INFAF 4 7TRIEEHDBOE 94— 9

DB AT LA 5 — N EF R
(1999. 7. 15)

Asynchronous Checkpointing Protocol in Object-Based
- Systems ‘

Katsuya Tanaka, Hiroaki Higaki, and Makoto Takizawa

Tokyo Denki University
E-mail {katsu, hig, taki}@takilab.k.dendai.ac.jp

We discuss how to take checkpoints in object-based systems. If some object is faulty, not only the

object but also other objects which have received messages from the object are required to be rolled back

to the checkpoints. An object-based consistent (O-consistent) checkpoints are semantically consistent in
the object-based system while inconsistent with the traditional message-based definition. We also present
an asynchronous algorithm for taking O-checkpoints.

PEATO 7 MREICHS U B3FRMEF v 7K1 NREEHZE
Hr Bt 28 HE ER W
R BRAYE T EIEE T¥ER
E-mail {katsu, hig, taki}@takilab.k.dendai.ac.jp
AEA TV FRETIE, BERTHEERSNEROFT 7V 27 A v -V OEFEICL Y IGHS
E24T 90 HBF TV FPPLOBERAVE—VOZFBIBVT, A7V VRERS WAV Y FEE
BIL, IBEAYE—T%ET, S5, BEEIAALAY Y FEBOFTV22 bORA VY FERETAEED

HD, KL THE,) LABBIBIEVATFLAOERMICE LWIREZEHL, FELVRETEFLHICHR
EBTA10O0Fzy 7RIV b TR VIVERET D, 7o, FMETV. REROFREIDIWETEF v

TRV PEHFHIREND Z L ERT,

1 Introduction

Distributed applications are composed of mul-
tiple autonomous objects cooperating by exchang-
ing messages through communication networks.
On receipt of a request message with a method op,
opis performed on an object o and'a response mes-
sage with the result of op is sent back. The method
op may invoke methods on other objects, i.e. in-
vocations of methods are nested. The conflicting
relation among the methods is defined based on
the semantics of the object o [4,15]. If a pair of
methods op; and op, conflict, the state obtained
by performing op; and op; depends on the com-
putation order of op; and op;.

In order to make the system fault-tolerant, each
object o takes a checkpoint where the state is
saved in the stable storage log. If the object o
is faulty, o is rolled back to the checkpoint and
then the computation on o is restarted. If o is
rolled back, objects which have received messages
sent by o have to be rolled back so that there is
no orphan message [2], i.e. message sent by no
object but received by some object.

Papers [1,2,6,8-10,14] discuss how to take glob-
ally consistent checkpoints in the message-based
systems. Koo and Toueg [6] present synchronous

- protocols for taking checkpoints and rolling back
processes. Leong and Agrawal [8] present the con-
cept of significant requests, i.e. the state of an
object is changed by performing the request. If
the object o is rolled back, only objects which

- have received significant requests sent by o are
also rolled back. Thus, the number of objects to
be- rolled back can be reduced. However, in the
object-based systems, different types of messages,
i.e. request and response messages are exchanged

among the objects. In the significant requests,
the transmissions of requests and responses are
not considered and invocations of methods are not
nested.

The authors [13] define object-based consistent
(O-consistent) checkpoints which can be taken
based on the conflicting relation among the meth-
ods in various kinds of invocations like syn-
chronous and asynchronous one even though it
may be inconsistent with the traditional message-
based definition. Higaki [5] discusses an asyn-
chronous checkpointing protocol in the message-
based system, where processes a asynchronously
not only take checkpoints but also are restarted.
In this paper, we discuss how to take O-consistent
checkpoints in an asynchronous manner by ex-
tending the Higaki’s algorithm to the object-based
system.

In section 2, we first present the system model.
In section 3, we discuss the influential messages
and define the object-based checkpoint. In sec-
tion 4, we show a protocol for taking O-consistent
checkpoints.

