INF AT 4 TRELSHLAE 91-14
(1999. 1. 22)

Quorum-Based Protocol for Group of Replicas

Mayumi Shindo, Tomoya Enokido, Hiroaki Higaki, and Makoto Takizawa

Tokyo Denki University
E-mail {mayumi, eno, hig, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of a group of multiple objects. Only messages signifi-
cant for the applications have to be causally ordered in order 1o reduce the computation and communication
overhead while all messages transmitied in the network are ordered in iraditional group protocols. In this
paper, significant messages are defined in terms of object concepts. Objects support methods only by which
the objects are manipulated. The significantly precedent reletion among messages is defined in contert of
request and response messages. In this paper, we discuss o group protocol for a group of replicas of a
simple object which supports read and write operations. Here, iransactions issue read and write requests
according to the guorum-based scheme.

I-SLhEBW-ERIBFEXO NI
g BElhE B SE BEBE OBR R
HR BRI TR T2%

BEOBHRY A7 A2, BHOHEBLHERRLAMHBEOVATALZ> TS, BT S) r—V g
Vi, HEOA TV PEEWR A vV kKR LBRBET A L THEINS, E5I, EF TV
M. VAFAORBEN. THARBIUMERBLETA220FFEAINE, COL) BREBOF TV
BOBEICBWNT, 2y b—YnEBEEREPA v - VHROBNEEERET A7 NV-TEE ST O
VBEEBBEREINTWDS, LEL. RO V- THBETT FINVDOEE, Ay P =7 ICEREEINLET
DAy =T AT R T2 720, FOBBLABELPLBHEIWALTCLE), KWL T, FI ¥
W2 a v BRATT 5 write HE X read HEOMBEDP O, HFEHIERTRER v -V EHTH, TN
I, PAUF—Ta ko [BER] Ay - VOB R EERYTEAEZT) a—F A 5RERVLEY

W—TEETT IV ERET B,

1 Introduction

In order to improve the reliability and avail-
ability of the system, objects are replicated in the
system. The replicas of the objects are distributed
on computers interconnected by communication
networks. Transactions manipulate replicas by is-
suing requests to replicas in servers. The repli-
cas of an object have to be mutually consistent in
presence of multiple transactions. The authors (8
discuss a group protoco! named OG (object-base
group) protocol for a group of multiple abstract
objects which support abstract methods. In this
paper, we consider a simple object like a file, which
supports only basic operations read and write. A
transaction sends a read request message to only
one replica and sends a write request message to
all the replicas, i.e. read-one-write-all principle.
Message transmitted in the network may be unex-
pectedly delayed due to congestions and message
loss in the network. If some message is delayed to
be delivered to a replica, the replica is required to
wait for the message delayed while messages fol-
lowing the message are received. Raynal et al. [1]
discuss a group protocol for replicas where some
write request delayed can be omitted based on the
write-write semantics. The authors [7] present a
TBCO (transaction-based causally ordered) pro-
tocol which supports the ordered delivery of only
messages which are required to be causally or-
dered from the application’s point of view. The
delivery order is defined in context of transactions.
Here, the TBCO protocol orders only messages
which are sent and received in a transaction and
which are exchanged among conflicting transac-

TG

tions.

In the read-one-write-all scheme, a read re-
quest is not performed if a replica to which the
request is destined is faulty. In addition, the read-
one-write-all scheme implies larger computation
and communication overheads for write dominat-
ing applications since write requests are sent to all
the replicas, In the coterie scheme [10], a read re-
quest may be sent to one or more than one replica
and a write request may not be sent to all the
replicas. Let R be a set of replicas o?, ...,0™
(m > 1) of an object 0. The sets of replicas to
which read and write are to be sent are referred
to as read and write quorums @, and Q,, of o,
respectively. The numbers of replicas in @, and

Q. are guorum members N, and N, of o, respec-

tively. Here, there are constraints, @, U @y =
Rand Q. N Q, # ¢, i.e. N, + N, > m and
Ny + Ny > m. In this paper, we discuss which
messages transmitted in the network are required
to be causally delivered [11] in the quorum-based
scheme. We define insignificant messages re-
ceived by the replica, which can be omitted and
need not be ordered.)
In sections 2 and 3, we present a system model
and message precedency. In section 4, we discuss
significant messages. In section 5, we present a
quorum-based group (QG) protocol.

