Quorum-Based Protocol for Group of Replicas Mayumi Shindo, Tomoya Enokido, Hiroaki Higaki, and Makoto Takizawa Tokyo Denki University E-mail {mayumi, eno, hig, taki}@takilab.k.dendai.ac.jp Distributed applications are realized by cooperation of a group of multiple objects. Only messages significant for the applications have to be causally ordered in order to reduce the computation and communication overhead while all messages transmitted in the network are ordered in traditional group protocols. In this paper, significant messages are defined in terms of object concepts. Objects support methods only by which the objects are manipulated. The significantly precedent relation among messages is defined in context of request and response messages. In this paper, we discuss a group protocol for a group of replicas of a simple object which supports read and write operations. Here, transactions issue read and write requests according to the quorum-based scheme. ## コーラムを用いた因果順序配送プロトコル 進藤 真由美 榎戸 智也 桧垣 博章 滝沢 誠 東京電機大学理工学部経営工学科 現在の情報システムは、複数の計算機を相互接続した分散型のシステムとなっている。分散型アプリケーションは、複数のオブジェクトが互いにメッセージを交換し協調動作することで実現される。さらに、各オブジェクトは、システムの信頼性、可用性および性能を向上するため多重化される。このような複数のオブジェクト間の通信において、メッセージの因果順序配送やメッセージ紛失の無い通信を保証するグルーブ通信プロトコルが多数議論されている。しかし、従来のグルーブ通信プロトコルの多くは、ネットワークに送信された全てのメッセージに順序付けを行なうため、その通信と処理にかかる負荷が増大してしまう。本論文では、トランザクションが発行する write 演算と read 演算の関係から、順序付け配送すべきメッセージを定義する。これにより、アプリケーションにとって『重要な』メッセージのみを順序付けて配送を行うコーラム方式を用いたグループ通信プロトコルを提案する。 #### 1 Introduction In order to improve the reliability and availability of the system, objects are replicated in the system. The replicas of the objects are distributed on computers interconnected by communication networks. Transactions manipulate replicas by issuing requests to replicas in servers. The repli-cas of an object have to be mutually consistent in presence of multiple transactions. The authors [8] discuss a group protocol named OG (object-based group) protocol for a group of multiple abstract objects which support abstract methods. In this paper, we consider a simple object like a file, which supports only basic operations read and write. A transaction sends a read request message to only one replica and sends a write request message to all the replicas, i.e. read-one-write-all principle. Message transmitted in the network may be unexpectedly delayed due to congestions and message loss in the network. If some message is delayed to be delivered to a replica, the replica is required to wait for the message delayed while messages following the message are received. Raynal et al. [1] discuss a group protocol for replicas where some write request delayed can be omitted based on the write-write semantics. The authors [7] present a TBCO (transaction-based causally ordered) protocol which supports the ordered delivery of only messages which are required to be causally ordered from the application's point of view. The delivery order is defined in context of transactions. Here, the TBCO protocol orders only messages which are sent and received in a transaction and which are exchanged among conflicting transactions. In the read-one-write-all scheme, a read request is not performed if a replica to which the request is destined is faulty. In addition, the read-one-write-all scheme implies larger computation and communication overheads for write dominating applications since write requests are sent to all the replicas. In the coterie scheme [10], a read request may be sent to one or more than one replica and a write request may not be sent to all the replicas. Let R be a set of replicas o^1, \ldots, o^m $(m \geq 1)$ of an object o. The sets of replicas to which read and write are to be sent are referred to as read and write