TIFAF 1 TBIE & 80IE 100—21
(2000. 11. 10)

QoS-Based Method for Compensating Multimedia Objects

Motokazu Yokoyama, Katsuya Tanaka, and Makoto Takizawa

, Tokyo Denki University
E-mail {moto, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications like teleconferences using high-speed networks are manipulating multiple
multimedia objects. It is critical to discuss what quality of service (QoS) is'supported by the multimedia
objects. QoS is manipulated in addition to the state of the object. After objects are manipulated, the
objects are sometime required to be rolled back in order to undo the manipulation. In traditional ways,
a state saved at a checkpoint is restored. However, it is not easy to save the object because the state is
large and complex. In addition, it is sufficient for applications to restore a state which supports enough
QoS even if the state is not the same as the previous state. In this paper, we discuss a new way where
compensating methods are performed to roll back objects.

CQOSICEDWERINFAT4THAT o FOHBERE
~ BRI E— BB R R

HRBRAFETEER AT LIHER
E-mail {moto, katsu, taki}@takilab.k.dendai.ac.jp

FRLTR, YAFLARBOLEECBNT, HAOEREMET 5D TRIED B B AR AT A
EHET BHEIC OV TS, L ATFANOVIFAFA T T I Ls My TNERDTT s R
BHEOT—EADT A TEEDic, BRINEY—EXRE (QoS) ZERERRIIB SRV, INFAF4
FAT Yz b ETEAE MRS D T, MEWES TUBE 5, FRLTE, Fifl
QoS KESVWBEHEEMNT, A7 Iz FEERTSFECOVTHES, =CTH FTTx s
RIZELRT ORI EF U T b LR, BREND QoS 98— h TE 5 RBICHIBI NG,

1 Introduction

Distributed applications are composed of mul-
tiple multimedia objects. In traditional systems,
checkpoints [2,5,12] and replications [10] are used
to make the systems fault-tolerant. Larger and
more complex multimedia objects are manipu-
lated and transmitted than the traditional sys-
tems. Hence, it takes a longer time to save a state
of the object in the log and a larger volume of
log storage is required to take a checkpoint. It is
also not easy to manipulate multiple replicas of
multimedia objects since larger volume of storage
and computation overhead are required to store
the replicas and to perform the requests on the
replicas than traditional data.

It is significant for multimedia objects to sup-
port applications with enough quality of service
(QoS) [9] like frame rate and number of colors
required by the applications. The objects are ma-
nipulated only through methods supported by the
objects. Not only states but also QoS of .objects
are changed by methods.. A state obtained by re-
ducing QoS of the multimedia object can be taken
at the checkpoint if the state satisfies QoS required
by the application. By this method, we can re-
duce a volume of the log and time to take the
checkpoint. If an object 1s faulty, the object can
be rolled back to a state which might be different
from the previous one but supports the applica-
tion with sufficient QoS. The state of the multime-
dia object is large. Hence, if methods performed
on the object are logged in stead of storing the
state of the object, the size of the log is reduced.
The object is rolled back by performing compen-
sating methods [7] of the methods performed on
the object which are stored in the log. By this

method, we can reduce a time to roll back the
objects. We newly discuss QoS-based how com-
pensating methods are related in this paper.

In this paper, we first present. a system model
and QoS in section 2. In section 3, we discuss
kinds of relations among meéthods in multimedia
objects. In section 4, we discuss compensating
methods.

2 Object-Oriented Model
2.1 Objects

A system is composed of objects which are
distributed on computers interconnected by net-
works. An object is an encapsulation of data and
methods for manipulating the data. There are two
types of objects, classes and instances. A class
¢ is composed of attributes Az, ..., Am (m > 0)
and methods opy, ..., op; (I > 1). An instance o is
created from the class ¢. In most object-oriented
systems like Java [3] and C++ [11], a term object
is used to show an instance: From here, let objects
show instances in this paper. A collection (v,
.+ Um) of values is a state of the object o where
each v; is a value taken by the attribute 4; (i =
1, ..., m). An object is assumed to have exactly
one state at a time. A state of a class means a
state of an object.) }

A class ¢ can be composed of other classes ¢y,
..., cn. Here, each c; is referred to as a component
class of the class ¢. This relation between the class
¢ and ¢; is a part-of relation. Let c;(s) denote a
grojection of a state s of the class ¢ to a subclass

;.