2 Quorums

2.1 Quorum-based scheme

A system is composed of multiple computers in-
terconnected by less reliable communication net-
works. Messages may be lost and the delay time is

not bounded in the network. Clients and servers
are realized in computers. A server supports
clients with objects. An object o supports data
and operations read and write to manipulate the
data. The object o is replicated to tolerate the
fault of 0. Let o' denote a replica of the object o
(t=1, ..., m). The replicas are stored in different
computers. Let R(o) be a cluster of the object o
which is a set of the replicas o™, ...,
object o (m > 1).

A transaction in a client sends read and write
requests to servers to read and write replicas.
On receipt of the request from the transaction,
the server p; performs the request on the replica
stored in p;. Here, let opf(o}) denote an opera-
tion op issued by a transaction T; to manipulate a
replica of,, where op is either r (read) or.w (write).

A transaction T; sends read requests to N, (<
m) replicas and write requests to N, (< m) repli-
cas in the quorum-based protocol [10]. The trans-
action T; sends write requests to the replicas in
the write quorum set Q,,. The data of the replicas
in @, are overwritten by a write request. Here
T: obtains a version number v* from a replica o
which is the maximum in Q.. v* is incremented
by one. Then, the version numbers of the replicas
in @, are replaced with v*.

The transaction T; has to read the newest
replica, i.e. replica whose version number is maxi-
mum in the cluster R(o0). Since the write requests
are sent to not all the replicas, some replicas to
which the write request is not sent are still ob-
solete. T; derives data from a replica o whose
version number v' is the maximum in the read
quorum set Q.

2.2 Object fault

Let k& be N, 4+ N, — m. It is guaranteed that
every pair of read and write quorum sets include
at least k (> 1) common replicas. As long as
fewer number of the replicas than k are faulty,
the transactions can continue the computation.
We assume that the replicas suffer from stop-fault
and the number of faulty replicas is smaller than
k. If some number h of replicas are detected to
be faulty, the quorum numbers N, and N, can
be reduced because the cluster R(o) includes (m
— h) operational replicas. In this paper, if & (< k)
replicas are detected to be faulty, N, and N, are
updated as follows :

N, := N, - h:

Ny = Ny, - h: .

The client and server computers detect that h
replicas are faulty by using the time-out mecha-
nism. A computer p, considers a replica o' to
be faulty if p, had not received any message in
fixed time units. If p, detects that of is faulty,
p, includes this information in messages which p,
sends. On receipt of the message from p,, a com-
puter p, knows that o' is faulty. If a computer
p, finds that there are h faulty replicas the p,
changes the read and write quorum numbers N,
and N, to N, = Ny — h and N/ = N, - h since
h <k, N!, > 0 and N/ > 0. Some computer p,
still does not detect the fault while p, detects the
fault. Here, p, still uses N, and N, as the quo-
rum numbers of o while p, uses N/ and N,. It is
straightforward that the following properties hold

o"= of the |

N + NI, =N, + Ny - 2h > m + k - 2h.
N, +N,>m+k-h>m+k-2h

N/ +Ny>m+k-h>m+k-2h

. (Ny ~h) + (Ny —h) >m + k - 2h.

(N =R+ N, >m+k-3h>m+k-
2h.

N+ (Ny-h)>m+k-3h>m+k-
2h.

If h (< k) replicas are faulty, at most (k - h)
replicas may get faulty out of (m — h) operational
replicas. Here, the summation of read and write
quorum numbers is required to be larger than m
+ k - 2h.

If a faulty replica recovers from the fault, the
quorum numbers N, and N, are incremented as
N, =N, + 1and N, := Ny + 1. We assume
that all operational computers are synchronized
to get the same quorum numbers N, and N, if
the faulty replicas are recovered.

