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According to the advances of computer and network technologies, various kinds of network applica-
tions have been implemented. In order to realize mission-critical applications in the network, replication
has been introduced. Every server object is replicated and placed on multiple computers If some of
them fail, the others continue to execute the application. In an active replication, since all the requeats
from a chent are sent to all the replicated server objects in the same order; all the replicas is surely in
the same state. In the conventional active replication, the replicas are required to be synchronized. If
the replicas are placed on the different kinds of computers with different processing speed, the response
time observed by the application in the client depends on the slowest replica. To solve this problem,
we have introduced a pseudo-active replication. However, since the speed of the replicas is measured by
usmg the response order observed by a client in the proposed protocol for the pseudo-active replication,
it is difficult to apply this method to a wide-area network where the replicas are distributed and multiple
clients are also distributed. Furthermore, the difference of processing ‘speed is detected only if a client
sends request messages within a short interval, Hence, this paper proposes another implementation of the
pseudo-active replication. Here, the information of the processing speed in each processor is transmitted
by the totally ordered protocol for transmitting a request.
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1 Introduction

According to the advances of computer and
network technologies, network applications are
widely developed. These applications are real-
ized by cooperation of multiple objects. Here,
mission critical applications are also implemented
and these applications are required to be executed
fault-tolerantly. An ective replication has been
proposed where multiple replicated objects are op-
erational in a network system. In the conventional
active replication, all the replicated objects are re-
quired to be synchronized. In the network system,
each replicated objects may be placed on different
kinds of computers, that is, computation is real-
ized by different kinds of processors, with different
processing speed and different reliability. There-
fore, the synchronization among the replicated ob-
jects induces an additional time-overhead. The
response time for the application in a client object
is depends on the speed of the slowest replicated
server object. The authors have been proposed
a pseudo-active replication [8,14]. Here, not all
the replicated objects are required to be synchro-
nized. By using the pseudo-active replication, the
synchronization overhead is reduced and the re-
sponse time for the application in the client object
is also reduced.

In the proposed protocol for the pseudo-active
replication discussed in [8] and [14], the difference
of processing speed in the replicated objects is de-
cided in a client by using the order of receipts of
the response messages from the replicated objects.
This method works well in a local-area network.
However, it is difficult to apply this method to
wide-area networks because the difference of the
response time is based on not only the process-
ing speed but also the message transmission de-
lay. If the replicated objects are distributed in
a wide-area network and multiple clients commu-
nicate with them, every client may decide a dif-
ferent object as a faster one. In this paper, we
propose a modified protocol to realize the pseudo-
active replication in a wide-area network. In the
pseudo-active replication, a slower replicated ob-
Jject omits some requests from clients in order to
catch up with faster replicated object for reducing
the time-overhead in the recovery from the failure
of the faster replicated object [8,14]. In this paper,
we propose another method to achieve the syn-
chronization among the replicated objects. Here,
some requests from multiple replicas are intention-
ally processed in different order in each replicated
object. By using this method, the response time
for the requests from clients is reduced and the to-
tal processing time in the replicated objects may
be also reduced.

In section 2, we review the pseudo-active repli-
cation and discuss the implementation of pseudo-
active replication for a heterogeneous wide-area
network. In section 3, we show a protocol for re-

Figure 1: Replication of server objects

alizing our idea and some properties satisfied by
our protocol.

2 Pseudo-Active Replication in
Wide-Area Networks

2.1 System Model

In a network system S, distributed applications
are realized by the cooperation of multiple ob-
jects. An object o; is composed of data and op-
erations for manipulating the data. o; is located
on a computer (;. C; and C; are connected to a
network and are always assumed to be able to ex-
change messages. o; sometimes computes by itself
and sometimes communicates with another object
0;. In most of the recent distributed applications,
the objects in a network system are classified into
clients and servers. A client object of request a
server object o] to invoke a specified operation
op by sending a request message. of manipulates
the data and sends back a response message to
of. This type of communication among the ob-
jects is called client-server type. In this paper, all
the communication among the objects is assumed
to be client-server. In order that the application
programs are executed fault-tolerantly in S, each

server object o} is replicated and located on dif-

ferent computers [Figure 1]. Here, replicas o
(1 <k < nj) of of are composed of the same data
and the same operations.

