YRFALYT NI 2T E g

ARV=F 4 VT YRFL

TNF AT ¢ TBIEESHNE 8712
(1998. 2. 28)

Pseudo-Active Replication of Objects
in Heterogeneous Processors

Tsunetake Ishida, Hiroaki Higaki and Makoto Takizawa

Tokyo Denki University
E-mail {tsune, hig, taki}@takilab.k.dendai.ac.jp

An approach to making distributed systems fauli-tolerant is to replicate objects in the systems. The replicas
have to be realized in various types of computers since it is difficult to get all the same types of computers.
In the active replication, the replicas are computed and communicated in the same synchronous way. The
response time depends on the computation time of the slowest replica and the longest delay time. In this
paper, we discuss a pseudo-active replication where events may not occur simultaneously, not in the same
order, and may not occur in the replicas. The succeeding requests can be issued to the replicas if some
responses, not necessarily all response, are received from the replicas without waiting for the completion
of the slower replicas.

REE 7Oty YT 3 RELIAEERISE{L

FHENS BREHEE BR®
HRERARERTEBEETER
E-mail {tsune, hig, taki}@takilab.k.dendai.ac.jp

SEBRT IV r—Vavik, EEOA 7V PHEEVIZA v - TR LAVIHABEET R L TE
BERTVD, MEERSATLANEI Yy —CRDMEE, FIEAFFENEVI v a2 Y TFAAINVRVR
FLTR, BENRELTH, Y—CRAZHETIED(T+—VFFLI Y R)FRLETHD, VAT LE
TA—=N PPV IV RODITEIFED L1 DI 7L ADHB (LTI) FAVIFESH L, ZOLTY
A HEBEN I - L CEFTENLILEIHTHE, E610. EPHSERTIR, 2TOLTIHED
BELBAEFA—-DOEETCRBENILEND L, cHICL), 7O0LADUBEEIRLBVL Y A LE
KEERRICEET 2, AR TR, 2V TV HT, A—AXV M, B—EFTREE2 LERL 2V EBE
BIMLELYRET S, AFEICI), 7ot A0RBIZ, RBEENEL A v - JORERENKEVL

T AT ICHEET X 5,

1 Introduction

In distributed applications, multiple - au-
tonomous application objects cooperate to achieve
some objectives by exchanging messages. The
object-based system like CORBA [13] is now get-
ting a standard framework of the distribed sys-
tems. In the mission-critical disributed applica-
tions, objects are required to be fault-tolerant.
The objects may suffer from faults, i.e. stop and
Byzantine faults [9,14]. An approach to making
the system fault-tolerant is to replicate the objects
in the system. In this paper, a collection of repli-
cas of an object is named a cluster. In the active
replication [15] adopted by Isis (3], every replica
does the same computation and communication.
In the passive one [4], only one primary replica
does the computation and communication. The
primary replica takes periodically a checkpoint
and sends the state information at the chackpoint
to all the backup replicas. The replicas can con-
tinuously support the service in the presence of
faults in the active replication while it takes time
to recover from the fault of the primary replica in
the passive one. That is, the passive replication
is less available than the active one. In order to
reduce the communication overhead in the active
replication, the hAybrid replication [19] is proposed.
It is similar to the active one except that only pri-
mary replica sends the response back and sends

periodically the checkpoints to the other repli-
cas as the passive one. The active replication
approach implies more redundant processing and
communication than the passive one. - But the
computation can be continued as long as at least
one replica is operational.

If the replicas in a cluster are allocated in var-
ious types of computers and communication de-
lays between replicas are different, the cluster is
heterogeneous. The computers have different pro-
cessing speéds and levels of reliability. The com-
putation of an object complete only if the com-
putations of all the replicas complete in the ac-
tive replication. In this paper, we discuss a novel
pseudo-active replication in order to reduce the re-
sponse time and the total processing time and to
support the same level of reliability and availabil-
ity as the active one in the heterogeneous clusters.
Here, the computation of the object can complete
if the the faster replicas complete the computa-
tion without waiting for the slower replicas. The
slower replicas have to catch up with the faster
ones. We discuss a distributed way where each
replica detects the slower replicas by using the vec-
tor clock [10] carried by messages. In addition, we
discuss how the slower replicas catch up with the
faster ones by omitting events in the slower ones.
The pseudo-active replication can support shorter
response time and total computation time of the
replicas than the active replication even if slower

and farther computers are included. In addition,
the pseudo-active replication supports the same
level of reliability as the active one, i.e. the pro-
cess is operational as long as at least one replica
is operational.