O N

(=2

3 Message Precedency

Each server in a computer stores replicas of ob-
jects. Here, let o}, denote a replica of an object o,
which is stored in a computer p,. A transaction
T; in a computer p,, sends a read or write request
m to server computers to manipulate replicas ac-
cording to the quorum-based scheme. On receipt
of a request message m from a transaction Tj, a
computer p; enqueues m into a receipt queue RQ;.
Here, let m.op show an operation op, i.e. 7 or w
and m.o be an object o to be manipulated by op,
which are carried by a request message m. Let
m.dst be a set of destination computers of m. Let
m.id be a transaction identifier of the transaction
T; which sends m. The computer p; takes a top
message m in RQ; and then performs an operation
m.op on a replica m.o stored in p;, i.e. o'. Here,
let op}(o},) denote an operation op on a replica o,
which is issued by a transaction T;. Let @, (o) and
Quw(0) show the quorum sets of an object o, and
N, (o) and Ny (o) indicate the quorum number of
o, respectively.

Each transaction 7} initiated in a computer p,
is given a transaction identifier #id(T}). The trans-
action identifier t:d(T;) is given a concatenation
of a logical clock value when T; is initiated and a
computer identifier of the computer p,. The log-
ical clock of p, is realized by a vector clock {13].
The logical clock is a vector V = (Vi, ..., Va)
where n is the nimber. Initially, each V; = 0 and
is used for a computer p; (¢ = 1, ..., n). For a pair
of vector clocks Vi = (V11, ..., Vin) and Vo = (V3y,
cey V2n>, V> Vaif Vi > Ve fort=1,..,n If
Vi > Va or Vi < V,, V; and V; are comparable.
Each time a transaction 7T} is initiated in a com-
puter py, V, is incremented by one, i.e. V,, :=V,,
+ 1. 11d(T;) := V. A message m sent by T; carries
the transaction identifier tid(7}) as m.id = (m.V7,
..., m.V,). On receipt of a message m from Tj in
a computer p;, V is manipulated as follows :

V, i=max (V,, m.V,)forv =1, ..., n (v #t);
That is, if T} is initiated after p, receives a mes-
sage from another transaction 7j iff tid(T}) >
tid(T;). Suppose that the vector clocks of T; and
T; are not comparable, tid(T;) > tidg’j) if the
identiﬁer of the computer p, initiating T is larger
than the identifier of the computer initiating Tj.

Therefore, for every pair of different transactions
T; and Ty, tid(T;) > tid(T}) or tid(T}) < tid(T3).

A transaction T} is a sequence of read and write
requests. That is, T; issues serially requests to
sgislniers T; does not send multiple requests in par-
alle
[Definition] A request op}(ol) precedes another
request opf(o}) in a transaction T; (o0pi(0}) —r,
opf(0})) if T; issues op(o},) before opf(o}). O

Each request message m has a sequence number
m.sq. The sequence number is incremented by one
each time p; sends a message. For every pair of
messages my and mg sent by a computer p;, m;.sq
< mgy.sq iff p; sends m, before m;.

A receipt queue RQ, of a computer p; shows
a sequence of read and write requests which p;
receives but does not yet compute. Messages in
RQ; are ordered by the following rule.
[Ordering rule] A request my precedes another
request my in a receipt queue RQ; of a computer
p; if one of the following conditions holds :

1. my.id < mg.id and m;.op conflicts with

mg.0p.
2. my.8¢ < my.sq if m;.id = my.id, i.e. m; and
my are sent by a same transaction. O

If a pair of messages m; and mjy cannot be or-
dered according to the ordering rule, m; and my
are stored in a receipt order. A pair of read re-
quests my and mg sent by different transactions
are not ordered according to the ordering rule.
The transaction identifier is generated by the vec-
tor clock and the computer identifier. Hence, it
is straight{orward to show that m; precedes my
in RQ; if m; causally precedes m;. In addition,
my.id > my.id or my.id < my.id even if the trans-
action identifiers of the transactions sending m,
and mgy are not comparable. Hence, if m;.op and
my.op are write requests on a same replica, m;
and m; are preceded in the same order in every
pair of common destination replicas of m; and ma.
[Properties] A request m; precedes another re-
quest my in every destination computer of my and
my if