On receipt of a request of a method op, op is
performed on an object 0. Then, the response is

sent back. Let op(s) and [op(s)] denote a state and
response obtained by performing a method op on
a state s of an object o, respectively. For exam-
ple, an image object I supports a method display.
display(s) = s since display does not change the
state and [display(s)] shows image of the state s
of the object I displayed on the monitor. Let op;
and ops be methods supported by an object 0. op;
o opy shows that opj is performed after op; com-
petes, i.e. opy and opy are serially performed on
the object o.

2.2 QoS of object

Applications obtain service of an object o
through methods. Each service is characterized
by parameters like level of resolution and num-
ber of colors. These parameters are referred to as
quality of service {QoS).

A QoS wvalue is given in a tuple of values
{vi, ..., Um) where each v; is a value of pa-
rameter like frame rate. A QoS wvalue vy pre-

cedes another vy (vy > wvy) if vy shows bet- -

ter QoS than vs. For example, 120 x 100 <
160 x 120 [pixels] for the attribute resolution.
A QoS wvalue ¢1 dominates gz (g1 = g¢2) iff ¢
shows a better level of QoS than ¢;. For ex-
ample, (160 x 120[pixels], 1024[colors], 15[fps]) >
(120 x 100,512, 15). Let .S be a set of QoS values.
A QoS value ¢; is minimal in the set S iff there
is no QoS value g3 in S such that g3 < ¢1. ¢1 is
minimum iff g1 < ¢ for every g2 in S. ¢ is maz-
tmal iff there is no ¢ in S such that ¢; < ¢2. ¢1
is mazimum iff gy < ¢y for every g5 in S. A least
upper bound (lub) g1 U ¢ is some QoS value g3 in
S such that 1) ¢; < ¢3 and ¢2 < g3, and 2) there
is no value g4 in S where ¢1 < ¢4 < ¢3 and ¢3 <
¢4 2 ¢3.

Each state s of an object o supports a QoS
value denoted by @(s). An application requires an
object o to support some QoS, named requirement

QoS (RoS). Let r be RoS.
3 Compatible Methods

Suppose a class ¢ is composed of component
classes ¢i, ..., ¢m (m > 0). An application speci-
fies whether each ¢; is mandatory or optional for
the class ¢. Every object o of the class ¢ is required
to include an object o; of a mandatory class ¢;. If
¢; is optional, the object o may not include any
object of ¢;. There are the following equivalent
relations among a pair of states s; and s, of a
class ¢

@

&

= 5.

e s; is semantically equivalent with s, (s: =
sy) I sp — 5y or ci(sy) = ¢i(sy) for every
mandatory component class ¢; of c.

¢ Is state-equivalent with s, (s — su) iff s
s

e s; is QoS-equivalent with s, (s; ~ s,) iff s, —
sy or s; and s, are obtained by degrading
QoS of some state s of ¢, i.e. Q(s¢) U Q(su)
= Qs). :

e s; is semantically QoS-equivalent with s,
(st 2 sy) iff s¢ & sy o1 e(st) = ¢(sy) for every
mandatory component class ¢; of ¢.

o 5, is RoS-equivalent with s, on RoS R (s¢ —r
sy) iff 5¢ & s, and Q(s¢) N Q(su) = R.

o s is semantically RoS-equivalent with s, on
RoS R (s¢ =g su) Hl 5t —r sy or ci(s:) =r
ci(sy) for every mandatory class ¢; of c.