2 System Model
2.1 Objects

A distributed system is composed of multiple
objects. Each object o is defined to be a pair of

a data structure and a collection of methods. On
receipt of a request message m with a method op,

op is performed on o. Then, the response message
with the result of op is sent back. In this paper,

we consider a synchronous invocation, i.e. remote -

procedure call (RPC). The method op may invoke

methods on other objects, i.e. invocation of op is

nested. : .
A message m is lost iff m is sent but not re-

14—9

ceived by some destination object and m is not
in the network. If m is logged in the network,
the receiver of m can take m again from the log.
A message m is an orphan iff m is received but
not sent in the system. Chandy [2] defines a con-
sistent global state to be one where there is no
orphan message. Here, it is not discussed what
information each message carries. Hence, the sys-
tem is referred to as message-based.

2.2 Types of methods

Let op(s) denote a state obtained by applying
a method op to a state s of an object 0. opj.op;
means that a method op; is performed after op;y
completes.))
[Definition] A pair of methods op; and op; of an
object o are compatible iff opy.opa(s) = opz.op1(s)
for every state s of o [4]. O
op; and opy conflict iff they are not compatible.
The conflicting relation among the methods is as-
sumed to be specified in the definition of the ob-
ject o.

An object o supports two kinds of abstract
methods, ie. update type of method which
changes the state of o and non-update method.
For example, deposit of a Bank object is an up-
date method and check is a non-update one. In
this paper, we assume that the types of the meth-
ods are specified in the definition of the object.

A message m participates in a method op if m
is a request or response of op. Let Op(m) denote
a method in which m participates. An object o;
sends a request m; of a method op; to another
object oj. On receipt of m;, op; is performed
on oj. Let op! denote an instance of a method
opg, 1.e. computation of opi in 0. The object o;

gsends a response my of op; to o;. Here, m; and
m, participate in op}, ie. Op(myi) = Op(m;) =
orh.

3 Object-Based Consistent Check-
points

We discuss an object-based consistent check-

point which can be taken from the objects point of

view but may not be consistent with the message-

based, definition. We do not assume that the com-
putations of the objects are deterministic.

3.1 Message-based checkpoints

An object o; takes a local checkpoint ¢ where
the state of o; is stored in the log I;. If the object
o; is faulty, o; is rolled back to the local checkpoint
¢* by restoring the state stored in the log l;. Then,
other objects have to be rolled back to the check-
points if they had received messages sent by 0;. A

global checkpoint c is a tuple {cl, ..., c®) of the -

local checkpoints. From here, a term checkpoint
means a global one. If o; sends a message m before
taking c* but o; receives m after taking ¢/, m is
an orphan. The checkpoint c is consistent if there
is no orphan [2] at ¢. This definition is referred
to as message-based consistent checkpoint. In
Figure 1, an object o; sends a message m to o;.
In Figure 1(1), the checkpoint (cf, ¢/) is consis-
tent with the message-based definition. In Figure
1(2), (c*, ¢} is inconsistent because m is an or-

phan. Papers [1-3,10] discuss how to take consis-
tent checkpoints in the message-based system.

time

(1) Consistent (2) Inconsistent
: checkpoint

Figure lvaessa.ge-bé.sed checkpoints.

Leong and Agrawal [8] discuss the concept of
significant requests. For example, if a request m
is write in Figure 1, m is significant. If o; is rolled
back, o; has to be rolled back. However, o; is
not rolled back if m is read. In the object-based
systems, request and response messages are ex-
changed among the objects. In addition, methods
are invoked in a nested manner.

3.2 Influential messages
Suppose a method op} in an object o; invokes
op, in another object o;. Figures 2 shows a pair of

possible local checkpoints ¢i and c}l to be taken

in the objects o; and o;, respectively. Here, let
j(op?, ¢') be a set of methods which (1) precede

op’ and (2) succeed a local checkpoint ¢’ or are
being performed at ¢ in o;. Suppose ;(op}, ¢})
= {op},, ..., opy} in Figure 2.

O; 4]

time
Figure 2: Possible checkpoints.