1. my causally precedes mg.
2. m; and my are not causally ordered and
my.op conflicts with mgy.op. O

Figure 1 shows there computer p,, p:, and py.
Initially, a transaction identifier is (0, 0, 0) in ev-

ery computer. A transaction T is mltlated in p,

where tid(T1) = (1, 0, 0). T issues a read request
71 to the computers p, and p,. After receiving rq,
a transaction T is initiated where tid(T3) = (1, 0,

1). T; issues a write request wy to p;, Py, and py.
p; Teceives vy after w, since ry is delayed while r;
causally precedes w;. Here, r.id = (1, 0, 0) >
wy.id = (1, 0, 1). Here, r; precedes w, in p, and
also in p, by the ordering rule. A transaction T3
is initiated at p,, tid(T3) = (2, 0, 1).

4 Insignificant Messages

4.1 Insignificant messages on the

precedency
In the quorum-based scheme, each transaction
T; issues a request message m to one or more than
one replica. Due to the unexpected communica-
tion delay in the network, some destination com-

Figure 1: Causal precedence.

puter may not receive the message m although
the other destination computers have received m
already. The response time and throughput of
the system can be improved if messages which
need not be delivered are removed from the re-
ceipt queue. We discuss what messages a receipt
queue RQ; a computer p; can remove from a re-
ceipt queue.

Suppose that there are two requests op(o},) and
op}(0}) in a receipt queue RQ, of a computer p;.
[Definition] A request op}(o}) locally precedes
another request op}(0;) in a computer p; (op}(})
— op}(o})) iff op}(o}) precedes op}(o}) in RQ;
and op}(o}) conflicts with op}(o%). O
[Definition] A request op}(o,) precedes another
request op} (o}) (op}(o}) — op¥ (o})) iff opk(ok) —
op}(o}) for u = t, opl(0},) —¢ op}(0}), op (0}) —u
op} (o), opt(t) —, op} ¥ (o) for same transaction
T and] = 1, or there is same operation op such
that opf(ol) — op — op}(o}). O

t !
wy (x) wyk)
p t CI '3
U u u
, MWW
P w: (x) T Zv) \:av (63]
- time

Figure 2: Precedency.

Figure 2 shows three computers py, p,, and p,
each of which supports a replica z. wi(z) —
wy(z), wi(z) —u r§(z), and rj(z) —y wi(z).
Since wi(z) — r3(z), wi(z) — wi(z).

It is important to make clear what value each
read request reads.

[Definition] A read request r}(o}) reads o, from
a write request w(o%) in a computer p; (w!(o})
=t ri(0})) iff wi(o}) —: ri(o}) and there is no
write request op such that w}(o!) —; op —, r} (ot)
in R@;. O

In Figure 2, w} =>, r§. However, wj = r}
does not hold.

In the quorum-based scheme, only if a read re-
quest could read the newest version of the replica,
the read request is meaningful. Otherwise, it is
meaningless to perform the read request.
[Definition] A write request w}(o}) is current for
a read request 7}(o}) in a receipt queue RQ, iff

L. wi(og) =»; r(0}) and
2. there is no write request w;(o,) such that
E’E‘(OL‘) —u wi(og) and wi(o}) =y 77 (0}).

The read request 7f(0}) is current if w}(o}) is
current for 7}(o}). Otherwise, r}(o}) is obsolete.
If r}(o}) is current, r}(0}) reads the newest value
of the object 0,. Otherwise, r(o}) reads the older
value of o,. If w}(o}) is not current for r}(o}),
wi(o}) is obsolete for 7{(ot). In Figure 2, wy is
current for 7§ and 7% is current. However, rj is
obsolete.

