Figure 7 (5)].

(7) For each node op; which is connected to the
parent in SNO or SIO edge, a path P from
root (T') to op; is obtained. If op; in P is
connected to the child in QNI or QOI and
SIO or SIN edge, op; — op; [Figure 7 (6)]. O

By using the rules, a flow graph F' is obtained

from the invocation tree . A directed edge op;
— op; in F denotes that there is 1nf0rmatxon flow
from op; to op;.
[Example 3] Let us consider an example of the
SSI command (2] [Figure 8]. A browser B accesses
an httpd server to GET a page P including in the
same server. Suppose B invokes GET on P. P
includes two files Fy and F,. After including these
pages, B caches these data to a disk D. Figure 9
(1) and (2) show the invocation tree T and the flow
graph F obtained from T, respectively. According
to the flow graph F, we find that the data in the
files F; and F; can flow to the disk D. O

3.5 Access rules

The flow graph shows the possible information
flow to occur if the operations are invoked accord-
ing to the purpose-oriented rules. Each purpose-
oriented access rule {o; : op;, 0; : op;) is allowed
to be specified if the rule satisfies the informa-
tion flow relation among the objects. The directed
edge — between op; and op; is legal in F if the
following rule is satisfied. If so, op; and op; are
referred to as legally related.

©)

Figure 7: Directed edges.

Browser B

E——

‘{ 77| Page P

<
lcaching / <!-- #include File -->

8 File F, File F;

Disk D

Figure 8: SSI-“include.”

o

5., 4

wr @F

Figure 9: Flow graph.

[Flow rules]

(1) op; — op; only if Ao;) X A(e;).
(2) op; « op; only if A(0;) = A(0;).
(3) op; < op; only if Mo;) = A(e;).

Even if an access rule {o; : op;, ox : opg) is
specified, op; cannot invoke op; if op; and opy are
not legally related to the information flow relation.
Here, (o; : op;, o; : op;) is allowed to be specified
if all the directed edges incident to and from op;
and op; are legal.

[Example 4] In the flow graph shown in Fig-
ure 9, GET — open is legal only if A(P) % A(B),
and inc; — GET is legal only if AM(F1) < A(P).
That is, the PO rules (B : open, P : GET) and
(P : GET, F, : inc;) are legal. However, inc;
— GET is illegal if A\(F2) = A(P). That is, the
rule (P : GET, F; : inc,) is illegal. Then, illegal
information flow between P and F, may occur if
GET on P invokes incy; on F;. Hence, the PO
rule (B : open, P : GET) is illegal and B cannot
invoke GET on a page P through open. O

4 Concluding Remarks

In the distributed systems, objects support
more abstract operations than read and write.
In the purpose-oriented access control model [12],
it is discussed why an object manipulates other
objects while the mandatory model discusses if
each subject can access an object by an opera-
tion. In addition, the operations of the objects are
nested. The access rules have to satisfy the infor-
mation flow relation among objects. In this paper,
we have discussed how to validate the purpose-
oriented access rules.

References :

[1] Bell, D. E. and LaPadula, L. J., “Secure
Computer Systems: Mathematical Founda-
tions and Model,” Mitre Corp. Report No.
MT74-244, Bedford, Mass., 1975.)

Berners-Lee, T., Fielding, R., and Frystyk,
H., “Hypertext Transfer Protocol -
HTTP/1.0,” RFC-1945, 1996.

[2

-

[3] Bertino, E., Samarati, P., and Jajodia, S.,
“High Assurance Discretionary Access Con-
trol in Object Bases,” Proc. of the 1st ACM .
on Computers and Communication Security,
1993, pp. 140-150.

Castano, S., Fugini, M., Matella, G., and
Samarati, P., Database Security, Addison-
Wesley, 1995. :

[5] Denning, D. E., “A Lattice Model of Secure
_ Information Flow,” ' Communications of the
ACM, Vol. 19, No. 5, 1976, pp. 236-243.

[6] Denning, D. E. and Denning, P. J., Cryp-
tography and Data Security, Addison-Wesley,
1982.

Object Management Group Inc., “ The Com-
mon Object Request Broker : Architecture
and Specification,” Rev. 2.1, 1997.

4

o

[7

—_—

(8

Merkl, D., Tjoa, A. M., and Vieweg, S.,
“BRANT - An Approach for Knowledge

. Based Document Classification Retrieval Do-

(o

[10]

(11]

2]

main,” Proc. of DEXA 92,1992, pp. 254-259.

Sandhu, R. 8., “Lattice-Based Access Control
Models,”. IEEE Computer, Vol. 26, No. 11,
1993, pp. 9-19. S

Sandhu, R. S., Coyne, E. J., Feinstein, H.
L., and Youman, C. E., “Role-Based Access
Control Models,” IEEE Computer, Vol. 29,
No. 2, 1996, pp. 38—47.

Schneier, B., Applied Cryptography, John Wi-

‘ley & Sons, 1996. i

Tachikawa, T., Yasuda, M., Higaki, H.,,
and Takizawa, M., “Purpose-Oriented Access
Control Model in Object-Based: Systems,”
Proc. of the 2nd Australasian Conf. on In-

~ formation Security and Privacy (ACISP’97),

(13]

1997, pp. 38-49.

Tari, Z. and Chan, S. W., “A Role-Based Ac-
cess Control for Intranet Security,” IEEE In-
ternet Computing, Vol. 1, No. 5, 1997, pp.
24-34. : .