2.2 Passive and Active Replication

There are two main approaches for replicating
server objects: passive and active replication [2]
[Figure 2]. In the passive replication [3,4], only
one of the replicas is operational. The other repli-
cas are passive, i.e. these replicas do not invoke
any operation. A client object of sends a request
message to only the operational server replica 0j;.
o}y invokes the operation requested by of and
sends back a response message to of. of, some-
times sends the state information to tfxe other
replicas o, (2 < k < n;) and every o}, updates
the state information. This is called a checkpoint.
If 0}, fails, one of the passive replicas say 05, be-
comes operational. Here, of, restarts the execu-
tion of the application from the most recent check-
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Figure 2: Passive and active replication

point. Hence, the recovery procedure takes time
because o, has to re-invoke the operations that
the failed oj; has already finished before the fail-
ure.

In the active replication [1,5,6,11,13], all the
replicas are operational. A client object of sends
request messages to all the server replicas ol
(1 <k < nj). Every of, invokes the operation re-
quested by of and sends back a response message
to of. After receiving all the response messages,
of accepts these messages and delivers the result
to the application. Since all the server replicas
o}, are operational and synchronized, even if some
replica of,, fails, the other replicas of, (k # k')
can continue to execute the application. Hence,
the recovery procedure in the active replication
requires less time-overhead than that in the pas-
sive one.

2.3 Pseudo-Active Replication

In the conventional active replication, all the
replicas of, (1 < k < ny) of a server object of are
synchronized. Here, the computers on which o},
are located are assumed to be the same kind ones
with the same processing speed and the same reli-
ability and to be connected to the same local-area
network. That is, it takes almost the same time to
finish the required operation and the same trans-
mission delay is required for the messages between
a client and the replicas. Therefore, a client ob-
Jject of can receive all the response messages from
0, at almost the same time. This assumption is
reasonable in a local-area network.

However, a wide-area network, e.g. the In-
ternet, is usually heterogeneous. Many different
kinds of computers are connected to many differ-
ent kinds of networks. That is, there are pro-
cessors with different processing speed, reliabil-
ity and availability, and networks with different
message transmission delay and message loss ra-
tio [15]. Here, it is difficult for a client object of to
receive all the response messages from the replicas
o}y, (1 < & < ny) of o] simultaneously. In Figure 3,
of delivers the result of an operation op to the ap-
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Figure 3: Synchronization overhead in active
replication

plication after receiving the response message my3
from the slowest replica o}, i.e. the application
in of is blocked until receiving mj;. Therefore,
the synchronization overhead for receiving the re-
sponse messages is required to be reduced.

The authors have been proposed a pseudo-
active replication [8,14] where a client object of
only waits for the first response from the repli-
cas of, under an assumption that only the siop
faults occur in the replicas, i.e. no failed object
sends a message to another one [12]. On receiving
the first response message from the replicas, of
delivers the result to the application and restarts
to execute the application. Hence, the response
time in of becomes shorter and the synchroniza-
tion overhead in S is reduced. However, since oy,
are placed on processors with different speed and
are not synchronized, some replica of,, might fin-
ish the computation of all the requests from the
client objects and another replica o0}, might keep
many requests not to be computed because o},
is placed on a slower processor. In this case, if
0} fails, the recovery procedure takes longer time
than the conventional active replication because
0},n has to compute the requests that 0jy has al-
ready computed before the failure occurs as shown
in the passive replication.

In order to solve this problem, we introduce
the following two methods in the pseudo-active
replication:

1) Each client object of tells the server replicas
which replica is faster or slower.

2) If a replica 0}y is told to be a slower one,
o}, omits some requests from client objects
in order to catch up with the faster replicas.

Suppose that a client object of waits for response
messages m;, and m7,,, and sends a request mes-
sage m;. In [8] and [14], we define faster/slower
replicas based on the causal relationship [9] among
these messages [Figure 4].