In section 2, we present the system model. In
section3, the active replication is overviewed. In
section 4, we discuss the pseudo-active replication.
In section 5, we evaluate the pseudo-active replica-
tion in terms of total computation time compared
with the active one.

2 System Model

2.1 Clusters
. A distributed system is composed of multiple
computers interconnected by the communication
network. A distributed application is realized by
the cooperation of a group G of multiple objects
0y, ..., 0n. Bach object is stored in a computer.
On receipt of a request m from o;, 0; computes m
and sends back the response to o;.

A collection {0;1, ..., 0;,} (; > 1) of replicas
of o; is a cluster c; [Figure 1]. ¢; is a one-replica
cluster iff ¢; includes only one replica of ¢;. ¢; is
homogeneous iff all the replicas in ¢; are in the
same type of computers and the communication
delay between every pair of replicas is the same.
Each computer is characterized in terms of pro-
cessing speed, delay time, and reliability level. ¢
is heterogeneous if some replicas are in different
types of computers. For example, a replica o;;
is computed in a faster computer like UltraSparc
station and another o;; in a slower computer like
Sparcs. Even if all the computers are the same
type, ¢; is heterogeneous if the delay times among
the replicas are different. For example, two com-
puter A and B are in the same local area network

but another C is connected with the Internet. It
takes a longer time for A to send a message to C

than B.

communication network

Figure 1: Clusters.

The network is assume to support the reliable
data transmission between every pair of replicas
in the group: That is, each replica can deliver
messages to every other replica without loss and
duplication in the sending order.

2.2 Causal precedence ‘

It is significant to discuss in which order events
occur in distributed systems. Let s;;(m) and
rij(m) denote the sending and receipt events of
a message m in a replica o;;, respectively.
[{Causal precedence] [8] An event e, causally
precedes e; (e; — e3) iff one of the following con-
ditions holds:

(1) e; occurs before e; in some object.
(2) e1 = s;7(m) and 3 = ri(m).
(3) es — €3 — e for some event e3. O

[Definition] A message m; causally precedes m;
(m1 - mz) iff s;,'(ml) - su(mq). a
Here, my and m; are concurrent (my || my) iff
neither m; — my nor my — m;. The replicas have
to deliver m; before m; if m; — m3. Many group
communication protocols [3,5,7,11,12,17,18] are
proposed to support a group of multiple processes
with the causally ordered delivery of messages.
In order to causally deliver messages, each o;;
manipulates the vector clock [3,10) V = (Vi | k =
1, n,h=1--, k). Each element V;; shows
the local clock of ox, which o;; knows. Initially,
Vin = 0. Each time o;; sends a message m, V;;
is incremented by one. m carries the local cloc
m.V, i.e. m.Vy, = Vi, for every k and h. On
receipt of a message m, o;; manipulates V as Vi
:= max(Via, m.Vis) for every & and h. The vector
clock satisfies the following property [10].

[Property] For every pair of messages m; and
mg, my = my iff m.V <mp.V. 0O

By using the vector clock, the messages received
are causally ordered. i

3 Active Replication

Replicas o;1, ..., 0y, of an object o; are of-
ten obliged to be distributed to various types of
existing computers, i.e. the cluster ¢; is hetero-
geneous. In the active replication, every replica
is required to do the same computation and com-
munication at the same time [15]. Here, suppose
that an object o, sends a request to o;; and 0.
If o;; is faster and nearer to o, than o, o, has
to wait for the response from o;; even after re-
ceiving the response from o;;. Thus, every replica
has to wait for the slower and farther replicas in
c;. Hence, we propose a pseudo-active replication
by relaxing the constraints of the active replica-
tion in order to decrease the response time in the
heterogeneous cluster.