Let O, show an a-equivalent relation and o
shows some equivalent relation. For example,
BO@os shows “~” and Ogep indicates “=". Fig-
ure 1 indicates a Hasse diagram showing the prop-
erties of the equivalent relations. Here, State,
Sem, RoS, QoS, RoS, Sem-QoS, Sem-RoS stand
for sets of possible state-, semantically, QoS-,
RoS-, semantically QoS-, and semantically RoS-
equivalent relations, respectively. Here, o — (
shows that G is a subset of , i.e. o C 3. That
is, s; Og sy if 8,04 sy. For example, s; = sy if
St — Sy

For a pair of methods op; and op, of a class ¢,
“opt O op,” shows that op:(s) O opu(s) for ev-
ery state s of ¢. For example, op; = opy (op; is se-
mantically equivalent with opy,) if op:(s) = opu(s)
for every state s of c. op; & op, (op: is semanti-
cally QoS-equivalent with op,) if op; = op, or op;
& opy. These equivalent relations hold for a pair
of sequences of methods, i.e. S; O, S2. For exam-
ple, let S; be opyoops and Sy be ops. S = So, 1.e.
opy © ops = ops iff opy o opa(s) = ops(s) for every
state s of a class ¢. In addition, ¢ shows an empty
sequence of methods. op O, ¢ iff op(s) O, s for
every state s of the class c.

Figure 1: Hasse diagram.

In the traditional theories [1,7], a method op; is
compatible with another method op, on a class ¢
iff the result obtained by performing op, and op,, is
independent of the computation order. Otherwise,
op: conflicts with op,. There are the following
compatible relations among a pair of methods op;
and op,, of a class c:

e op; is state-compatible with op, (op; | opy) iff
Opt © OPy — OpPy © Op:.

e op; is QoS-compatible with opy (op; || opy) iff
0pt © 0py A Opy © Opy.

e op; is RoS-compatible with op, on RoS R (op;
{r opu) iff op; © opy —R opu © op.

e op; is semantically compatible with op, (op:
|| opu) iff ope © op, = opy © op:.

o op; is semantically QoS-compatible with op,
(ope W opu) iff op © opu = opy © op;.

e op; is semantically RoS-compatible with op,
on R (opi |||r opu) iff op: © 0py =g opy © op:.

Here, let “a-compatible relation” <, show some
type of the compatible relations defined here. o
€ {State, QoS, Semantically, RoS, Sem-QoS,

—100—

Sem-RoS}. For example, op; Ogem 0py stands
for “op: = op,”. opy a-conflicts with op, un-
less op: is a-compatible with op,. For exam-
ple, opy QoS-conflicts with op, unless op; is
QoS-compatible with op,. Let State, Sem, QoS,
RoS, Sem-QoS, and Sem-RoS be sets of possi-
ble state, semantically-, QoS-, RoS-, semantically
QoS-, and semantically RoS-compatible relations,
respectively. The same relations among the sets
as shown in Figure 1 hold. op: a-conflicts with
op,, unless op; Oy 0py.

4 Compensation
4.1 Compensating methods

In traditional systems like database systems [1],
a state of a system is saved into a log at a check-
point. If the system is faulty, the state stored in
the log is restored in the system and then the sys-
tem is restarted. In multimedia systems, objects
are larger and more complex than simple objects
like files and tables.

In another way, methods performed on each ob-
Jject are stored in the log instead of storing the
state of the object. A method which removes the
effect done by the method performed is a compen-
sating method [7]. For example, suppose an incre-
ment method is performed on a counter object. If
a decrement method is performed, the counter ob-
Jject can be restored. decrement is a compensating

method of increment. increment is also referred
to as compensated by decrement. Thus, the object

is restored by compensating the methods stored in
the log.

A method op, is a compensating method of an-
other method op; on a class ¢ if op; o opy(s) =
s for every state s of the class ¢ [7]. Let s; be a
state obtained by performing op; on a state s of
an object o of the class ¢, i.e. sy = opi(s). Here,
the object o can be rolled back to the initial state
s from the state s; if a compensating method of
op is performed on s;.

There are the following relations among a pair
of methods op; and op, of a class ¢ according to
the a-equivalent relation O, :

e op, state-compensates op; iff op; o opy, — ¢.
o op, QoS-compensates op; iff op, o op, & ¢.

o opy RoS-compensates op; on R iff opsoopy, —g

o op, semantically compensates op; iff op; o
opy = ¢ [Figure2(1)].

e op, - semantically QoS-compensates op; iff
opt 0 0py = .

o op, semantically RoS-compensates op; on R
iff op; 0 opy =g ¢ [Figure2(2)].