[Definition: faster/slower replicas]

If m, — m; and m},, /4 m; where m — m/
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Figure 4: Pseudo-Active replication
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Figure 5: Pseudo-Active replication in a wide-area
network

denotes a message m causally precedes another
message m/, 0jy, 18 followed by Ofpr. That is, oy,
and of,, are defined to be a faster and a slower
replicas, respectively. O

2.4 Pseudo-Active Replication in a
Wide- Area Network

In a wide-area network, processors on which
the replicas of, of a server object of may be con-
nected to different sub-networks, e.g. one is in
Japan and another is in Europe, for executing
mission-critical applications more fault-tolerantly.
In addition, client objects may be distributed in
a wide area. In this case, the receipt order of re-
sponse messages in each client 18 not a good mea-
surement of the processing speed in the replicated
server objects. For example, all the replicated
server objects may be informed to be slower as fol-
lows[Figure 5]. Consider that a replica 0, of of is
placed far from another replica o, and client ob-
Jects of and of, is near [ and Ofprs respectively.
Here, we assume the processing speed of o}, and
o}y are the same. If of and of, sends new request
messages after receiving a response message of the
previous request from near replica before receiv-
ing-from far one, both o}, and o’ )jk" are informed
to be slower and invoke the procedure to omit the
waiting requests.

The difference among response times from each
replica of, in a client object of is caused by the
differences of both the processing speed of the pro-

cessors on which o, are placed and the message
transmission delay in the communication channel
between of, and.of. In addition, in a wide-area
network, the network system S usually consists

. ‘of many client objects distributed in a wide-area.

Hence, the measurement of the processing speed
based on the receipt order of the response mes-

. sages for the previous request in a client object is

relative and does not show the difference of pro-

_ cessing speed in the replicas. Therefore, it is not

suitable for a pseudo-active replication in a wide-
area network. :

In each replicated server objects, the requests
which can be delivered to the application but
not yet delivered are called wailing requests and
queued in an application queue (APQ) until the
application can accept them. In [7], the length of
APQ is used as a mesure for the processing speed
of replicas and is piggied back with the messages
transmitted from replicated server objects to a
client. -However, if many clients near the faster
replica sends request messages burstly, the APQ
of the faster replica might be longer than that of
the slower replica. In order to solve this prob-
lem, we apply sequence numbered assigned to the
most recently processed request message SEQ as
the mesure of the speed of the processors. In or-
der to find slower replicas by using SEQ, we use
the total ordering protocol proposed in [3]. This
protocol consists of the following phases:

1) A client object of sends a reservation message

reg to every replicated server objects oy

2) On receipt of res, o}), sends back a confir-

mation message conf to of with a sequence
number.

3) After receiving all the conf messages, of
sends a final message fin to every o, with
the maximum sequence number assigned to
the received conf messages. The fin mes-
sage carries the request message of the appli-
cation.

4) On receipt of fin, of, enqueues the request
message to APQ. In APQ), request messages
are sorted by the assigned sequence numbers.

Here, the sequence number assigned to the most
recently processed in a replica is piggied back
to the conf message. By receiving conf from
all the replicas, the client object can find slower
replica. Ideally, the client object receives the se-
quence number at the same time from all the repli-
cas. However, it is impossible in' a network sys-
tem because of the message transmission delay.
Hence, we introduce a certain threshold value to
find slower replica. Only if the difference of the se-
quence numbers between some replica 0}, and the
others is larger than this threshold, of, is treated
as a slower replica.