We discuss whether or not each checkpoint {c%,
c}) can be taken in the object-based system. A
checkpoint ¢ = (%, ..., c") is object-based con-
sistent (O-consistent) iff every object o; can be
rolled back to the local checkpoint ¢! and then
can be restarted from ¢* from the object point of
view. The O-consistent checkpoint ¢ may be in-
consistent with the message-based definition. For

[os | 05] Conditions]
c’:l AR opl'is non-update.
[ci*, ¢} op), is non-update.
A i op}, is non-update and no,

ck method in 7; (op, &)
conflicts with opl,.
cp, &* op} is non-update.

Table 1: O-consistent checkpoints for Figure 2.

example, the checkpoints (¢}, &) and (c}, c}) are
message-based inconsistent in Figure 2. If op?‘, is
non-update, the state denoted by c’ is the same
as r:’ and (:7 That is, (cl, c") and (cl, c’) show
the same state as (c}, c}). (ci, c}) is consistent
with the message-based .definition because there
is no orphan. Hence, (ci, ¢}) and {c}, ¢}) are
O-consistent. If op; is update, (c%, ¢}) is not O-
consistent because op"2 has cha.nged the state at
c7 If o; is rolled back to ci, op; is undone. Sup-
pose that o; takes cl, where op], is partially per-
formed. op; is required to be undone, i.e. aborted

while other methods being performed at ¢ may
not have to be undone.

There are two kinds of checkpoints, i.e. com-
plete and incomplete ones. Suppose the object o;

is rolled back to the O-consistent checkpoint c}‘ If
¢} is complete, the state of o; is just restored. If ¢,

is incomplete the methods being performed at ";;
have to be undone. However, no method invoked
by the methods is required to be rolled back since

the methods are non-update. Hence, (¢, &) is
O-consistent where c} is incomplete. {c}, d) and
(ci, &) are also O-consistent.

Let us consider checkpoints (c}, 071) (c, cb),

and (04, (:;) which are message-based inconsistent.
If op; is non-update, c’ denotes the same state as
c’ since op‘; does not change the state. Hence, {ck,
c;) is O-consistent since (c§, c}) is message-based
consistent. Here, suppose that opé is read and
there is some write op;h preceding op; and follow-
mg c’ opg reads data written by op;h Hence,
¢ denotes a state different from c,. If no method
following ¢} and preceding op) conflicts with ovl,
op), sends the same result even if opl, is performed
before opg1 Hence, if ap{, is non-update and no
method in the set of requests =; (op}, ¢) conflicts
with opl, (ci, ¢}) is O-consistent. (c}, c) is also

O-consistent. {ci, c}) is O-consistent where d is
incomplete.

The checkpoint including a local checkpoint cg
is similarly discussed. The checkpoints (c%, ¢}),
(i, &), and (ci, c}) are also O-consistent.

Table 1 summarizes the message-based incon-
sistent but O-consistent checkpoints, where check-

points marked * are incomplete if op}, is being per-
formed.

Following the points discussed in this section,
we define influential messages as follows.

[Definition] Suppose that ng sends a message m
to op! in an object o;. Let ¢! be a local checkpoint

most recently taken by the object 0;. The message
m is influential iff one of the following conditions

-1s satisfied: -

1. If m is a request message, a method Op(m)
(= op}) is update.

2.fmisa responsé message, Op(m) (= op;)
is update or some method in m;(Op(m),)
conflicts with Op(m).

If a method op; is undone, only methods receiving
influential messages from op; are required to be
undone,

[Definition] A global checkpoint ¢ = {c?, ..., ¢*)
is object-based consistent (O-consistent) iff there
is no orphan influential message at ¢. O

For example, if qp% is update in Figure 2, the
checkpoint (c§, c}) is not O-consistent since m,
is influential. Otherwise, (c}, c}) is O-consistent.
The O-consistent checkpoints may be inconsistent
with the message-based definition. However, the

objects can be rolled back to and be restarted from
the O-consistent checkpoints.