According to the write-write semantics, if a
write request wy is performed just after a write
wy on a replica, wy is overwritten by wy according
to the write-write semantics. Hence, w; needs not
be performed if w; is surely performed.
[Definition] A write request w}(o}) directly
precedes another write request w¥(o%) iff w}(o})
— w}(o}) and there is no read r}(o}) such that
wi(ol) — r3(02) = u (o). O

In Figure 2, w} directly precedes w§.
However,w} does not directly precede w} since w}
— ¥ — wl.

Figure 3 shows there are three computers p;,
pu, and p, receiving read and write requests.
Here, a notation op{ shows a request op which is
issued by a transaction T} and is to be performed
by a computer p;. An object o is replicated in p;,
py, and p,. That is, p;, py, and p, have replicas
o', o%, and o' of an object o, respectively. The
read and write quorum numbers for an object o
are given as N,(0) = Ny (o) = 2. The computer p;
receives three write requests w!, w}, and w} from
the transactions 73, 75, and T4 in this sequence.
The computers p, and p, receive read and write
requests as shown in Figure 3. The computer p;
performs a write request w! before w§, i.e. w} —,
w} but w! does not directly precede w} because
ry is performed after w} before wj in p,. rj and
r¢ are obsolete. wj is current for 7§ and wy is
current for 7%,

We define insignificant messages which can

be omitted in a receipt queue R@; of a computer
Pt-
[WW - rule] If w}(o}) —¢ w}(o}) and there is no
read 7 (0!) such that w}(ol) —; rf (o) —: wi(o})
in RQ:, wi(o}) is insignificant in RQ,. O

In Figure 3, w! and w} are insignificant in the

t I b
P, " "s W s
u u u u
r r
P el o
v v v v
P, o) Wy Ts s

time

Figure 3: Insignificant requests.

computer p;. The value written by w} and w} are
overwritten by w}.

‘[RR - rule] If 7}(o}) — ri(o}) and r{(o}) —

g(of,) does not hold, r}(o}) is insignificant in RQ,.
If 7}(o!) is insignificant, the response of r}(o},)
is sent to the source computer of (0}) in addition
to the source computer of r{(o}). In Figure 3,
g is insignificant in p, because the requests r}
and 7§ read the value written by wj. Hence, after
performing r{, the computer p, sends the response
of ¢ to not only the transaction Ty but also Tg.
Obsolete requests in RQ); are also insignificant.
[Obsolete request rule]
1. If w!(o},) is obsolete in RQy, w}(o}) is insignif-
icant.
2. If r}(o}) is obsolete in RQ, ri(o!) is insignif-
icant. O
In Figure 3, since w¥ is obsolete, w¥ is in-
significant. 73 is also insignificant. Insignifi-
cant messages can be removed from the receipt
queues. The receipt queues RQ,, RQ,, and RQ,
are reduced by removing insignificant messages as
shown in Figure 4. Here, {4 shows r} where the
response of r{ is sent to not only T but also Ts.

R [[
O riwpwy w W,
] : T
I's Wy Iy Wy ®’ 3 Wz)
W
r56W4>

Figure 4: Omission of significant requests.

vV_ V. V _V
T Ts Wy T)

[Theorem)] For every read request 7;(0) on an ob-
ject o, there is at least one replica ot of o where a
read request r}(o?) is current. O

Let L; be a local log of a computer p;, i.e. a
sequence of requests which p; performs without
removing insignificant requests. Let. L be a collec-
tion {L1, ..., L} of the local logs. Let L} be a
local log of p; obtained from L; by removing in-
significant requests and L’ be {Li, ..., Ln}. For
a pair of read request 7}(o}) and write request
wi(ol), wi(o}) —y5 ri(oh) if w}(o}) is current for
ri(oh) in L. L is named a reduced log of L.

