RIVFRAF 1 7BEEHEOUE 97-15
8 —15

AYEa-=FtFal g
(2000. 3. 22)

Access Control Model in Object-Oriented Systems

Keiji Izaki, Katsuya Tanaka, and Makoto Takizawa
Department of Computers and Systems Engineering
Tokyo Denki University
Email {izaki, katsu, taki}@takilab.k.dendai.ac.jp

The authors discuss a discretional access conirol model to realize secure object-oriented systems. An object is
manipulated only through methods supported by the object. There are two types of objects, i.e.” classes and
instances. The objects are hierarchically structured in generalization (is-a) and aggregation (part-of) relations.
In addition, methods are invoked in a nested manner. We discuss how the access rights are inherited to classes

and instance objects in the hierarchical structure.

ATV MERY AT LIIBT BT 7 2 AREET I

Hig Bz HE Bh R R
R BRARFE T RHER S 2 7 LT8R

$%XTM‘%%K#7910%91?Aéiﬁ?étb@?ﬁtz%ﬁ%?»tDMT%U%,tfvxbbm‘ﬁ
Tz MY R—RFTBAY Y REBLTEREINS, FTVxV M. VSAEA VA AQERED. +
TVxl Miis-a & part-of XLV, BEMKICHEREIND, £, AV vy REARTARBRICE DIERHE N 3, 5
XTHE, 7227 MERIZ AT LA LOH LAWY 7 EAFIHET LDV TR~ S, :

1 Introduction

Various kinds of applications like electronic com-
merce [4] are required to be realized in secure infor-
mation systems. The system is referred to as secure
only if authorized subjects are allowed to manipu-
late objects in authorized ways. Various kinds of ac-
cess control models are discussed so far, e.g. basic
model [8] and lattice-based model [2,5]. In the access
control model, an access rule is specified in a form
(s,0, ng which shows that ‘a subject s is allowed to
manipulate an object o by an operation op. Here, s
is granted an access right (o,op). In the mandatory
model, the access rules are defined only by an autho-
rizer. On the other hand, a subject granted an access
right can grant the access right to another subject in
the discretionary model like relational database sys-
tems [4, 11, 14]. However, the access control model
implies the confinement problem where illegal infor-
mation flow occurs, i.e, data in an object may be ob-
tained via other objects by unauthorized subjects of
the object. In order to resolve the confinement prob-
lem, the access rules are specified in the lattice based
model so that the illegal information flow never oc-
curs based on the partially ordered can-flow relation
among the security classes. In the access control mod-
els, objects indicate simple files which are manipulated
by simple methods read and write. In the role-based

model [12], a role is modeled to be a collection of
access rights, which show some job function in the
enterprise. A subject is granted a role on behalf of
granting each access right to the subject.

The systems are now being developed according to
the object-oriented or object-based frameworks like
CORBA [9]. In the object-oriented system, an object
is an encapsulation of data and methods for manipu-
lating the data. There are two types of objects, i.e.
classes and instances. An instance is created from
a class. The objects are structured in is-a and part-
of relations. In the is-a relation, a method and data
structure of a class object are inherited by a lower
level class named subclass or derived class. If an ob-
ject o is composed of other objects oy, ..., 0,, each o;
is a part of, i.e. component object of 0. A subject
issues a request to an object o to invoke a method
op. On receipt of the request op, the method op is
performed on the object o. Then, the response of the
request is sent back to the subject. Here, op may in-
voke another method op; supported by an object o;.
Thus, the methods are invoked in a nested manner in
the object-oriented system.

The object-based system supports only the encap-
sulation of data and methods and message-passing
means for invoking the methods. Here, the methods

are invoked in the nested manner. Takizawa et al. {15]
discuss the purpose-oriented access control model in
the object-based system. Here, a purpose concept
shows why a subject s can manipulate an object o
through a method op in terms of the nested invoca-
tion in the object-based system. They also discuss
how illegal information flow occurs in the nested invo-
cation by analyzing the input-state-output relation of
the methods.

In the object-oriented system, it is critical to dis-
cuss how to inherit access rights for a class to in-
stances, subclasses, and component classes. In this
paper, we take the discretionary approach. We dis-
cuss how the access rights on classes and instances are
inherited by classes and objects in instance-of, is-a,
and part-of relations.