4 Checkpointing Protocol

‘We discuss an asynchronous protocol for taking
checkpoints among objects. In the asynchronous
protocol discussed by Higaki [5], each object o; ini-
tially takes a local checkpoint ci. Here, a check-
point (c3, ..., c3) is consistent. After taking a
local checkpoint ¢i_,, o; autonomously takes a
succeeding local checkpoint ci. Then, o; sends a
message n marked checkpointed to another object
o;. Here, suppose that a local checkpoint c},_, is
taken in 0; and (ci_;, ¢J,_,) is consistent. On re-
ceipt of m, the object o; takes a local checkpoint
ci, which saves the state of o; which is just before
receiving m. Then, suppose o sends a message m
to another object or. m is marked checkpointed.
oy, takes a checkpoint in the same way as 0;. In the
object-based checkpomtmg, o; does not take a lo-

cal checkpoint ¢, if (ci, ¢/, _
discuss how o; decides if (c}, ¢/,

1)1 is O-consistent. We
_1) is O-consistent.

Each time an ob_]ect o; sends a message m, a
sequence number sq is incremented by one. In ad-
dition, a subsequence number ssq; is incremented
by one if m is sent to an object 0;. The message
m carries the sequence number m.sq and the sub-
sequence numbers m.ssq = (m.ssqy, ..., M.85qn).
An object 0; manipulates variables rsql, ey TSGy
and 7ssqy, ..., 738g, to receive messages. On re-
ceipt of m frorn 0;, 0j receives m if m.ssq; = rssq;.
Then, rssq; := rssq; 4+ 1 and T8¢ 1= m.sq + 1.

If 0; takes a local checkpoint ¢}, the checkpoint

number cp; is incremented by one, i.e. t = cp;.
The message m which o; sends to o; after taking

¢l carries the checkpoint numbers m.cp = (m.cp1,
.., m.cp,) where m.cp; = cp;. m also carries
the receipt sequence number m.rq = (m.rqy, ...,
m.rq,) where m.rq; = rsq;, (k =1, ..., n). Here,
m.rq; shows a sequence number of messages which
o0; receives from o; just before taking the local
checkpoint ¢f.
_On receipt of m from o;, the object o; finds
a set M; of messages mj,, ..., m;,. which o; had
sent to o; after taking the current local checkpoint
¢l _,. Here, mj, .sq is smaller than m.rq; [Figure
3]. The messages are requests or responses. A
message m;, in M; is influential if the following
conditions hold:
If m;, is a request, m;, .op is update.
2. If m;, is a response, m;, .op is update or con-
flicts with some update method in 7;(m;, .op,

Cu1)-

[+)1 04
i J

ci_ X
i L

W-ﬂ-‘z‘

time

Figure 3: Checkpoints

If at least one of the messages m;,, ..., m;, is
1nﬂuent1a,1 the object o; takes a local checkpomt
c’ showmg a state of just before receiving m. Oth-
erwise, o; does not takes a local checkpoint. If o;
takes a checkpoint ¢/, the checkpoint number cp
is incremented by one in oj. Messages sent by 0j
after ¢f, are marked checkpointed.

Suppose that there are three objects o;, 0j, and
or. The object o; initiates the checkpoint proce-
dure. o; sends a checkpointed message m, marked
to o; after taking a local checkpoint ¢*. o; takes

a checkpoint ¢/ on recelpt on m;. Then, o; sends
a checkpointed message m; to o;. On receipt of
mj, ok takes a checkpoint c*. Then, o; sends a
checkpointed message my to o;. o; does not need
to take a checkpoint because (¢, ¢/, c*) is a con-
sistent checkpoint. If o; takes a checkpomt here,
the object o;, 0;, and o cannot stop the check-
point procedure. In order to resolve this problem,
o; sends a checkpointed message with the check-
point numbers. Each ci taken by o; has a sequence
number n‘o(c;'). Each time o; takes a local check-
point, o; increments a checkpoint number by one.

Here, a variable cp; shows a checkpoint number of
0;. ¢p; shows a checkpoint number of 0; which o;
knows. On receipt of a checkpointed message m

from o;, cp; := m.cp; in o; if cp; < m.cp;. Then,
o; sends a checkpointed message with cp = (cp;,
..; €py) after taking a local checkpoint. If ep; >
m.cp;, 0; does not take a checkpoint because o;
has already taken a checkpoint initiated by o;.