[Theorem] A log L and a reduced log L' of L
satisfy the following properties :

1w} —y rh iff wh —py 7} and .
2. L and L’ includes the same read requests. O

4.2 Insignificancy on object fault

As discussed in the previous section, some repli-
cas may be faulty, e.g. due to the computer faults.
Suppose that there are four computers py, pu, Py,
and p,,; each of which has a replica of an object
o as shown in Figure 5. Suppose that N, (10) =3
and Ny, (o) = 3. Here, k = 2. If p, is faulty, the
quorum numbers are changed to N,.{o) = 2 and
N, go) = 2. After p, gets faulty, a transaction T3
sends a write request wg to p;, py, and p, by using
N, (o‘z. = 3 since T3 does not know of the fault of
Du transaction Ty sends a read request 74 to
p, and p, by using N, (o) = 2 since Ty knows p,
is faulty. Here, there is no need T, sends ws to
three replicas 0%, o%, and o in the computers p;,
Py, and p,. It is sufficient for Ty to send ws to
only two replicas, Hence, one of the three com-
puters p;, py, and py, say p,, is not required to
receive wz. Hence, w} is insignificant.

wt Wgt

] 3

Wtk oty
P, ciy a5 & e

v v v

’, A S

w w

w r
Py gl Ol

time

Figure 5: Faulty replica.

Let Q(op) be a quorum set @, of an operation
op and N(op) be a quorum number N, of op. Let
0Q(op) be a set of operational replicas in Q(op).

Redundant write rule] For a write request w;,
0Q(w;) | > Nu(0), | 0Q(w;) | = Ny (o) replicas
which receive w; do not perform w;. O

5 Quorum-based Group Protocol

We present a QG (quorum-based group) pro-
tocol for a group of replicas on computers py, ...,
pn. A request message m sent by a transaction
T: at a computer p; is composed of the following
attributes :

m.sq = sequence number of m.

m.ssq = vector of subsequence numbers, {(ssqi,

..y 85Gn).
m.ack = receipt confirmation {acks, ..., ackn).
m.id = transaction identifier of T}, i.e. tid(T}) =
(Vl, . 'YVn>'

m.op = type of operation op, i.e. 7 or w.

m.o = identifier of object to be manipulated by op.

m.src = identifier of source computer p;.

m.dst = set of destination computers.

m.view = (fi, «- ., fa) where fo = 1if T; considers
pu is operational, f, = 0 otherwise for
uw=1..,n

m.dt = data.

—83—

- Each replica o, has a version vector V} = (V1,

..y Vu). The replica o} takes a request m from
a receipt queue RQ),. Then, o} performs op} (=
m.op) if the following condition is satisfied :

e m.id > V. ,

Here, o, creates a thread for op!. If op} completes,
the version vector V! is changed as follows :

o Vi :=m.id, '

FEach message m carries a sequence number
m.sq. Each time a computer p; sends a message,
sq is incremented by one. A message ‘'m is sent
to some, not all computers. Hence, a message gap
cannot be detected by using the sequence number.
In order to detect a message gap, a computer p;
manipulates variables ssqg = (ssq1,...., 33¢n), 7s¢
= (rsq1, ..., 78q,), and rq = (rqy, ..., T¢n). A
message carries data of ssq and 7sg. Each time
p; sends a message m to a computer p,, a sub-
sequence number ssq, is incremented by one and
m.ssq, = ssq, for v = 1, ..., n. On the other
hand, rsg, shows a subsequence number ssq, of
message which p; expects to receive next from p,
(u=1,...,n). Suppose that p; receives a message
m from p,. If m.ssq; = m.rsq,, p, considers that
p: has received every message which p, had sent
before m and rsq, := rsq, + 1. rgy is updated as
rqy = max(rgy, m.sq).

A message carries receipt confirmation informa-
tion ack = {(acky, ..., acks). Each time p; sends
a message m, m.ack, :=rg, (v=1, .., n). On
receipt of m, py can know that p, has received
every message from p, whose sequence number is

smaller than m.ack, (s = 1, ..., n). p; manipu-
lates variable ack = {acky, ..., ack,). On receipt
of a message m, ack, := max(ack,, m.ack,) for v
=1..,n

[Definition] A message m is redundant in a re-
ceipt queue RQ, iff m.sq < ack, for some desti-
nation p, of m. O

A redundant message m in p; means that some
computer p, receives m.
[Definition] A request message m is locally ready

in a receipt queue RQ, iff every message m' that

m.src = m'.src and m.ssq: < m’.3sg; is delivered
to iy a
[Definition] A request message m is ready in a
receipt queue RQ, iff m is locally ready in RQ.
and for each computer p,, there is a locally ready
message m’ preceded by m in RQ,. O

If a message m is ready in RQy, p; surely deliv-
ers every message preceding m. If a top message
m of the receipt queue RQ, is ready, p; can take m
from RQ, and deliver m. Here, if the message m is
redundant, p; needs not deliver m in the following
cases !