Here, let an ‘“a-compensation” method show
a type of the compensating methods presented
here, where a € {State, Sem, QoS, RoS, Sem-
QoS, Sem-RoS}.
[Theorem] The Hasse diagram shown in Figure
1 holds for the a-compensating relations. O

[Example] Suppose a movie object C supports a
method divide2 by which C is divided into three

“od &

1) (2)

Figure 2: Compensating methods.

subobjects ‘A", B”, and AB in addition to the
methods merge and delete [Figure 3]. A state s;
of the object C'is composed of two component ob-
Jects A and B. A" and B” show the content parts
of A and B, respectively, which are monochro--
matic in a s3. AB includes the advertisement ob-
jects of A and B. Let s3 denote a state where
the objects A”, B”, and AB are obtained from A
and B existing in a state s;. s; # s3. Further-
more, Q(s2) > Q(s1). If a RoS R indicates the
monochromatic quality, Q(s3) » R. Hence, d:-
vide? is a semantically RoS-compensating method
of the method merge on R. By performing divide2
%fter merge on s, 3 is obtained where s; =g s3.

83 e
monochromatic

EilFd

Figure 3:
method.-

Semantically RoS-compensating

Let (~qop) denote an a-compensating method
of a method op with respect to the o-
compensating relation. For example, (~gemop)
shows a Sem-compensating method of the method
op. From the theorem, (~yo0p) is (~gop) if
a — B. For example, (~state0p) 1S (~gem0p).
opo(~stateop)(s) = s, opo (~semop)(s) = &', and
s = s’ [Figure 4]. Hence, (~state0p) = (~5emop).
That is, if op’ is a State-compensating method of
op, op is also a Sem-compensating method of op.
More precisely, the following theorem holds for a-
and - compensating methods.

[Theorem)] (~qo0p) Op (~gop) iff &« — . O
(stamOP)
O = D
(NSem"P)
Figure 4: Compensating methods.
4.2 Compensating sequence of meth-

ods

Suppose ‘that a sequence of methods op;,
.., opn are performed on a state of an ob-

—101—

ject o, i.e. op; o ...0 op,. First, let us con-
sider the State-equivalent compensation. Sup-
pose ops is performed after op; on an ob-
ject o, l.e. op; o opy. Here, a compensating
method (~s;ate0ps) is performed, i.e. opy ¢ ops o
(~stateopz) — op1. Then, (~state0p1) is per-
formed, i.e. 0p1 0 0p2 © (~state0p2) © (~stateopr) —
op1 © (~state0p1) — ¢. For example, delete is
(~stateappend) and replace is (~stqsereplace).
~state(append o replace) is state-equivalent with
(=) (~statereplace) o (~stateappend) = replace o
delete. Thus, the effect on the object o can be
removed by performing the compensating meth-
ods of op; and opy, i.e. (~state0P2) © (~state0P1)-
That is, ~state(0p1 © 0p2) is state-equivalent with
(~stateopz) © (~stateopt), i.e. ~state{0p1 © 0pa) —
(~state0p2) © (~stateopy). Thus, ~siate(opro.. .0
Upn) - ("’Stateopn) o...0 ("’Stateopl)~

We discuss how an a-compensation ~q(opy ©
...00py) of a sequence op; o...0 op, is equiv-
alent with a sequence of compensating methods
(~an0pn) © ... 0 (~a,0p1), le. ~gfopyo...0
0Pn) Bag (~a,0Pn) © ... 0 (~q,0p1) where ag, ay,
.., oy are some types of the compensating rela-
tions. In this paper, we consider a case o = «
for simplicity.