quorums Q_r and Q_w of o, respectively. The numbers of replicas in Q_r and Q_w are quorum members N_r and N_w of o, respectively. Here, there are constraints, $Q_r \cup Q_w = R$ and $Q_r \cap Q_w \neq \phi$, i.e. $N_r + N_w > m$ and $N_w + N_w > m$. In this paper, we discuss which messages transmitted in the network are required to be causally delivered [11] in the quorum-based scheme. We define insignificant messages received by the replica, which can be omitted and need not be ordered. In sections 2 and 3, we present a system model and message precedency. In section 4, we discuss significant messages. In section 5, we present a quorum-based group (QG) protocol. #### 2 Quorums ## 2.1 Quorum-based scheme A system is composed of multiple computers interconnected by less reliable communication networks. Messages may be lost and the delay time is not bounded in the network. Clients and servers are realized in computers. A server supports clients with objects. An object o supports data and operations read and write to manipulate the data. The object o is replicated to tolerate the fault of o. Let o^t denote a replica of the object o (t = 1, ..., m). The replicas are stored in different computers. Let R(o) be a cluster of the object o which is a set of the replicas or1, ..., orm of the object $o (m \geq 1)$. A transaction in a client sends read and write requests to servers to read and write replicas. On receipt of the request from the transaction, the server p_t performs the request on the replica stored in p_t . Here, let $op_t^i(o_a^i)$ denote an opera-tion op issued by a transaction T_i to manipulate a replica o_a^t , where op is either r (read) or w (write). A transaction T_i sends read requests to N_r ($\leq m$) replicas and write requests to N_w ($\leq m$) replicas in the quorum-based protocol [10]. The transaction T_i sends write requests to the replicas in the write quorum set Q_{ψ} . The data of the replicas in Q_w are overwritten by a write request. Here, T_i obtains a version number v^t from a replica o^t which is the maximum in Q_w . v^t is incremented by one. Then, the version numbers of the replicas in Q_w are replaced with v^t . The transaction T_i has to read the newest replica, i.e. replica whose version number is maximum in the cluster R(o). Since the write requests are sent to not all the replicas, some replicas to which the write request is not sent are still obsolete. T_i derives data from a replica o^t whose version number v^t is the maximum in the read quorum set Q_r . #### Object fault Let k be $N_r + N_w - m$. It is guaranteed that every pair of read and write quorum sets include at least $k \ (\geq 1)$ common replicas. As long as fewer number of the replicas than k are faulty, the transactions can continue the computation. We assume that the replicas suffer from stop-fault and the number of faulty replicas is smaller than k. If some number h of replicas are detected to be faulty, the quorum numbers N_r and N_w can be reduced because the cluster R(o) includes (m -h) operational replicas. In this paper, if $h \leq k$ replicas are detected to be faulty, N_{τ} and N_{w} are updated as follows: $$N_r := N_r - h:$$ $$N_w := N_w - h:$$ The client and server computers detect that h replicas are faulty by using the time-out mechanism. A computer p_u considers a replica o^t to be faulty if p_u had not received any message in fixed time units. If p_u detects that o^t is faulty, p_u includes this information in messages which p_u sends. On receipt of the message from p_u , a computer p_v knows that o^t is faulty. If a computer p_u finds that there are h faulty replicas the p_u p_u hads that there are h lantly replicas the p_u changes the read and write quorum numbers N_w and N_τ to $N_w' = N_w - h$ and $N_\tau' = N_\tau - h$ since $h \leq k$, $N_w' > 0$ and $N_\tau' > 0$. Some computer p_v still does not detect the fault while p_u detects the fault. Here, p_v still uses N_τ and N_w as the quorum numbers of o while p_u uses N_τ' and N_w' . It is straightforward that the following properties hold - 1. $N'_{r} + N'_{w} = N_{r} + N_{w} 2h > m + k 2h$. 