Each replica o;; can be modeled as a determin-
istic finite state machine [Figure 2]. Let s; denote
the initial state of 0;. Here, 83 =--. =30.. s% is
transit-ed to s?j"" if e:}“ occurs. Here, the state:
of o;; is represented by s?j and a sequence of the
events e}; o -+- 0 e;7. Here, let el;(s}™") denote
a state sf"]- and e:‘j"l ° e%(s:}j”) = e?j(a:‘j'l =
s:', There occur local events and communication

events, i.e. sending and receipt events. e?j denotes
a instance of an event e* in o;;.
i e

O :suatas

Figure 2: State transition.

~* : transision

o0; is actively replicated in a cluster ¢; if the fol-
lowing conditions hold.

[Active replication (AR) conditions]
AR1: For every pair of operational replicas o0;; and

oik, 8% = sh, and el = ef}, for every h.

AR2: For every pair of operational replicas o;; and

oix, e causally precedes eltl (el — et

AR

i

AR3: Every operational replica o;; does not lose
any event. O

ARI1 means that every replica does the same com-
putation and communication in ¢;, i.e. the same
events occur in the same order.

AR2 means that every event occurs simultane-

ously in every replica. Every event e.?j*'l occurs in
o;; after e:‘k occurs in every oj. 0;; and o are
synchronized. Suppose that an application object
o; sends a message m. In the active replication,

each replica o;; sends m. A message m* sent by
a replica o;; is referred to as an instance of m¥.

s ok
iff e}, — ;7" for every h.

[Proposition) o;; and oy are synchronized if mi
— mik iff m¥* — my for every pair of messages
m, and m; sent/received by o;; and o0;;. O

In Figure 3, o;; and o;; receive a message m;.
After receiving my, 0;; and oy, send my and mif,
respectively. Since m} — mY and mbl — mi¥,
0;; and o;; are synchronized.

AR3 means that every replica o;; does the same
computation as the object o;. If every replica
misses some event, AR3 does not hold although
AR1and AR2 hold. o;; includes o;; iff every event
in o occurs in o;;.

o

o

ij ik

\

|2
\

WAY

J

Figure 3: Synchronized replicas.

' J' time

4 Pseudo-Active Replication

4.1 Following relation

Replicas in the faster and nearer computers
support shorter response time than slower and far-
ther ones. In the active replication, the computa-
tion speed of the cluster ¢; depends on the slowest
and farther replica in ¢; because AR2 has to be
satisfied. The response time can be reduced if the
computation of ¢; completes before the computa-
tion of every replica completes.

First, we consider a case that AR1 holds but
AR2 does not hold. That is, every event occurs in
the same order but may not occur simultaneously.
[Definition] o, follows o;; (0i; = o) iff e;; =
€iky €} = €[y, €ij — €};, e;p — €}y, and e;; — €l
but e, /> e}; for some events e;; and e}; occurring
in 0;; and e;; and €}, in o;. O

o0i; and o;}, are synchronized iff neither o;; = oix
nor o;; = o;5. If 0;; => oy and o = oy, 0;; and
oi; are thrashed. o;; and o;; may be thrashed if
one of o;; and o;; sometimes gets slower due to
the overload.

[Definition] oy fully follows o5; (pi; 3 0ix) iff €}
— el if e;; — e; for every events e;; and céj in
0;j, and e;; and e}, in oy such that e;; = e, eéj
:-J-, and € — ei,,. [m]

For example, if the computer of o;; is always faster
than o;, o fully follows o;.

A cluster c; is regular iff every pair of replicas
o;j and o;; are synchronized or o;; =% oy, for every
i and k. In an irregular cluster ¢;, both a;; = oix
and o;, => 0;; hold in some o;; and o;;.