In section 2, we present the object-oriented model.
In section 3, we present how to authorize access rules.
In section 4, we discuss how to inherit access rules in
the object-oriented model. ‘

2 Object-Oriented Model

The object-oriented system is composed of multiple
objects which are structured as instance-of, is-a and
part-of relations. An object is an encapsulation of
data and methods for manipulating the data.

2.1 Nested invocation

An object is allowed to be manipulated only though
the methods supported by the object. The methods
are performed on the object on the basis of the remote
procedure call (RPC). A subject like an application
program first issues a request to an object o to ma-
nipulate o by a method op. On receipt of the request,
the method op is performed on the object o. After
op is performed, the response is sent back to the sub-
ject. Here, while op is being performed on the object
o, op may further invoke other methods by the remote
procedure call. Thus, the invocations of methods are
nested.

In the object-oriented system, a method invoked
by a subject may invoke other methods. Suppose that
an object o; supports a method op; and a subject s
invokes op; by issuing a request of op; to the object o;.
If op; is realized by using a method op; of an object
03, then, op; invokes opz. opz may furthermore invoke

. a method ops in an object o3, ops may invoke opy, ...
Thus, methods are invoked in a nested manner.

Relational database systems like Sybase [14] and
Oracle [11] support trigger mechanisms on table ob-
jects. If a table R is manipulated by a SQL command,
a trigger for the SQL command on the table R is auto-
matically performed and other tables are manipulated
by SQL commands issued in the trigger. Suppose that
there are a pair of table objects Emp(eno; ename,
dno) and Dept(dno, dname) and a trigger on Dept is
defined to manipulate E'mp to satisfy the referential
integrity [4]. Suppose that a user subject s issues a
SQL command delete on the table Dept. Here, s is
granted an access right (Dept, delete) to manipulate
Dept by delete. Then, the trigger on Dept is per-
formed to delete records in Emp whose dno values are
the same as the records deleted in Dept. In Oracle,

the table is allowed to be manipulated by the trigger
only if the owner of Emp is the same as Dept or the
owner of Dept is granted an access right for manipu-
lating Emp. In Sybase, in addition to the mechanisms
supported by Oracle, the trigger on Dept can be per-
formed to manipulate Emp if the user subject s is
granted an access right (Emp, delete?.

In object-oriented programming languages C+-+
13] and Java [7], each variable and method in a class
is defined to be a public one which can be used by the
outside of the class or a private one which can be used
only in the class. However, the access rules cannot be
specified for each subject.

Suppose a subject s first invokes a method opy of
an object 0; and then op; invokes a method op; of an
object 03. If s is granted an access right (o1,0p;), s is
allowed to invoke op; on o;. Here, problem is whether
or not the method op; is allowed to invoke op; on
05. There are two approaches to controlling the ac-
cess to the objects in the. nested invocation; subject
invocation and object invocation. Here, suppose s
first invokes opy on o1, and then op; invokes op; on
03. In the subject invocation model [Figure 1(1{7], op2
is considered to be invoked by the subject s on behalf
of op;. Here, op; is allowed to invoke op; only if s is
granted an access right {02, op2) in addition to the ac-
cess right (01, 0p1). On the other hand, op; directly in-
vokes op; in the object invocation [Figure 1(2)]. Here,
op, is allowed to invoke opy onmly if the object o; is
granted an access right (o7, 0p;) even if the subject s
is not granted the access right. The web system [1]
adopts the subject invocation.

(1) Subject invocation.

O—e—0

(2) Object invocation.

Figure 1: Nested invocation.

In the object invocation, the method op; of the ob-
ject oy is allowed to invoke the method op; on the
object oz only if the access rule (01,03, 0p3) is autho-
rized. Here, op; can invoke op; even if the subject s is
not granted an access right {0z, op2).