1. If m is a read request, p; removes m from

. RQu.

2. If m is a write request. and m is surely re-
ceived by more than N, (o) replicas, p; re-
moves m from RQ:.

6 Concluding Remarks

This paper has discussed a group protocol for
a replica in the quorum-based scheme. A transac-
tion sends read and write requests to one or more
than one replica in the quorum-based one while

a read request is sent to one replica and a write
request is sent to all the replicas in the traditional
scheme. We have defined insignificant messages
which need not be ordered.

References
(1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implement-

ing Causally Consistent Distributed Services,”
Proc. of IEEE ICDCS-18, 1998, pp.86-93.

Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery
in Database Systems,” Addison- Wesley, 1987.

Birman, K., Schiper, A., and Stephenson, P.,

“Lightweight Causal and Atomic Group Multi-

cast,” ACM Trans. Computer Systems, Vol.9,

No.3, 1991, pp.272-314.

{4] Birman, P. K. and Renesse, V. R., “Reliable
Distributed Computing with the Isis Toolkit,”
IEEE Comp. Society Press, 1994.

[5] Chandy, K. M. and Lamport, L., “Distributed

snapshots: Determining Global States of Dis-

tributed Systems,” ACM Trans. on Compuler

Systems, Vol.3, No.1, 1985, pp.63-75.

(6] Cheriton, D. R. and Skeen, D., “Understand-
ing the Limitations of Causally and Totally
Ordered Communication,” Proc. of ACM
SIGOPS93, 1993, pp.44-57.

[7] Enokido, T., Tachikawa, T., and Takizawa,
M., “Transaction-Based Causally Ordered
Protocol for Distributed Replicated Objects,”
Proc. of IEEE ICPADS 97, 1997, pp.210-215.

(8] Enokido, T., Higaki, H., and Takizawa, M.,

“Group Protocol for Distributed Replicated

Objects,” Proc. of ICPP’98, 1998, pp.570-

577.

Enokido, T., Higaki, H., and Takizawa,

M., “Protocol for Group of Objects,” Proc.

of DEXA’98(Lecture Notes in Computer

Science, Springer-Verlag, Vol.1460), 1998,

pp-470-479.

[10] H. Garcia-Molina, H. and D. Barbara, D,,
“How to Assign Votes in a Distributed Sys-
tem,” Journal of ACM, Vol.32, No.4, 1985, pp.
841-860. '

[11] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-565.

[12] Leong, H. V. and Agrawal, D., “Using Mes-
sage Semantics to Reduce Rollback in Opti-
mistic Message Logging Recovery Schemes,”
Proc. of IEEE ICDCS-14, 1994, pp.227-234.

[13] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms, 1989, pp.215-226.

[14] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[15] Ravindran, K. and Shah, K., “Causal Broad-
casting and Consistency of Distributed Shared
Data,” Proc. of IEEE ICDCS-14, 1994,
pp.40-47.

[16] Tachikawa, T. and Takizawa, M., “Signifi-
cantly Ordered Delivery of Messages in Group
Communication,” Computer Communications
Journal, Vol. 20, No.9, 1997, pp. 724-731.

[2

—

3

el

ey
0
)

[17] Tachikawa, T., Higaki, H., and Takizawa,
M., “Group Communication Protocol for Re-
altime Applications,” Proc. of IEEE ICDCS-
18, 1998, pp.40-47.

(18] Tanaka, K., Higaki, H., and Takizawa,
M. “Object-Based Checkpoints in Distributed
Systems,” Journal of Computer Systems Sci-
ence and Engineering, Vol. 13, No.3, 1998,
pp.125-131.