Before discussing how to compensate a se-
quence of methods, we discuss types of meth-
ods with respect to what the methods change.
There are two types of methods, one to change
the state of the object and the other to change
QoS of the object. For example, grayscale is a
method which changes only QoS of the movie ob-
ject. On the other hand, merge and delete are
methods to change the state, but does not change
QoS of the movie object. Next point is con-
cerned with what component of the object each
method changes. There are two types of com-
ponent classes, mandatory and optional ones as
discussed before. Hence, there are two types
of methods, one to change the mandatory com-
ponent object and the other not to change the
mandatory object. The former one is named se-
mantical method. The other one is formal one.
According to the properties of the methods, the
methods are classified into types shown in table 1.
Here, let p{op) show a type of a method op, i.e.
u(op) € {S,5M,50,Q,QM,Q0, R, RM, RO}.

Let «; and a3 be a pair of compensating re-
lations. Suppose that a pair of methods op; and
opy are performed on an object o, i.e. op; o ops.
We discuss how to compensate op; o opy. We dis-
cuss how ~q(0op1 0 opz) and (~q,0p2) © (~a,0p1)
are related, i.e. ~q(op1 o opa) Oy (~a,0p2) ©
(~a,0p1) on the basis of method types p(op1) and
ulops). @, a1, ap € {State, Sem, QoS, RoS, Sem-
QoS, Sem-RoS}. The following matrixes show
how aj- and ap-compensating relations are re-
lated with a-equivalent relation. Here, each en-
try M;(p1, 2) shows a condition which ~4(op; ©
0p2) Oy (~a,0p2) © (~q,0p1) holds for a type p
of opy and ps of ops. For example, let us consider
M;(SM,S). Here, ~sem (0p100p2) = (~5tate0p2)0
(~semop1) holds if p(op1) = SM and p(ops) = S.
In the matrixes, o; ¢ shows “(~q;0p;) is
not performed”. For example, if op; is an SO
type and ops is an S type, M;(SO,S) = B, ie.

Table 1: Types of methods.

| type | what to be changed in.an object

S state.

SM | state of the mandatory objects.

SO | state of the optional objects.

Q QoS.

QM | QoS of the mandatory object.

QO | QoS of the optional object.

R Q method such that op;(s) > R for every
state s of ¢ and some RoS R.

RM | QM method where ¢;(op:(s)) = R for
every state s of mandatory component class
¢; of ¢ and some RoS R.

RO | QO method such that ¢;(op:(s)) > R for
every state s of optional component class ¢;
of c. :

~5em(0P100p2) = (~state0p2). Since op; updates
only optional component object, opi(s) = s for
every state s, i.e. op; = ¢ [Figure 5]. Hence,
(~a0p1) is not required to be performed.

Mli

My

—102—

op1 opz
(O—6)

(s = s1)

S2
(NStateop2)
Figure 5: Compensation.

]

a =

A: ay,ap € {State, Semn}.

B: a1 =¢ A ay € {State, Sem}.
C: aj € {State,Sem} A as = ¢.
D: o) =as=¢.

o = “—R”.

ay, ag € {State, RoS(> R)}.
a;=¢ A az € {RoS(> R), State}
A RoNQ(opi(s)) = R.

G @€ {State, RoS(> R)} N ay=2¢
" A RinNQ(opa(s)) » R.
H ay=as=¢ NRiNR =R

I aj = ay € {QoS, RoS, State}.
J: a1 =¢ A ay € {QoS, RoS, State}.
K: a; € {State,QoS, RoS} A az = ¢.

a1,y € {State, Sem, RoS, Sem-RoS}
" AN RiNRy»R.
ay € {State, Sem, RoS, Sem-RoS}

M: N ai=¢ A RNQ(opi(s) = R.
N € {State, Sem, RoS, Sem-RoS}
' N ag = ¢ A Rl n Q(opg(s)) t R.
Ms: o = ‘=2

M | ro 0

SRSy

Sem-RoS}.

ay € {State, Sem, QoS, RoS, Sem-QoS,
Sem-RoS} A ay = ¢.

Q ay € {State, Sem, QoS, RoS, Sem-QoS,
© Sem-RoS} A az=¢.