5 Evaluation

We evaluate the object-based consistent (O-
consistent) checkpoint protocol in terms of the
numbers of O-consistent checkpoints and influen-
tial messages. We make the simulation on the
following client-server environment:

1. There are n server objects oy, ..., 0, in the
system.

2. One client object initiates transactions, pos-
sibly concurrently. Each transaction issues
randomly one method to the server object.

3. Each method invokes randomly methods in
other objects. The maximum level of invoca-
tion is three. The level is randomly decided
when a transaction invokes the method.

4. Every pair of non-update methods are com-
patible but every update method conflicts
with every other method.

5. One server object, say oy, initiates the check-
point procedure every time some number cn
of methods are computed

Here, let P, denote a probability that a method
invoked by o; is non-update. Let Cy(n, P, cn)
and Co(n, Py, cn) be the numbers of local check-
points taken in the traditional way and the O-
consistent checkpoint, respectively, for the num-
ber n of server objects, the probability P, of
the non-update methods, and the checkpoint fre-
quency cn. Let My(n, P,, cn) and Mo(n, P,,
cn) be the numbers of messages transmitted in the
traditional way and the O-consistent checkpoint,
respectively, for n, P, and cn.

In the simulation, the client object issues 800
methods. In Figure 4, the straight line shows the
ratios Co(n, 0.5, 2)/Cn(n, 0.5, 2) and the. dot-
ted line indicates Mo(n, 0.5, 2)/My(n, 0.5, 2)
for n iven P, = 0.5 and cn = 2. That is, 50%
of methods invoked are non-update. The check-
point procedure is initiated each time every two
methods ‘are invoked in o0;. Figure 4 shows that
the number of checkpoints to be taken can be re-
duced by taking only the object-based consistent
(O-consistent) checkpoints. - For example, only
60% of traditional checkpoints are taken in the
O-consistent checkpoint if there are seven server

‘objects, i.e. n =T.

In Figure 5, the straight line shows -Co(5, P,
2)/Cn (5, P, 2) and the dotted line shows Mo (5,
P,, 2)/My(5, Py, 2) for P,, n = 5, and en = 2.
The more non-update methods are invoked, the
fewer number of influential messages are transmit-
ted and the fewer number of checkpomts are taken
in the O-consistent checkpoint. -

‘Figure 6 shows Co (10, 0.8, en)/Cn (10, 0.8, cn)
and Mo(10, 0.8, ¢cn)/ My (10, 0.8, cn) for cn given
n = 10 and P, = 0.8. That is, 80% of the methods
are non-update.. Figure 6 shows that the number

of checkpoints taken by the server objects are not
increased even if the checkpoint procedure is more
often initiated. This means that the objects which
are required to be more available can often initiate
the checkpoint procedure. .

T T T
Percantage of O-checkpoints ~#—
Percentage of influential messages *+ *

80 -

Percentagas of influential messages and O-checkpolnls
3

20

L L
2 3 4 5 6 7
‘Number n of server objects

Figure 4: O-consistent checkpoints and influential
messages for n.

100 T T T

T T T T
Percentage of O-checkpaints ~o—
Percentage of influential messages «+~ -

a2

§ st

2

2

(=]

g

&

§ 6o f

£

3

é 40 -

5

£

& pf 4
o : A A \ . . :
0.1 02 .7 08 0.9

03 04 0.5 0.6 ©.
Probability Ps of stabie oparations

Figure 5: O-consistent checkpoints and influential
messages for P, (n = 5).