2.2 Classes and instances

There are two types of objects: classes and
instances. A class ¢ is composed of attributes and
methods. An instance object o is created from the
class ¢ by allocating memory area for storing values of

the attributes. Here, let w, be a set of attributes 4.1,
vy Aem, (m; > 1) and p. be a set of methods op.1,
<oy 0Dcl, (I > 1) of the class c¢. The instance object
o can be manipulated only through a method in M..
Here, o is an instance of the class c¢. Let o, be a set
of values v,1, ..., Yom,, Where each v,; is a value of the
attribute A.; of the class ¢ (¢ = 1, ..., m;). Let p, be
a set of methods which can be performed on the in-
stance object o, i.e. g, = p,. In most object-oriented
programming languages like C++ [13] and Java [7],
a term “object” means an instance. From here, the
term object is used to denote an instance in this pa-
per, according to the convention. :

The classes and objects are hierarchically struc-
tured with two kinds of relations: is-a and part-of
relations, in addition to the instance-of relation. A
new class ¢y is derived from an existing class ¢; by
inheriting attributes and methods of ¢y and defining
additional attributes and methods. Here, ¢; is in an
is-a relation with c;. ¢z is a subclass of ¢;. Here, ¢
shows a more general concept than c¢;. For example,
a class workstation is a subclass of a class computer.
In the traditional object-oriented systems, the is-a re-
lation is defined only for classes. However, there can
be the is-a relation between objects in pure object-
oriented systems like Smalltalk [6].

‘o=

O : class

[: Ginstance) objects

Figure 2: Classes and objects.

Figure 2 shows the is-a relation between a pair of
classes ¢ and d and between a pair of objects =z and
y. d is a subclass of the class c. z and y are objects
created from the classes ¢ and d, respectively. In ad-
dition, y is in an is-a relation with z, i.e. the values
of z are inherited to y. o, C oy and p, C p,. The
object y in fact does not have the value o of = in the
real implementation in order to reduce the storage and
reuse the data and methods of ¢ in y. If the values of
z in the object y are manipulated, the values of the
object = are really manipulated. Let y.c denote the
values and methods of y inherited from z.

A class ¢ can be composed of other classes ¢y, ...,
¢pn. Here, each class ¢; is a part of the class ¢. ¢; is a
component class of ¢. For example, the class computer
is composed of component classes cpu, memory, bus,
10, and disk. Suppose that a class d is a component
of a class ¢ [Figure 3]. Let z and y be objects of the
classes ¢ and d, respectively. The object y is also a
part of the object z.

: : instance-of
] part-of

O iclass [Gnstance) object

Figure 3: Part-of relation.

3 ' Authorization
Systems

We discuss a discretionary access control model for
object-oriented systems.

3.1 Class

First, the owner s of the system grants a subject
s. an access right (m, create class) on a meta class
m of the system. Then, the subject s. can define a
class ¢ with attributes Ay, ..., Ap,, and methods op;,
..., 0p, by using the create class method as follows:

in Object-Oriented

create class ¢ {
Al Tls ey Amg ng; OpP1; vy oplc};

Here, A; is an attribute of a type T; (i = 1, ..., m,).
The type is an atomic class like infeger and character
or another class. Let 7. be a set {43, ..., 45, } of the
attributes of the class c. Let p be a set {opy, ..., op1. }
of the methods supported by the class c. The subject
5. is now an owner of the class c.

A subject cannot manipulate the class ¢ without
obtaining an access right on c. The owner s, of the
class ¢ can grant an access right (c, op;) on the class ¢
to a subject s by the following grant method :

grant op; on c to s;

The access rule (s,c,op;) on the class ¢ is referred
to as class access rule. The owner s. of the class ¢
can revoke the access right (c, op;) from the subject s:

revoke op; on ¢ from s;

Suppose the subject s grants its access right (c, op;)
to another subject s’. In order to revoke the access
right from s’, the following revoke method is used:

revoke op; on ¢ from s [with cascading];

The subject s can grant the access right {c, op;) to
other subjects. If the cascading option is specified,
the access right (c,op;) is revoked from not only the
subject s but also the subjects granted by s.

The access rules are specified for each class c in a
form (s, c, op;) where s is a subject and op; is a method
supported by the class c. Here, let o, be a set of access
rules authorized for the class c.

Suppose that there are classes ¢y, ..., ¢, in the sys-
tem. Let op;; denote a method of a class ¢;. A role R

is defined to be a collection of access rights {{c;, opis),
(¢j,0Dju)y - }. A role R is defined as follows:

create role R as op;; on ¢, ..., 0p;y on c;;

Since the role R is defined on the classes c,, ..., ¢;,
R is referred to as class role. The role R is granted
to and revoked from a subject s as follows:

grant role R to s;
revoke role R from s;

The subject s is allowed to use the method op;: of
the class ¢; in the role R.