2. $N_{r} + N'_{w} > m + k h > m + k 2h$. 3. $N'_{r} + N_{w} > m + k h > m + k 2h$. 4. $(N_{r} h) + (N_{w} h) > m + k 2h$. 5. $(N_{r} h) + N'_{w} > m + k \frac{3}{2}h > m + k 2h$. - 6. $N'_r + (N_w h) > m + k \frac{3}{2} h > m + k 2h$. If $h \ (< k)$ replicas are faulty, at most (k - h)replicas may get faulty out of (m-h) operational replicas. Here, the summation of read and write quorum numbers is required to be larger than m +k-2h. If a faulty replica recovers from the fault, the quorum numbers N_r and N_w are incremented as $N_r:=N_r+1$ and $N_w:=N_w+1$. We assume that all operational computers are synchronized to get the same quorum numbers N_r and N_w if the faulty replicas are recovered. ## Message Precedency Each server in a computer stores replicas of objects. Here, let o_a^t denote a replica of an object o_a which is stored in a computer p_t . A transaction T_i in a computer p_u sends a read or write request m to server computers to manipulate replicas according to the quorum-based scheme. On receipt of a request message m from a transaction T_i , a computer p_t enqueues m into a receipt queue RQ_t . Here, let m.op show an operation op, i.e. r or wand m.o be an object o to be manipulated by op, which are carried by a request message m. Let m.dst be a set of destination computers of m. Let m.id be a transaction identifier of the transaction T_i which sends m. The computer p_t takes a top message m in RQ_t and then performs an operation m.op on a replica m.o stored in p_t , i.e. o^t . Here, let $op_i^t(o_a^t)$ denote an operation op on a replica o_a^t which is issued by a transaction T_i . Let $Q_r(o)$ and $Q_w(o)$ show the quorum sets of an object o, and $N_r(o)$ and $N_w(o)$ indicate the quorum number of o, respectively. Each transaction T_i initiated in a computer p_u is given a transaction identifier $tid(T_i)$. The transaction identifier $tid(T_i)$ is given a concatenation of a logical clock value when Ti is initiated and a computer identifier of the computer p_u . The logical clock of p_u is realized by a vector clock [13]. The logical clock is a vector $V = \langle V_1, \ldots, V_n \rangle$ where n is the number. Initially, each $V_t = 0$ and where n is the number. Initially, each $V_t = 0$ and is used for a computer p_t (t = 1, ..., n). For a pair of vector clocks $V_1 = \langle V_{11}, ..., V_{1n} \rangle$ and $V_2 = \langle V_{21}, ..., V_{2n} \rangle$, $V_1 \geq V_2$ if $V_{11} \geq V_{21}$ for t = 1, ..., n. If $V_1 \geq V_2$ or $V_1 \leq V_2$, V_1 and V_2 are comparable. Each time a transaction T_i is initiated in a computer $p_{i,j}$, $V_{i,j}$ is incremented by one, i.e. $V_{i,j} = V_{i,j} V$ the transaction identifier $tid(T_i)$ as $m.id = \langle m.V_1,$..., $m.V_n$). On receipt of a message m from T_j in a computer p_t , V is manipulated as follows: $V_v := \max(V_v, m.V_v) \text{ for } v = 1, ..., n \ (v \neq t);$ That is, if T_i is initiated after p_u receives a message from another transaction T_j iff $tid(T_i) >$ $tid(T_i)$. Suppose that the vector clocks of T_i and T_i are not comparable, $tid(T_i) > tid(T_i)$ if the identifier of the computer p_u initiating T_i is larger than the identifier of the computer initiating T_j . Therefore, for every pair of different transactions T_i and T_j , $tid(T_i) > tid(T_j)$ or $tid(T_i) < tid(T_j)$. A transaction T_i is a sequence of read and write requests. That is, T_i issues serially requests to servers. T_i does not send multiple requests in parallel. [Definition] A request $op_i^t(o_a^t)$ precedes another request $op_i^u(o_b^i)$ in a transaction T_i $(op_i^t(o_a^t) \to_{T_i} op_i^u(o_b^i))$ if T_i issues $op_i^t(o_a^t)$ before $op_i^u(o_b^i)$. \square Each request message m has a sequence number m.sq. The sequence number is incremented by one each time p_t sends a message. For every pair of messages m_1 and m_2 sent by a computer p_t , $m_1.sq < m_2.sq$ iff p_t sends m_1 before m_2 . A receipt queue RQ_t of a computer p_t shows a sequence of read and write requests which p_t receives but does not yet compute. Messages in RQ_t are ordered by the following rule. [Ordering rule] A request m_1 precedes another request m_2 in a receipt queue RQ_t of a computer p_t if one of the following conditions holds: - 1. $m_1.id < m_2.id$ and $m_1.op$ conflicts with $m_2.op$. - 2. $m_1.sq < m_2.sq$ if $m_1.id = m_2.id$, i.e. m_1 and m_2 are sent by a same transaction. \square If a pair of messages m_1 and m_2 cannot be ordered according to the ordering rule, m_1 and m_2 are stored in a receipt order. A pair of read requests m1 and m3 sent by different transactions are not ordered according to the ordering rule. The transaction identifier is generated by the vector clock and the computer identifier. Hence, it is straightforward to show that m_1 precedes m_2 in RQ_t if m_1 causally precedes m_2 . In addition, $m_1.id > m_2.id$ or $m_1.id < m_2.id$ even if the transaction identifiers of the transactions sending m1 and m_2 are not comparable. Hence, if $m_1.op$ and $m_2.op$ are write requests on a same replica, m_1 and m_2 are preceded in the same order in every pair of common destination replicas of m_1 and m_2 . [Properties] A request m_1 precedes another request m_2 in every destination computer of m_1 and m_2 if - 1. m_1 causally precedes m_2 . - m₁ and m₂ are not causally ordered and m₁.op conflicts with m₂.op. □ Figure 1 shows there computer p_s , p_t , and p_u . Initially, a transaction identifier is $\langle 0,0,0 \rangle$ in every computer. A transaction T_1 is initiated in p_s where $tid(T_1) = \langle 1,0,0 \rangle$. T_1 issues a read request r_1 to the computers p_t and p_u . After receiving r_1 , a transaction T_2 is initiated where $tid(T_2) = \langle 1,0,1 \rangle$. T_2 issues a write request w_2 to p_s , p_t , and p_u . p_t receives r_2 after w_2 since r_1 is delayed while r_1 causally precedes w_2 . Here, r_1 iid = $\langle 1,0,0 \rangle > w_2$. $id = \langle 1,0,1 \rangle$. Here, r_1 precedes w_2 in p_t and also in p_u by the ordering rule. A transaction T_3 is initiated at p_s , $tid(T_3) = \langle 2,0,1 \rangle$. ## 4 Insignificant Messages # 4.1 Insignificant messages on the precedency In the quorum-based scheme, each transaction T_i issues a request message m to one or more than one replica. Due to the unexpected communication delay in the network, some destination com- Figure 1: Causal precedence. puter may not receive the message m although the other destination computers have received m already. The response time and throughput of the system can be improved if messages which need not be delivered are removed from the receipt queue. We discuss what messages a receipt queue RQ_t a computer p_t can remove from a receipt queue. Suppose that there are two requests $op_i^t(o_a^t)$ and $op_j^t(o_b^t)$ in a receipt queue RQ_t of a computer p_t . [Definition] A request $op_i^t(o_a^t)$ locally precedes another request $op_j^t(o_a^t)$ in a computer p_t $(op_i^t(o_a^t) \rightarrow_t op_j^t(o_a^t))$ iff $op_i^t(o_a^t)$ precedes $op_j^t(o_a^t)$ in RQ_t and $op_j^t(o_a^t)$ conflicts with $op_i^t(o_a^t)$. \square [Definition] A request $op_i^t(o_a^t)$ precedes another request $op_j^u(o_b^u)$ ($op_i^t(o_a^t) \rightarrow op_j^u(o_b^u)$) iff $op_i^t(o_a^t) \rightarrow_t op_j^u(o_b^u)$ for $u=t, op_i^t(o_a^t) \rightarrow_t op_j^t(o_b^t), op_i^u(o_a^u) \rightarrow_u op_j^u(o_b^u), op_i^t(o_a^t) \rightarrow_{T_i} op_j^u(o_b^u)$ for same transaction T_i and j=i, or there is same operation op such that $op_i^t(o_a^t) \rightarrow op \rightarrow op_j^u(o_b^u)$. \square Figure 2: Precedency. Figure 2 shows three computers p_t , p_{u_1} and p_v each of which supports a replica x. $w_1^t(x) \rightarrow_t w_3^t(x)$, $w_1^u(x) \rightarrow_u r_2^u(x)$, and $r_2^v(x) \rightarrow_v w_3^v(x)$. Since $w_1^t(x) \rightarrow r_2^v(x)$, $w_1^t(x) \rightarrow w_3^v(x)$. It is important to make clear what value each read request reads. [Definition] A read request $r_j^t(o_a^t)$ reads o_a from a write request $w_i^t(o_a^t)$ in a computer p_t $(w_i^t(o_a^t) \Rightarrow_t r_j^t(o_a^t))$ iff $w_i^t(o_a^t) \rightarrow_t r_j^t(o_a^t)$ and there is no write request op such that $w_i^t(o_a^t) \rightarrow_t op \rightarrow_t r_j^t(o_a^t)$ in RQ_t . \square In Figure 2, $w_1^u \Rightarrow_t r_2^u$. However, $w_0^v \Rightarrow_t r_2^v$ does not hold. In the quorum-based scheme, only if a read request could read the newest version of the replica, the read request is meaningful. Otherwise, it is meaningless to perform the read request. [Definition] A write request $w_t^i(o_a^t)$ is current for a read request $r_t^i(o_a^t)$ in a receipt queue RQ_t iff - 1. $w_i^t(o_a^t) \Rightarrow_t r_i^t(o_a^t)$ and - 2. there is no write request $w_i(o_a)$ such that $w_i^u(o_a^u) \to_u w_k^u(o_a^u)$ and $w_k^v(o_a^v) \to_v r_j^v(o_a^v)$. The read request $r_j^t(o_a^t)$ is current if $w_i^t(o_a^t)$ is current for $r_j^t(o_a^t)$. Otherwise, $r_j^t(o_a^t)$ is obsolete. If $r_j^t(o_a^t)$ is current, $r_j^t(o_a^t)$ reads the newest value of the object o_a . Otherwise, $r_j^t(o_a^t)$ reads the older value of o_a . If $w_i^t(o_a^t)$ is not current for $r_j^t(o_a^t)$, $w_i^t(o_a^t)$ is obsolete for $r_j^t(o_a^t)$. In Figure 2, w_1^u is current for r_2^u and r_2^u is current. However, r_2^v is obsolete. According to the write-write semantics, if a write request w_2 is performed just after a write w_1 on a replica, w_1 is overwritten by w_2 according to the write-write semantics. Hence, w_1 needs not be performed if w_2 is surely performed. [Definition] A write request $w_i^t(o_a^t)$ directly precedes another write request $w_j^u(o_a^u)$ iff $w_i^t(o_a^t) \rightarrow w_j^u(o_a^u)$ and there is no read $r_k^v(o_a^v)$ such that $w_i^t(o_a^t) \rightarrow r_k^v(o_a^v) \rightarrow w_j^u(o_a^v)$. \square In Figure 2, w_1^u directly precedes w_0^u . However, w_3^t does not directly precede w_1^t since $w_1^t \rightarrow r_2^u \rightarrow w_3^u$. Figure 3 shows there are three computers p_t , p_u , and p_v receiving read and write requests. Here, a notation op_i^s shows a request op_i^s which is issued by a transaction T_i and is to be performed by a computer p_s . An object o is replicated in p_t , p_u , and p_v . That is, p_t , p_u , and p_v have replicas o^t , o^u , and o^v of an object o, respectively. The read and write quorum numbers for an object o are given as $N_\tau(o) = N_w(o) = 2$. The computer p_t receives three write requests w_1^t , w_3^t , and w_4^t from the transactions T_1 , T_3 , and T_4 in this sequence. The computers p_u and p_v receive read and write requests as shown in Figure 3. The computer p_t performs a write request w_1^t before w_3^t , i.e. $w_1^t \rightarrow_t w_3^t$ but w_1^t does not