Suppose that o;; and o; send message in-
stances my and mg*, respectively, after receiving
m, before mg as shown in Figure 4. In the active
replication, op; is required to send ms after re-
ceiving my from every replica. However, o5 sends
mg after receiving my without waiting for mif.
On receipt of mg, o;; and o;; know that my —
m3 but m‘;" #+ mg, i.e. that op sends mg before
receiving mi* from o;;. Hence, o;; and o;; can de-
cide which one follows the other according to the
following theorem:

[Theorem 1] oy follows o;; (0i; = oix) if mi —
m, but mi¥ £ m, for some messages m; received
and m, sent by o;; and 0. O

- c:
=& €ij — €

ohlv oii oik
mj
n/m])
ik
)
:'"3
\ v ¥ fime

Figure 4: o;; follows o;;.

In Figure 4, o;; follows o;; on receipt of m;

since mj — mg but ms || mi*. o;; and o are

synchronized before receipt of m3. For example,
suppose m; and mg are requests and m; is the re-
sponse of m,. Here, suppose it takes a longer time
to compute the request m; in o;; than o;;. That
is, 0;;, is slower than o;; or the communication de-
lay to oy is larger than o;;. Without waiting for
all the responses of m;, op; can send ayother re-
quest m3 to o;; and o;; on receipt of my'. By this
method, the response time can be reduced even if
the system includes slower computers.

4.2 Decision rule
Next, we consider how each replica o;; can de-
cide in the distributed way if o;; follows or suc-

ceeds other replicas in the cluster c;. Suppose that

o;; receives a message m carrying the vector clock

m.V [9]. From Theorem 1, o;; knows that o, fol-

lows o3, if m.Viz < m.V;,. Hence, o;; decides how

the replicas are followed on receipt of m according

to the following rule.

[Following (F) rule] For every pair of rephcas

0;;, and oy in ¢,

(1) oy follows o0y, if m.Vy, < m.Vy,

(2) 0;x and o;, are synchronized if m.Vy =
m.V;p. O

o;i follows oy, in o5 (0in =>ij o) if 0;; decides

that o;» => o;;. This means that o;; knows that

o;; follows o;,. Here, 0;; considers that o;;, is the

fastest and slowest in ¢; if m.V;;, is the maximum

and the minimum in m.V, respectively.

Suppose op; in ¢ sends m, and m3 to o;; and
0i¢ in ¢;, and oy, in ¢; sends my and mg as shown
in Figure 5. on; sends mg on receipt of my from
0;; before receipt of m," from o;;. Hence, on re-
ceipt of ma, 0;; =i o and 0;j =ik Oik. Ot
sends mg on receipt of my ik from o;), before receipt
of rn,5 Hence, on receipt of mg, 0;; and o;; know
that o; = 0;5. On receipt of ma and ms, o;; and
0;i. are thrashed, i.e. 0;; => o and o5 = ;.

time

Figure 5: Thrashing.

1t is straightforward for the following theorem
to hold since every replica is assumed to receive
all messages in the same order.
{Theorem 2] On receipt of a message m, 0;; =i
o;; iff 0;; =>i1 o4 for every pair of operational
replicas o;;, and o;. O

If o;), knows that o;; follows o, by the F rule on
receipt of m, it is sure that 0ij =in Pik in another
04, receiving m.
[Definition] A message m is delayed on %;j if
m.V;; < m.V;; for some o, O
If 0;; receives a message delayed on o;;, 0;; knows
that o;; follows some replica.

4.3 Equivalent sequences of events
The slower replica o;; has to catch up with the
faster full replica o;; in ¢;. If every event stored in
the receipt queue is required to occur in oz, 0ix
cannot catch up with o;; since o;; is faster than
0;;. Hence, we try to make o;; catch up with o;;
by omitting events not necessarily to occur.
First, we try to relax the AR1 condition.

[Definition] An event e is an identity event in o;;
iff e(sij) = 85 for every state s;; of 0;;. An event
sequence S is idempotent in o;; iff S o S(sy;) =
5(s;) for every state s;; of 0;5. O
For example, a SQL select statemnent is an identity
event.
[Definition] An event sequence S; is absorbed by
S, iff S’1 o S3(8i5) = S3(si;) for every state s;; of
0ij.
Suppose a write event w; of a value v, occurs be-
fore w; of v; in 0;;. Since v; is overwritten by vz,
w; absorbs w;.
[Deﬁnition] An event sequence S; is equivalent
with Sg 1n o;5 (51 Sg) iff 51(3,1) = Sg(.’,'j) for
every state s;; of 0;;. O

In Figure 6, o;; includes 0. If u and w are
identities,c = band e=d,tov=touovow.
Here, o;n can catch up with o;; by omitting two
identity events u and w.

t u v w
® o Q- OO
v
2o O——O——0

Figure 6: Indentity Events.