3.2 Object

If a subject s, would like to create an object from
a class ¢, s, is required to obtain an access right for
creating the object. The owner subject s. grants s,
an access right {c,, create object) as follows :

grant create object on ¢ to s,;

Then, the subject s, can create an object z of the
class ¢ by the following method create object. Here,
s, is an owner of z.

create object z from ¢;

The methods of the class c are inherited to the ob-
ject z. The values of the object # can be manipulated
only through the methods ops, ..., opi. supported by
the class c. Let o, be a set of values of the object z.
o, is referred to as state of the object x. The owner
s, grants an access right (z,op;) to a subject s by the
following grant method.

grant op; on z to s;

Then, the subject s can manipulate a state o, of
the object z by using the method op;. The access rule
on the object z is referred to as object access rule.

The access rights authorized for the class ¢ are also
inherited to an object = of c. Let a; be a set of access
rules for the object z. On creating an object z from
the class ¢, the access rules in o, are inherited to the
object z as follows:

o For each class access rule (s, c,op;) in o, an ob-
ject access rule (s, z, op;) is authorized for the ob-
Ject z, Le. (s,z,0p;) €.0q.
If a subject s is granted an access right (c, op;) for
a class c, s is also allowed to manipulate every object
z of c through op;. Here, a rule (s, z,op;) is inherited
from c. In addition to the access rules inherited from
¢, the owner s, of the object. z can grant an access
right (2, 0p;) to other subjects by using the following
grant method as presented before. In addition, the
owner s, can revoke an access rule (s, 0,0p;) inherited
from ¢ by the following revoke method :

grant op; on :l: to s;
revoke op; on =z from s [with cascading |;

By revoking an access rile (s, z, op;) inherited from
the class (s, ¢, op;), we can restrict the access rights of
the class c to'be inherited to the object z. If an access

right éc, op;) is revoked from the subject s, an access
right for every object @ of the class c is also revoked.

- Suppose that a class role R is granted to a subject
s. For each access right (c,op) in R, the subject s is
automatically granted an access right (z, op) for every
object z of the class c.

3.3 Subclass)

A subject sy is allowed to create a subclass d
from a class ¢ if s; is granted an access right
(c, create class from) by the owner s. of the class
c. A subclass d of the class c is defined by using a
following create class from method :

create class d from ¢ {
By Uy, ..., By, Ur,; 0Opd,, .., 0P4, }

The attributes A4y, ..., 4,», and methods opy, ..., 0pm,
of the class c are inherited to the class d. In addition,
the attributes Bj, ..., By, and the methods opg,, ...,
opai, are defined for the class d. Here, U; denotes a
type, i.e. a primitive class or a class of an attribute
B; (3=1, ..., kg). The subject s4 is an owner of the
subclass d. The access rights, attributes, and methods
of the class ¢ are inherited to the class d. An access
right {op;,c) of ¢ is granted to d. The method op;
of the class d can be applied on only the attributes
inherited from the class c.

o o Cag, 7. C mg, and pe C pg.

The class access rule (s, c,op) of the class d inher-
ited from the class c can be revoked by the owner s4
of d as follows:

revoke op on d from c;

The owner s, of the class ¢ can newly grant access
rights of the class d to other subjects by using the
grant method.

3.4 Object of subclass

We present how to create an object from the class
d. One way is to newly create an object from the class
d as discussed before. The other way is to create an
object y from an object z where y is inherited from
the object z of the class ¢, which is a superclass of d.

An object y of the class d is defined so as to inherit
the values and methods of ¢ as follows:

create object y from d for z;

The object y inherits all the methods opy, ..., 0pam,
of the class. d. The state, i.e. values of the object z
is inherited to y. The access rights are inherited from
the object @. pe C py, 0z C 0y, and ap C ay.

Figure 2 shows the relation among the classes ¢ and
d and the objects z and y. In current object-oriented
systems like C++, Java, and database systems, there
is no is-a relation between the objects. In the object-
oriented system, there is an ¢s-a relation among the
objects like “y ¢s an z” as shown in Figure 2.