directly precede w_3^t because v_2^u is performed after w_1^u before w_3^u in p_u . v_2^v and v_3^v are obsolete. w_4^v is current for v_5^v and w_1^v is current for v_2^v . We define insignificant messages which can be omitted in a receipt queue RQ_t of a computer [WW - rule] If $w_i^t(o_a^t) \to_t w_j^t(o_a^t)$ and there is no read $r_i^k(o_a^t)$ such that $w_i^t(o_a^t) \to_t r_i^k(o_a^t) \to_t w_j^t(o_a^t)$ in RQ_t , $w_i^t(o_a^t)$ is insignificant in RQ_t . \square In Figure 3, w_1^t and w_3^t are insignificant in the Figure 3: Insignificant requests. computer p_t . The value written by w_1^t and w_3^t are overwritten by w_4^t . [RR - rule] If $r_i^t(o_a^t) \to_t r_j^t(o_a^t)$ and $r_i^t(o_a^t) \to r_j^t(o_a^t)$ does not hold, $r_j^t(o_a^t)$ is insignificant in RQ_t . If $r_j^t(o_a^t)$ is insignificant, the response of $r_i^t(o_a^t)$ is sent to the source computer of $r_j^t(o_a^t)$ in addition to the source computer of $r_j^t(o_a^t)$. In Figure 3, r_6^v is insignificant in p_v because the requests r_5^v and r_6^v read the value written by w_4^v . Hence, after performing r_5^v , the computer p_v sends the response of r_5^v to not only the transaction T_5 but also T_6 . Obsolete requests in RQ_t are also insignificant. [Obsolete request rule] - 1. If $w_i^t(o_a^t)$ is obsolete in RQ_t , $w_i^t(o_a^t)$ is insignificant. - 2. If $r_i^t(o_a^t)$ is obsolete in $RQ_t, \, r_i^t(o_a^t)$ is insignificant. \Box In Figure 3, since w_3^u is obsolete, w_3^u is insignificant. r_2^v is also insignificant. Insignificant messages can be removed from the receipt queues. The receipt queues RQ_t , RQ_u , and RQ_v are reduced by removing insignificant messages as shown in Figure 4. Here, r_5^v 6 shows r_5^v where the response of r_5^v is sent to not only T_5 but also T_6 . $$RQ_{t} \overline{r_{6}^{t} w_{4}^{t} w_{3}^{t} w_{1}^{t}} \qquad w_{4}^{t}$$ $$RQ_{u} \overline{r_{5}^{u} w_{3}^{u} r_{2}^{u} w_{1}^{u}} \qquad r_{2}^{u} w_{1}^{u}$$ $$RQ_{v} \overline{r_{6}^{v} r_{5}^{v} w_{4}^{v} r_{2}^{v}} \qquad r_{36}^{v} w_{4}^{v}$$ Figure 4: Omission of significant requests. [Theorem] For every read request $r_i(o)$ on an object o, there is at least one replica o^i of o where a read request $r_i^i(o^i)$ is current. \square Let L_t be a local log of a computer p_t , i.e. a sequence of requests which p_t performs without removing insignificant requests. Let L be a collection $\{L_1, \ldots, L_n\}$ of the local logs. Let L'_t be a local log of p_t obtained from L_t by removing insignificant requests and L' be $\{L_1, \ldots, L_n\}$. For a pair of read request $r_j^t(o_a^t)$ and write request $w_i^t(o_a^t)$, $w_i^t(o_a^t) \to_L r_j^t(o_a^t)$ if $w_i^t(o_a^t)$ is current for $r_i^t(o_a^t)$ in L. L' is named a reduced log of L. [Theorem] A log L and a reduced log L' of L satisfy the following properties : 1. $w_i^t \rightarrow_L r_i^t$ iff $w_i^t \rightarrow_{L'} r_i^t$ and 2. L and L' includes the same read requests. \Box ## Insignificancy on object fault As discussed in the previous section, some replicas may be faulty, e.g. due to the computer faults. Suppose that there are four computers p_t , p_u , p_v , and pw, each of which has a replica of an object and p_w , consists that $N_r(o) = 3$ or as shown in Figure 5. Suppose that $N_r(o) = 3$ and $N_w(o) = 3$. Here, k = 2. If p_w is faulty, the quorum numbers are changed to $N_r(o) = 2$ and $N_w(o) = 2$. After p_w gets faulty, a transaction T_3 $N_w(o) = 2$. After p_w gets faulty, a transaction T_3 sends a write request w_3 to p_t , p_u , and p_v by using $N_w(o) = 3$ since T_3 does not know of the fault of p_w . A transaction T_4 sends a read request r_4 to p_u and p_v by using $N_r(o) = 2$ since T_4 knows p_w is faulty. Here, there