In order for the slower replica oy, to catch up
with the faster replica Ofgr Ofps omits some re-
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Figure 6: Intentional computing order exchange

quests to compute. Here, suppose that op and op’
are required operations, opoop’ is a concatenation
of op and op’ and op(s) is a state of an object after
op is computed in a state s.
[Definition: an identity request]
An operation op is an ideniity operation iff
op(s) = s for every state s. O
[Definition: an idempotent request]
An operation op is an idempotent operation iff
opoop(s) = op(s) for every state s. O
Clearly, even if the slower replica o}, omits iden-
tity and idempotent operations, o}, can get the
same state as the faster replica of;.
[Omission rule]
If the following conditions are satisfied, an opera-
tion op is omitted in a replica of:
1) o} is a slower replica.
2) op is an identity or idempotent operation.
3) Some faster replica o, has computed r. O

In [8] and [14], by using vector clocks [10] for de-
termining the causal relation ship among the mes-
sages, the above conditions 1) and 3) are checked
in each replica o;-k(l < k < nj). Here, every re-
quest message is assumed to be transmitted to all
the replicated server objects in the same order, i.e.
totally ordered delivery is assumed. -

The request not being omitted by the omission
rule are computed in the same order in every repli-
cas, However, some pair of operations op and op’
can be computed different order.

[Definition: compatible and conflict operations]
Operations op and op’ are compatible iff op o
op/(s) = op’ o op(s) for every state s. Otherwise,
these operations are conflict. O

If op and op’ are compatible, these operations can

be computed in different order in each replica.

By computing the operations in different order
in each replica, the response time in client objects
may be reduced [Figure 6]. If an operation op re-
quested by of and another operation op’ requested
by of, are compatible, op and op’ are required to
be computed first by the replica near of and of,
respectively. That is, the message transmission
delay between a client objects and the replicas is
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Figure 7: Total ordering protocol for pseudo-
active replication )

reasonable for deciding the computation order of
compatible operations. The message transmission
delay is not constant but time-variant {15]. There-
fore, it is required to be measured each time an
operation is requested. In our protocol proposed
in the next section, it is measured in the first and
the second phase of total ordering protocol. Fi-
nally, in order to avoid that the computation of
some compatible operation is postponed infinitely,
the maximum number E,,q, of order exchange is
predetermined. If the order of an operation op
is exchanged FE,,., times, op becomes a conflict
operation with any other requests.

3 Protocol

In this section, we propose another protocol for
implementing the pseudo-active replication by us-
ing the total ordering protocol [3]. Each replicated
server object of, (1 < k < n;) manipulates the fol-
lowing variables:

e Logical clock clj, for totally ordering the re-

quests from client objects.

e Last computed request index loij; for the
measurement of processing speed of server
objects.

In the following total ordering protocol, the above
variables are piggied back to the control messages
in order to exchange the length of the waiting re-
quest queue among the replicas [Figure 7):

[Total ordering protocol]

1) A client object of sends request messages
req(r) with a request  to all the replicated
server objects of, (1 <k < ny).

2) On receipt of reg(r), of, stores r in the buffer
with cljz. o}, sends back an ordering mes-
sage ord(cl;y, loi;,) piggying back clj; and
loije. cljp is incremented by one.

3) After receiving all the ordering messages
from of, (1 < k < mny), of sends fi-
nal messages fin(max cl, max loi, ord) where
max ¢l = maxy, cljk, max loi = maxy ¢lj; and
ord is the receipt order of the ordering mes-
sage from o0f,.

4) On receipt of fin(maxcl, maxloi,ord), r is
restored from the buffer and enqueued to




APQ ordered by oi(r) = maxcl. O
APQ is an FIFO request queue and the applica-
tion dequeues requests from APQ. If the applica-
tion finishes the computation of 7 with oi(r), loi;,
is updated to oi(r). Hence, loij; is always incre-
mented. max loi piggied back to the final message
means that the fastest server object has finished
to compute a request with maxloi. Hence, the
procedure for omitting requests is invoked as fol-
lows:
[Omitting operations]
o If maxloi — loi;, > threshold, identity and
idempotent operations in APQ is removed.
a
Finally, if » and another request v’ in APQ are
compatible r is enqueued into APQ according to
" the following procedure:

{Intentional order exchange procedure]

1) if » and 7' are compatible and ord(r) <
ord(r'), r is enqueued before 7'.

2) if » and v’ are compatible and ord(r) =
ord(+'), r is enqueued before #' with prob-
ability 1/2.