[Omission rules| Let S; and S; be event se-

quences and e be events.

(1) Sy o e o S; = S 0 S if e is an identity.

(2) eo Soe=5;0eifeis idempotent and S;
includes no event conflicting with e. O

That is, the slower replicas can omit identity and

_idempotent events occurring in the faster replicas.

4.4 Catching up

We discuss how the slower replicas catch up
with the faster ones by using the omission rule. 7,
suppose o;; follows 0;;. In the computation of a
request m;, o;; receives requests mz and ms from
opi. Since o;; is sure that o;; completes. m3 and
op; receives the response my of my from o;, oi
does not need to compute mz. However, o;; is not
sure that o;; completes ms.

time

Figure 7: Obsolete message.

[Definition] A message m is obsolete in o,_., iff

(1) m is received but is not delivered to o;;,
(2) m is delayed on o;5, and
(3) there is some message m' received in o;; such
that m — m/, m/ is delayed on o;;, and m.V;;
< m!. Vi for some oy, O
Thus, 0;; can omit an obsolete request m since m
is surely finished already in the faster replica o;;.
On receipt of a message m, o;; stores m in the
receipt queue RQ;;. The messages in RQ);; are
causally sequenced. o;; takes a top message m
from RQ;; and computes m, In Figure 7, m3 and
mg are stored in RQ;; and mz — mg during the
computation of m;. After sending my, o; takes
m3 from RQ,'J'.
o0ij executes the following procedure to check if
a top message in RQ;; is obsolete.

[Receipt] A message m arrives at o;;.
(1) m is stored in RQ;; in the causal order by
using the vector clock.
(2) If m is delayed on oy, m is marked delayed.
(3) I m is delayed, RQ;; is searched for every
delayed message m' causally preceding m (m’
s m) in RQ,;J'.
(3-1) if m' is an identity request, m' is
marked omissible.
(3-2) if m' is idempotent and there is the
same kind of request m” as m’' which
precedes m and succeeds m’ in RQ;j, m/

is marked omissible if there is no mes-
sage between m and m’ in RQ;; which

conflicts with m'. O

o0;; takes the top message m from RQ;;. If m is
marked omissible, o;; removes m and sends back
the dummy response of m with no result.

In Figure 7, suppose m; and my are the idem-
potent requests. mga arrives at o;; during the com-
putation of the request m;. Here, mg is gelayed on
o;x but not obsolete. m3 is enqueued into RQ;;.
Then, the request ms arrives at 0;;. ms is de-
layed on o;. The messages in RQ;; are checked
by the receipt procedure if they are obsolete. ma
in RQ;; is obsolete since mg — mp and ms is
delayedJ. Hence, mg is marked omissible. After
the completion of my, i.e. sending ms, o;; takes
mg from RQ;;. Since m3 is marked omissible, o;;
omits m3 and sends back a dummy response of
ma to op;. Then, o;; starts to compute ms since
mg is not obsolete while being delayed.

5 Evaluation

The pseudo-active replication supports the
same level of reliability as the active one, i.e. the
cluster can service as long as at least one replica
is operational. Let ¢; be a cluster of of an object
0i. Let d; be another cluster of o;. Here, suppose
that an object oy, receives multiple instances m'!,
..., m'% of a message m from o;; ... 0;1;. o} takes
only one of them. The sequence of messages from
c; is an oulput sequence of ¢; to op.-
[Definition] A cluster c; is equivalent to d; (¢; =
d;) iff every output sequences of ¢; and d; are the
same for every input sequence of messages. O
[Theorem 3] In the pseudo-active replication, ev-
ery cluster ¢; is equivalent to some one-replica