is no need T_4 sends w_3 to three replicas o^t , o^u , and o^v in the computers p_t , p_u , and p_v . It is sufficient for T_4 to send w_3 to only two replicas. Hence, one of the three comp only two replicas. Hence, one of the three computers p_t , p_u , and p_v , say p_u , is not required to receive w_3 . Hence, w_3^u is insignificant. Figure 5: Faulty replica. Let Q(op) be a quorum set Q_{op} of an operation op and N(op) be a quorum number N_{op} of op. Let OQ(op) be a set of operational replicas in Q(op). [Redundant write rule] For a write request w_i , $|OQ(w_i)| > N_w(o)$, $|OQ(w_i)| - N_w(o)$ replicas which receive w_i do not perform w_i . \square ## Quorum-based Group Protocol We present a QG (quorum-based group) protocol for a group of replicas on computers $p_1, \ldots,$ p_n . A request message m sent by a transaction T_i at a computer p_t is composed of the following attributes: m.sq =sequence number of m. $m.ssq = vector of subsequence numbers, (ssq_1,$ \ldots , $ssq_n\rangle$. $m.ack = receipt confirmation (ack_1, ..., ack_n).$ $m.id = \text{transaction identifier of } T_i, \text{ i.e. } tid(T_i) =$ $\langle V_1, \ldots, V_n \rangle$. m.op =type of operation op, i.e. r or w. m.o = identifier of object to be manipulated by op. $m.src = identifier of source computer p_t$. m.dst = set of destination computers. $m.view = \langle f_1, \ldots, f_n \rangle$ where $f_u = 1$ if T_i considers p_u is operational, $f_u = 0$ otherwise for $u=1,\ldots,n.$ m.dt = data. Each replica o_a^t has a version vector $V_a^t = \langle V_1, v_2 \rangle$..., V_n). The replica o_a^t takes a request m from a receipt queue RQ_t . Then, o_a^t performs op_i^t (= m.op) if the following condition is satisfied: • $m.id > V_a^t$. Here, o_a^t creates a thread for op_i^t . If op_i^t completes, the version vector V_a^t is changed as follows: $V_a^t := m.id;$ Each message m carries a sequence number m.sq. Each time a computer pt sends a message, sq is incremented by one. A message m is sent to some, not all computers. Hence, a message gap cannot be detected by using the sequence number. In order to detect a message gap, a computer pt manipulates variables $ssq = \langle ssq_1, \ldots, ssq_n \rangle$, $rsq = \langle rsq_1, \ldots, rsq_n \rangle$, and $rq = \langle rq_1, \ldots, rq_n \rangle$. A message carries data of ssq and rsq. Each time p_t sends a message m to a computer p_u , a subsequence number ssqu is incremented by one and $m.ssq_v := ssq_v$ for v = 1, ..., n. On the other hand, rsq_u shows a subsequence number ssq_t of message which p_t expects to receive next from p_u $(u=1,\ldots,n)$. Suppose that p_t receives a message m from p_u . If $m.ssq_t=m.rsq_u$, p_t considers that p_t has received every message which p_u had sent before m and $rsq_u := rsq_u + 1$. rq_u is updated as $rq_u := \max(rq_u, m.sq).$ A message carries receipt confirmation information $ack = \langle ack_1, \ldots, ack_n \rangle$. Each time p_t sends a message $m, m.ack_v := rq_v \ (v = 1, \ldots, n)$. On receipt of m, p_u can know that p_t has received every message from p_s whose sequence number is smaller than $m.ack_s$ $(s=1,\ldots,n)$. p_t manipulates variable $ack=\langle ack_1,\ldots,ack_n\rangle$. On receipt of a message $m, ack_v:=\max(ack_v,m.ack_v)$ for v $=1,\ldots,n.