3) Otherwise, 7 is enqueued after /. O

4 Concluding Remarks

In order to apply the pseudo-active replication
in a wide-area and large-scale network systems, we
proposed another protocol designed by modifying
the total ordering protocol. In order to make clear
the efficiency of our protocol, we need to evaluate
the followings:

e The difference of the length of the waiting
request queues in the replicas. If it is smaller
than the conventional pseudo-active replica-
tion protocol, the system can be quickly re-
covered from a failure of the faster replica by
using our protocol.

e The response time of the request from clients.
Here, the efliciency of the intentional order
exchange can be evaluated.

We are now implementing a prototype system to
evaluate our protocol.

References

[1] Ahamad, M., Dasgupta, P., LeBlanc R. and
Wilkes, C., “Fault Tolerant Computing in Ob-
ject Based Distributed Operating Systems,”
Proceeding of the 6th IEEE Symposium on
Reliable Distributed Systems, pp. 115-125
(1987). ‘

[2] Barrett, P.A., Hilborne, A.M., Bond, P.G and
Seaton D.T., “The Delta—4 Extra Performance
Architecture,” Proceeding of the 20th Interna-
tional Symposium on Fault-Tolerant Comput-
ing Systems, pp. 481-488 (1990).

[3] Birman, K.P. and Joseph, T.A., “Reliable
Communication in the Presence of Failures,”

ACM Transaction on Computer Systems,
Vol. 5, No. 1, pp. 47-76 (1987).

[4] Borg, A., Baumbach, J. and Glager, S., “A
Message System Supporting Fault Tolerance,”
Proceeding of the 9th ACM Symposium on OS
Principles, pp.27-39 (1983).

[5] Cooper, E.C., “Reliable Distributed Pro-
grams,” Proceeding of the 10th ACM Sym-
posium on OS Principles, pp. 63-78 (1985).

[6] Higaki, H. and Soneoka, T., “Group-to-Group
Communications for Fault-Tolerance in Dis-
tributed Systems,” IEICE Transaction on In-
formation and Systems, Vol. E76-D, No. 11,
pp. 1348-1357 (1993).

-[7] Higaki, H., Morishita, N. and Takizawa, M.,

“Active Replication in Wide-Area Networks,”
IPSJ Technical Report, vol.98, No.84, pp.93-
98 (1998).

[8] Ishida, T., Higaki, H. and Takizawa, M.,
“Pseudo-Active Replication of Objects in Het-
erogeneous Processors,” IPSJ Technical Re-
port, vol. 98, No. 15, pp. 67-72 (1998).

[9] Lamport, L., “Time, Clocks, and the Ordering
of Events in a Distributed System,” Commu-
nications of the ACM, Vol. 21, No. 7, pp. 558-
565 (1978).

[10] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel
and Distributed Algorithms, North~Holland,
pp. 215-226 (1989).

[11] Powell, D., Chereque, M. and Drackley, D.,
“Fault-Tolerance in Delta~4,” ACM Operat-
ing System Review, Vol. 25, No. 2, pp. 122-
125 (1991). :

[12] Schneider, F., “Byzantine Generals in Ac-
tion: Implementing Fail-Stop Processors,”
ACM Transaction on Computing Systems,
Vol. 2, No. 2, pp. 145-154 (1984).

[13] Shima, K., Higaki, H. and Takizawa,
M., “Fault-Tolerant Intra-Group Communi-
cation,” IPSJ Transaction, Vol. 37, No. 5,
pp. 883-890 (1996).

[14] Shima, K., Higaki, H. and Takizawa, M.,
“Pseudo-Active Replication in Heterogeneous
Clusters,” IPSJ Transaction, Vol. 39, No. 2,
pp. 379-387 (1998).

(15] Tachikawa, T., Higaki, H., Takizawa, M.,
Liu, M., Gerla, M. and Deen, M., “Flexible
Wide-area Group Communication Protocols
— International Experiments,” Proceedings of
the 27th International Conference on Parallel
Processing, pp. 570-577 (1998).