6 Concluding Remarks

We have discussed how to take object-based con-
sistent (O-consistent) checkpoints which can be
taken from the application point of view but may
be inconsistent with the traditional message-based
definition. We have defined influential messages
on the basis of the semantics of requests and re-
sponses where the methods are nested. Only ob-
jects receiving influentjal messages are rolled back
if the senders of the influential messages are rolled
back. The O-consistent checkpoint is one where

—5]—

100 T T T T T T T

T
Percentage of Ocheckpoints ~#—
Percentag of influential messages -+ -

Percentagas of influential messages and O-checkpoints

L 1 1 L L L L L
1 3 5 7 8 1 13 15 17 19

Figure 6: O-consistent checkpoints and influential
messages for cn (n = 10).

there is no orphan influential message. We have
presented the asynchronous protocol for taking
O-consistent checkpoints where every method is
synchronously invoked. By the evaluation, we
have shown fewer number of checkpoints are taken
in the O-consistent checkpoint than the message-
based checkpoint. We have shown how much we
can reduce the number of checkpoints to be taken
if each object takes only O-consistent checkpoints.

References

[1] Bhargava, B. and Lian, S. R., “Independent
Checkpointing and Concurrent Rollback for
Recovery in Distributed Systems — An Op-
timistic Approach,” Proc. of IEEE SRDS-7,
pp. 3-12,1988. ’

[2] Chandy, K. M. and Lamport, L., “Dis-
tributed Snapshots : Determining Global
States of Distributed Systems,” ACM Trans.

on _Computer Systems, Vol. 3, No. 1 . 63—
75, 1985. ' ' PP

[3] Fischer, M. 1., Griffeth, N. D., and Lynch,
N. A., “Global States of a Distributed Sys-
tem,” IEEE Trans. on Software Engineering,
Vol. SE-8, No. 3, pp.198-202, 1982.

=
)

Garcia-Molina, H., “Using Semantics Knowl-
edge for Transaction Processing in a Dis-
tributed Database,” Proc. of ACM SIGMOD,
Vol. 8, No. 2, pp. 188-213, 1983.

[5] Higaki, H., Sima, K., Tanaka, K., Tachikawa,
T. and Takizawa, M., “Checkpoint and Roll-
back in Asynchronous Distributed Systems,”
Proc. of The 16th IEEE INFOCOM, pp.
1000-1007, 1997.

[6] Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
IEEE Trans. on Computers, Vol. C-13, No.
1, pp. 23-31, 1987.

7

(9

(10]

(14

(12]

(13]

(14]

[25]

Lin, L. and Ahamad, M., “Checkpointing
and Rollback-Recovery in Distributed Object
Based Systems,” Proc. of IEEE SRDS-9, pp.
97-104, 1990.

Leong, H. V. and Agrawal, D., “Using Mes-
sage Semantics to Reduce Rollback in Opti-

mistic Message Logging Recovery Schemes,”
Proc. of IEEE ICDCS-14, pp.227-234, 1994.

Manivannan, D. and Singhal, M., “A Low-
Overhead Recovery Technique Using Quasi-
Synchronous Checkpointing,” Proc. of IEEE
ICDCS-16, pp.100-107, 1996.

Ramanathan, P. and Shin K. G., “Check-
pointing and Rollback Recovery in a Dis-
tributed System Using Common Time Base,”
Proc. of IEEE SRDS-7, pp. 13-21, 1988.

Tachikawa, T. and Takizawa, M., “Communi-
cation Protocol for Group of Distributed Ob-
jects,” Proc. of IEEE ICPADS’96, PP 370
377, 1996.

Tanaka, K. and Takizawa, M., “Distributed
Checkpointing Based on Influential Mes-
sages,” Proc. of IEEE ICPADS’96, pp. 440-
447, 1996.

Tanaka, K., Higaki, H., and Takizawa, M.,
“Object-Based Checkpoints in 'Distributed
Systems,” Journal of Computer Systems Sci-

ence and Engineering, Vol. 13, No.3, May
1998, 125-131.

Wang, Y. M. and Fuchs, W. K., “Op-
timistic Message Logging for Independent

Checkpointing in Message-Passing Systems,”
Proc. of IEEE SRDS-11, pp. 147-154, 1992.

Weikum, G., “Principles and Realization
Strategies of Multilevel Transaction Manage-
ment,” ACM TODS, Vol. 16, No. 1, pp.132-
180, 1991.