It is straightforward for the following theorem
to hold from the discussions held here.
[Theorem] ~q(op1 0 0p2) Oo (~a,0p2) © (~a,0p1)
holds iff one of the lelatlons shown in Ta-
ble 2 holds where “” of a means any one

of {State, Sem,QoS, RoS, Sem-QoS, Sem-RoS}

and “a” of a; means “a; = @”. O

Table 2: Cémpensation.

| (o3} 1 (2] o

@ o -

State State -

State I -

o State -

Sem A (op1 = ¢) | « . -

o Sem A (ops =¢) | -

RoS A (op1 — @) | « -

e RoS A (ops =¢) | -

State Sem-RoS Sem-RoS
Sem-RoS | State ‘Sem-RoS
RoS Semn Sem-RoS
Sem RoS Sem-RoS

ay, g € {State, Sem, QoS, RoS, Sem—Q’oS,

4.3 Reduced compensating sequence

Let us consider a sequence of two methods,
opy o opy. Here, suppose opy is state-compatible
with ops, 1.e. opy | opa. Here (opy o 'op2) —
{op2 o op1). Hence, op; o opy can be also compen-
sated by a sequence (~state0p1)0(~gtate0p2) While
compensated by (~state0p2) © (~siate0p1). This
means (~state0P1) © (~state0pa) ~ (~state0ps) ©
(~stateop1). Thus, the following theorem holds:
[Theorem)] For a pair of methods op; and ops,
op1 Oq 0p2 iff (~a0p1) Ca (~aop2). O

That is, for a pair of a-compatible methods op;
and ops, the a- -compensating methods of op; and
opy are also a-compatible.

By using this a-compatibility relation of the
methods, we can exchanging the computation or-
der of the methods. Let S be a sequence S; oop; o
Sy o'ops o Sz of methods where S;, Sy, and S3
are subsequences of methods and op; and op, are
methods. Let S’ be a sequence S} oopz 0 Sy00p; 0
S3. Here, if op; is a-compatible with opy and ev-
ery method op in Sy is a-compatible with op; and
opa, 1.e. op1 Og 0p2, 0p O 0p1, and op Oy opy for
every method op in Sy, S04 5 (S is a-equivalent
with S'). Here, it is straightforward for the fol-
lowing theorem to hold:

[Theorem] ~ (51 00p1 0 Sp00pp0S53) Dy
{~a0p1) © (~aS2) 0 (~a0p2) o (~aS1). O

The methods add and grayscale are RoS-
ccompatible, ie. add | grayscale. Suppose
add is performed before grayscale, add o
grayscale. This sequence is RoS- compensated by
{~Ros grayscale) o (~pos add). However, it takes a
shorter time to perform the comp‘ensating method
(~Rosgrayscale) after removing a car added by
add, i.e. (~posadd). Hence, add o grayscale can
be more efﬁciently compensated by (~pg,sadd) o
{(~Ros grayscale), i.e. addogmyscaleo(~R05add)
(~Roggmyscale) R (ﬁ

Next, let us consider how to reduce compen-
sating methods to be performed to compensate
a sequence of methods. Suppose that a car ob-
ject ¢ is deleted after added, i.e.. add o delete
1s performed.” Since add o delete ~ ¢ holds,

(~aS3)0

—103—

(~statedelete) o (~gsiateadd) is not required to
be performed. Next, suppose a paint method
paint; which paints red is performed after paint-
ing yellow by painty. Since the colors are over
painted, paints o paint; brings the same result
obtained by performing only paint;. That is,
painta o paint; — paint;.
There are following relations:
1. A method op; is a-identical iff op; O, &.
2. A sequence S is a-identical iff SO, ¢.
3. A method op; a-absorbs another method
opy iff opy 0 op: Oy op;.
4. A sequence S; a-absorbs another sequence
Sp iff Sy 051 04 Sy
A sequence add o delete is State-identical. A
method paint State-absorbs another paint.