3.5 Component class
There are two ways to create an object = from a

class ¢ as discussed in this section. One way is to
just create an object = from the class ¢ as shown in

Figure 4(1). The object z created is independent of
the objects created from the component classes.

A class c is defined on other classes dy, ..., d, as
follows:

create class ¢ { Bi di, .., By dmj oy }...(1)

Here, the classes dy, ..., d,, are components of the
class c. An object ¢ is created from the class c. Here,
attributes B; shows an object of the class d; which is
also created on creation of z.

An object @ shown in Figure 4(1) is created from
the class ¢ as follows:

create object z from c;

The other way to create an object z is to include
an existing object y; of a component class ¢; (i=1, ...,
m).

create class ¢ { *By dy, ..., *B; d, ..., *Bp, dp;

1
Here, «B; shows that an attribute B; of an object z,
created from the class ¢, i.e. z.B; refers to an existing
object created from a class d; as shown in Figure 4&2).

An object z is created from the class ¢ by the fol-
lowing method.

create object z from ¢ with
1 for B, from dy, ..., yn, for B,, from d,,;

Here, each attribute .B; refers to an existing ob-
ject y; of the class d; as shown in Figure 4(2).

There is further case the object y; of the class d; is
copied to the object z as shown in Figure 4(3). Here,
y; and z.B; are required to be consistent. The object
z is created as follows:

create classc{..., B; d;, ... };

create object z with y; for B; from d;;

x

: : Instance-of

-

6]
x
i : instance-af o instance-of

part-of

part-of part-of l part-of
7 Ve
Car—rp Cdor—
® ®

O sclass [: Gnstance) object

Figure 4: Objects with part-of relation.

4 Inheritance of Access Rights
4.1 Instance-of relation

First, suppose an object z is created from a class
c. In the instance-of relation, the access rules ¢, of
the class c are inherited to the object z as presented
in the preceding section. The owner of the object z
can define new access rules and can revoke the access
rules inherited from the class c. If a class access right
(¢, op;) is revoked from a subject s, the object access
right (z, op;) is also revoked from s.

4.2 Is-a relation of classes

Let a class d be a subclass of a class ¢ as shown in
Figure 2. The access rules of the class ¢ are inherited
to the subclass d. Let o, show a set of access rules of
the class ¢. There are three approaches to inheriting
the access rules from the class ¢ to the subclass d:

1. The access rules of «, are inherited to d.

2. The access rules of a, are inherited to d by copy-
ing o, for d, but the access rules inherited to d
are independent of «,.

3. No access rule of the class c is inherited to d.

In the first approach, the access rules inherited to
the class d depend on the class c. If the access rules
in R, are changed, the access rules in R, are changed.
If a new access rule is authorized for the class ¢, the
access rule is also authorized as an access rule of the
class d. If an access rule on the class c is revoked, the
access rule on d is also revoked.

In the second approach, the access rules of R, on
the class ¢ are copied to the subclass d. After defining
the class d from c, the access rules of the class d are
independent of the class c. For example, even if a new
access rule is authorized for the class c, the access rule
is not authorized for the subclass d.

In the last approach, the access rules of the class ¢
are not inherited to the subclass d. The access rules
ﬂ;r the class d are newly defined independently of the
class c. i

NN

instance-of

=Y
3

Figure 5: Objects with instance-of relation.

N
N

instance-of

y

instance-of

y @

[¢) @

A class ¢ can be derived from multiple classes cy,
i €n (m > 1). The attributes and methods of the
classes ¢y, ..., ¢, are inherited to the class c. As ex-
plained here, the access rights a.; of the class c; are
also inherited to the class ¢. Suppose an access right
ci, opg is granted to a subject s and an access right
¢;,op) is not granted to s. Suppose ¢; and c; have
the same attribute 4. The subject s can manipulate
A for c; through op but cannot for ¢;. Thus, the ac-
cess rights inherited from multiple classes may conflict.
The owner of c decides which access rules to take in
order to resolve the.confliction.

~ Figure 6: Multiple inheritance.