—-T71—

cluster of 0;. O

‘We evaluate the pseudo-active replication clus-
ter ¢; = {051, ..., 0, } in terms of response time
and computation time compared with the active
one. An object o, sends requests to the replicas
in ¢; and receives the responses from the replicas.
Let 6; be the propagation delay time between oy
and the replicas in ¢;. There are f; types of re-
quests which o;; can take. =}, xf, and ¢ de-
note probabilities that one request type is an iden-
tity, idempotent, and other one in c;, respectively.
Here, 7} + 78 + xf = 1. We assume that every
pair of operations conflict if both of them are not
identities. We assume that o;; is the fastest and
01, is the slowest in c;. Suppose that o, issues w
requests to c;. After sending a request r, o5 sends
a succeeding request to ¢; on receipt of the re-
sponse of 7. In this paper, we assume that it takes
1',-'"-, 74, and 7} time units to compute each iden-
tity, idempotent, and other event, respectively, in
o;;. Let m; be an average computation time of
each event in o;;, ie. 7j =7 - 75, + xf - 7S + %7
- 15, We assume that 7f; /i = & /rd = /8
= mj /71 (£ 1). It is expected to take w - 7;; time
units to compute w requests in o;;. The expected
processing time is Rp = w - (751 + 2 -) in the
pseudo-active replication while Ry = w « (ry;, +
2 - &) in the active one. It is clear that Rp < R4
since 71 < Ty,

If no event is omitted in every o;;, w requests
are computed. Hence, the total computation time
of ¢; in the active replication is Xj=y,..1; w - 7j.
In the pseudo-active one, some obsolete events are
omitted. Let us consider the total computation

16
Pi1
2(delta=0.1) o
Pi3(delta=1) -
Pid(deita=3) ——
Pi5(delta=10) --- -
g 14 y
5 7
B 7
g i
< rd
g v
= 12 b /
/
e
1 ”
! 4

2
tau_iii/ tau_it

Figure 8: Ratio of total computation time.

times of the fastest replica o;; and slowest oy,.
The total time of o;; is defined to be a duration
from time when o;; receives the first request until
when o;; sends the response of the last request.
Let T4 be the total time of o;; to compute the
requests in the active replication, i.e. no requests
are omitted. Let Tp be the total computation
time of 0j;; in the pseudo-active replication. Here,
suppose 7¢ = 0.5, 7§ = 0.3, and x¢ = 0.2. oy
sends w (= 100) requests by selecting randomly
operations in f; (= 10) ones. Let § be a ratio of
the propagation delay §; among o, and the repli-
cas in ¢; to the processing time 7}, of the identity

Pil —

Pi2(delta=0.1) »
Pi3(delta=1)
Pi4(delta=3)

PI5{dela=10) -

08} Y

wp/w

06

0.4

1 2 3 4 5
tau_ili / tau_i1

Figure 9: Ratio of omissible events.

request in o;1, 6;/7f;. By the simulation, the total
processing times Tp and T, are obtained. The
number wp of operations computed in o;; in the
pseudo-active replication is also obtained. Figure
8 shows T4 /R4 and Tp/R4 with § = 0.1, 1, 3, 10
for 731/ 7i;. The dotted lines show Tp /Ra4. Figure
9 shows wp /w with § for 731 /7,

Figures 8 and 9 show the pseudo-active repli-
cation can reduce the total processing time and
the number of operations computed in the slower
replica. Furthermore, the longer the distance
among op, and the replicas is, the more efficient
the pseudo-active replication is. In Figure 9, let
us consider wp /w for § = 3. If it takes 10 msec. to
compute the identity request like read in o;;, the
propagation delay is 30 msec. If oy, is five times
slower than o;3, the number of requests computed
in oy, is the same, i.e. 50%. This means that ev-
ery identity request is omitted in oy, since every
request issued to o;;; is queued in RQ;;.

6 Concluding Remarks

This paper has discussed the pseudo-active
replication in the heterogeneous cluster. In the
heterogeneous cluster, the computation of the
cluster can complete if the fastest replica com-
pletes while the slower replicas are still being com-
puted. We have presented the vector clock based
method by which each replica can decide how the
replica follows others. The slower replicas can
catch up with the fastest replicas by omitting the
identity and idempotent events and changing the

commutative events. We have shown that the
pseudo-active replication implies shorter response

time and total computation time than the active
one while supporting the same level of reliability
as the active one.