[Example]

e A method addy, add a mandatory object car
and an optional object background. A method
deletey deletes background. Here, a sequence
addy o deletey 1s Sem-identical.

e Suppose a video object which supports QoS
20[fps]. A method increase is a method which
changes the frame rate to 30[fps]. A method
decrease is a method which changes frame rate
to 15[fps]. Here, a sequence increase o decrease
is QoS-identical.

o If there is RoS = 15[fps], a sequence increase o
decrease is RoS-identical.

o A method adds adds an optional object- back-

ground. Here, a sequence adds o decrease is

Sem-QoS-identical.

If there is RoS = 15[fps], a sequence adds o

decrease is Sem-RoS-identical.

[

e A method paints paints a car and a background
blue. A method paints paints background green.
Here, paints Sem-absorbs paint,.

e In a colored video object, a method color is a
method which colors a car object. A method
grayscale is a method which changes all the ob-
ject black and white. Here, color QoS-absorbs

grayscale.

e If there is RoS = colored car, color RoS-absorbs
grayscale.

e painty Sem-QoSabsorbs grayscale.

-4

If there is RoS = colored car, painty Sem-QoS-
absorbs grayscale.

Let S be a sequence Sy o Sy 0 S3 of methods.

- If sy is a-identical, (~¢S) Og ~a(S1 0 Sz).
- If 59 is a-absorbs s1, (~aS) Oy (~aS3).

5 Concluding Remarks

In the multimedia systems, QoS of an object
is manipulated in addition to the state of the ob-
ject. In this paper, we discussed how the methods
manipulate QoS of the object. We defined seman-
tically, QoS, RoS, semantically QoS, and seman-
tically RoS equivalent and compatible relations
among methods of multimedia objects. By using
the relations, we defined compensating methods
to be used to undo the works done by the meth-
ods. We also made clear how types of compen-
sating methods are related from the QoS point of
view.

References
[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison-Wesley
Publishing Company, 1987.

[2] Chandy, K. M. and Lamport, L., “Dis-
tributed Snapshots: Determining Global
States of Distributed Systems,” Comm.
ACM, Vol.3, No.1, 1985, pp.63-75.

{3] Grosling, J. and McGilton, H., “The Java
Language Environment,” Sun Microsystems,
Inc., 1996.

[4] Kanezuka, T., Higaki, H:, Takizawa, M.,
and Katsumoto, M., “QoS Oriented Flexible
Distributed Systems for Multimedia Applica-
tions,” Proc. of the 13th Int’l Conf on Infor-
mation Networking (ICOIN-18), 1999, 7C-4.

[5] Koo, R. and Toueg, §S.,“Checkpointing
and Rollback-Recovery for Distributed Sys-
tems,” IEFE Trans. on Software Engineer-
ing, Vol.SE-13, No.1, 1987, pp.23-31.

[6] Yokoyama, M., Tanaka, K., and Takizawa,
M., “QoS-Based Recovery of Multimedia Ob-
jects,” Proc. of IEEE Int’l Conf. on Par-
allel and Distributed Systems (ICPADS-00)
Workshops, pp.43-48, 2000.

[7] Korth, H. F., Levy, E., and Silberschalz, A.,
“A Formal Approach to Recovery by Com-

pensating transactions,” Proc. of VLDB,
1990, pp.95-106.

[8] MPEG Requirements Group, “MPEG-4 Re-
quirements,” ISO/IEC JTC1/SC29/WG11
N2321,1998.

[9] Sabata, B., Chatterjee, S., Davis, M., and
Syidir, J. J., “Taxonomy for QoS Specifica-
tions,” Proc. of IEEE 3rd Int’l Workshop on
Object-Oriented Real-time Dependable Sys-
tems (WORDS’97), 1997, pp.100-107.

[10] Schneider, B. F., “Replication Management
using the State-Machine Approach,” Dus-
tributed Computing Systems, ACM Press,
1993, pp.169-197.

(11

oy

Stroustrup, B., “The C++4 Programming
Langua (2nd ed.),” Addison-Wesley, 1991.

[12] Tanaka, K., Higaki, H., and Takizawa,
M., “Object-based Checkpoints in Dis-
tributed Systems,” Journal of Computer

Systems Science and FEngineering, Vol.13,
No.3, 1998, pp.125-133.

—104—