4.3 Is-a relation of objects

Next, suppose that an object y of a class d is created
from an object z of a class ¢ as shown in Figure 2.
There are two ways to inherit the values and methods
of the object z to the object y. In one way, the values
and methods of = are not copies to ¥, i.e. y does
not have the values and methods of = [Figure 6(1)].
Smalltalk and other artificial intelligence systems like
frame systems adopt the way. Suppose a subject s
manipulates the object y.c by using a method op. The
subject s is allowed to perform op on the object = only
if an access right (z,op) is granted to s. The owner
s, of the object y cannot grant any access right on y.c
to other subjects. Only the owner s, of the object
can grant access rights on #. In the other way, the
values and methods are copies to the object y. In'the
first way, the access rules o, are used to manipulate
the values and methods of the object @ in the object
y [Figure 6(2)]. In the second way, there are the same
approaches as discussed in the class-class inheritance
[Figure 6(3)). S » : '
4.4 Part-of relation oo

Suppose a class ¢ is composed of component classes
d1, ..., dm. There are the following cases on how the
access rules on the class ¢ are related with each com-
ponent class d; as discussed in the is-a relation.

1. The access rules of ay; are inherited to c.
2. The access rules of g, are copied to c.
3. No access rule of the class d; is inherited to c.

5 Concluding Remarks

This paper discussed an access control model of the
object-oriented system. The object-oriented system
supports data encapsulation, class and instance, is-a
and part-of relation, inheritance, and nested invoca-
tion. We made clear how to inherit the access rights
in the instance-of, is-a, and part-of relations in the
discretionary access control model. ’

References : S
[1] Aviel D., Daniel G., and Marcus J., “Web Secu-
rity,” Wiley Computer Publishing, 1997. i

[2] Bell, D. E. and LaPadula, L. J., “Secure Com-
puter Systems: Mathematical Fousdations and
Model,” Mitre Corp. Report, No.M74-244, 1975.

[3] Castano, S., Fugini, M., Matella, G., and Sama-
rati; P., “Database Security,” Addison-Wesley,
1995. B :

[4] Date C. J., “An Introduction to Database Sys-
tems,” Addison-Wesley, 1990.

[5] Denning, D. E. and Denning, P. J., Cryptography
and Data Security, Addison Wesley, 1982,

[6] Goldberg, A., “Smalltalk-80 The Interactive
Programming Environment,” Addison-Wesley,
1984.

Grosling, J. and McGilton, H., “The Java Lan-
guage Environment,” Sun Microsystems, Inc.,
1996.

[8] Lampson, B. W., “Protection,” Proc. of the
5th Princeton Symp. on Information Sciences
and Systems, 1971, pp.437-443 (also in ACM
Operating Systems Review, Vol.8, No.1, 1974,
pp.18-24).

7

[9] Object Management Group Inc., “The Common
Object Request Broker : Architecture and Spec-
ification,” Rev. 2.1, 1997.)

[10] Oracle Corporation,“Oracle8i Concepts, Volume
1, Release 8.1.5,” 1999,

[11] Oracle Corporation, “Oracle Server Administra-
tor’s Cuide Release 8.0,” 1997.

[12] Sandhu, R. S., Coyne, E. J., Peinstein, H. L.,
and Youman, C. E., “Role-Based Access Control
Models,” IEEE Computer, Vol. 29, No. 2, 1996,

~ pp. 38-4T. -

[13] Stroustrup, B., “The C+44 Programming Lan-
guage (2nd ed.),” Addison-Wesley, 1991

[14] Sybase Inc., “Sybase- Adaptive Server Enterprise
Security Administraton,” 1997.

[15] Tachikawa, T., Yasuda, M., and Takizawa, M.,
“A Purpose-oriented Access Control Model in
Object-based Systems,” Trans. of IPSJ, Vol.38,
No.11, 1997, pp.2362-2369.

Tachikawa, T., Yasuda, M., Higaki, H., and
Takizawa, M., “Purpose-Oriented Access Control
Model in Object-Based Systems,” Proc. of the
9nd Australasian Conf. on Information Security
and Privacy (ACISP’97), 1997, pp. 38-49.

[17] Yasuda, M., Higaki, H., and Takizawa, M., “A
Purpose-Oriented Access Control Model for In-
formation Flow Management,” Proc of 14th IFIP
Int’l Information Security Conf. (IFIP’98), 1998,
pp. 230-239.

(16