References ‘

[1] Agarwal, D. A., Moser, L. E., Melliar-Smith,
P. M., and Budhia, R. K., “A Reliable Or-
dered Delivery Protocol for Interconnected
Local-Area Networks,” Proc. of IEEE ICNP,
1995, pp.365-374.

[2] Amir, Y., Moser, L. E., Melliar-Smith, P. M.
Agarwal, D. A., and Ciarfella, P., “The
Totem Single-Ring Ordering and Member-
ship Protocol,” ITACM TOCS, Vol.13, No.4,
1995, pp.311-342. :

[3] Birman, P. Kenneth, and Renesse, V. Rob-
bert, “Reliable Distributed Computing with
the Isis Toolkit,” IJEEE CS Press, 1994.
Budhiraja, N., Marzullo, K., Schneider, B.
F., and Toueg, S., “The Primary-Backup Ap-
proach,” Distributed Computing Systems,
ACM Press, 1994, pp.199-221.
Ezhilchelvan, P. D., Macedo, R. A., and Shri-
vastava, S. K., “Newtop: A Fault-Tolerant
Group Communication Protocol,” Proc. of
IEEE ICDCS-15, 1995, pp.296-307.

[6] Fischer, J. M., Nancy, A. L., and Michael,
S. P., “Impossibility of Distributed Consen-
sus with One Faulty Process,” ACM TOCS,
Vol.32, No.2, 1985, pp.374-382.

[7} Florin, G. and Toinard, C., “A New Way to

Design Causally and Totally Ordered Mul-

ticast Protocols,” ACM Operating Systems

Review, Vol.26, No.4, 1992, pp.77-83.

Lamport, L., “Time, Clocks, and the Or-

dering of Events in a Distributed System,”

Comm. ACM, Vol.21, No.7, 1978, pp.558—

565.

Lamport, L., Shostak, R., and Pease, M.,

“The Byzantine Generals Problem,” ACM

Trans. Programming Languages and Sys-

tems, Vol.4, No.3, 1982, pp.382-401.

[10] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms (Cosnard, M. and
Quinton, P. eds.), North-Holland, 1989,
pp-215-226.

[11] Melliar-Smith, P. M., Moser, L. E., and
Agrawala, V., “Broadcast Protocols for Dis-
tributed Systems,” IEEE Trans. on Parallel
and Distributed Systems, Vol.1, No.1, 1990,
pp.17-25.

[12] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast. Protocol,” Proc. of
IEEE ICDCS-14, 1994, pp.48-55.

[13] Object Management Group Inc., “The Com-
mon Object Request Broker Architecture and
Specification,” Rev. 2.0, 1995.

[14] Schneider, B. F., “Byzantine Generals in Ac-
tion: Implementing Fail-Stop Processors,”
ACM Tran. on Computing Systems, Vol.2,

' . No.2, 1993, pp.145-154.

[15] Schneider, B. F., “Replication Management
using the State-Machine Approach,” Dis-
tributed Computing Systems, ACM Press,
1993, pp.169-197. :

[16] Shima, K., Higaki, H., and Takizawa,
M., “Fault-Tolerant Causal Delivery in
Group Communication,” Proc. of IEEE IC-
PADS’96, 1996, pp.302-309.

[17] Tachikawa, T. and Takizawa, M., “Selective

.~ Total Ordering Broadcast Protocol,” Proc. of

IEEFE ICNP-94, 1994, pp.212-219.

4

[Laant

[5

—

(8

—_—

[9

—_—

[18] Tachikawa, T. and Takizawa, M., “Dis-

tributed Protocol for Selective Intra-group
Communication,” Proc. of IEEE ICNP-95,
1995, pp.234-241. R

[19] Thomas, L. C. and Mukesh, S.; “The Delta-
4 Distributed Fault-Tolerant Architecture,”
Distributed Computing Systems, IEEE CS
Press, 1990, pp.223-247.