$ [Definition] A message m is redundant in a receipt queue RQ_t iff $m.sq < ack_u$ for some destination p_u of m. \square A redundant message m in p_t means that some computer p_u receives m. [Definition] A request message m is locally ready in a receipt queue RQt iff every message m' that m.src = m'.src and $m.ssq_t < m'.ssq_t$ is delivered to p_t . \square [Definition] A request message m is ready in a receipt queue RQt iff m is locally ready in RQt and for each computer p_u , there is a locally ready message m' preceded by m in RQ_t . \square If a message m is ready in RQ_t , p_t surely delivers every message preceding m. If a top message m of the receipt queue RQ_t is ready, p_t can take mfrom RQ_t and deliver m. Here, if the message m is redundant, p_t needs not deliver m in the following - 1. If m is a read request, p_t removes m from RQ_t . - 2. If m is a write request and m is surely received by more than $N_w(o)$ replicas, p_t removes m from RQ_t . ## Concluding Remarks This paper has discussed a group protocol for a replica in the quorum-based scheme. A transaction sends read and write requests to one or more than one replica in the quorum-based one while a read request is sent to one replica and a write request is sent to all the replicas in the traditional scheme. We have defined insignificant messages which need not be ordered. #### References - Ahamad, M., Raynal, M., and Thia-Kime, G., "An Adaptive Protocol for Implementing Causally Consistent Distributed Services," Proc. of IEEE ICDCS-18, 1998, pp.86-93. - [2] Bernstein, P. A., Hadzilacos, V., and Goodman, N., "Concurrency Control and Recovery in Database Systems," Addison-Wesley, 1987. - [3] Birman, K., Schiper, A., and Stephenson, P., "Lightweight Causal and Atomic Group Multicast," ACM Trans. Computer Systems, Vol.9, No.3, 1991, pp.272-314. - [4] Birman, P. K. and Renesse, V. R., "Reliable Distributed Computing with the Isis Toolkit," IEEE Comp. Society Press, 1994. - [5] Chandy, K. M. and Lamport, L., "Distributed snapshots: Determining Global States of Distributed Systems," ACM Trans. on Computer Systems, Vol.3, No.1, 1985, pp.63-75. - [6] Cheriton, D. R. and Skeen, D., "Understanding the Limitations of Causally and Totally Ordered Communication," Proc. of ACM SIGOPS'93, 1993, pp.44-57. - [7] Enokido, T., Tachikawa, T., and Takizawa, M., "Transaction-Based Causally Ordered Protocol for Distributed Replicated Objects," Proc. of IEEE ICPADS'97, 1997, pp.210-215. - [8] Enokido, T., Higaki, H., and Takizawa, M., "Group Protocol for Distributed Replicated Objects," Proc. of ICPP'98, 1998, pp.570-577. - [9] Enokido, T., Higaki, H., and Takizawa, M., "Protocol for Group of Objects," Proc. of DEXA'98(Lecture Notes in Computer Science, Springer-Verlag, Vol.1460), 1998, pp.470-479. - [10] H. Garcia-Molina, H. and D. Barbara, D., "How to Assign Votes in a Distributed System," *Journal of ACM*, Vol.32, No.4, 1985, pp. 841-860. - [11] Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed System," Comm. ACM, Vol.21, No.7, 1978, pp.558-565. - [12] Leong, H. V. and Agrawal, D., "Using Message Semantics to Reduce Rollback in Optimistic Message Logging Recovery Schemes," Proc. of IEEE ICDCS-14, 1994, pp.227-234. - [13] Mattern, F., "Virtual Time and Global States of Distributed Systems," Parallel and Distributed Algorithms, 1989, pp.215-226. - [14] Nakamura, A. and Takizawa, M., "Causally Ordering Broadcast Protocol," Proc. of IEEE ICDCS-14, 1994, pp.48-55. - [15] Ravindran, K. and Shah, K., "Causal Broadcasting and Consistency of Distributed Shared Data," Proc. of IEEE ICDCS-14, 1994, pp.40-47. - [16] Tachikawa, T. and Takizawa, M., "Significantly Ordered Delivery of Messages in Group Communication," Computer Communications Journal, Vol. 20, No.9, 1997, pp. 724-731. - [17] Tachikawa, T., Higaki, H., and Takizawa, M., "Group Communication Protocol for Realtime Applications," Proc. of IEEE ICDCS-18, 1998, pp.40-47. - [18] Tanaka, K., Higaki, H., and Takizawa, M. "Object-Based Checkpoints in Distributed Systems," Journal of Computer Systems Science and Engineering, Vol. 13, No.3, 1998, pp.125-131.