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Abstract 
 

In this paper we study combinatorial auctions where bidders can quote for a combination of the 
objects being sold. In a previous article we have proposed a combinatorial ascending auction where 
the bidders can place a bit at an arbitrary timing via the Internet. For combinatorial auctions, 
computational complexity increases exponentially as the number of possible combination increases. 
Although some algorithms for reducing the complexity have been proposed, they are only suitable 
for the one-shot auctions where bidders submit bids only once simultaneously. Thus, we can 
improve the performance by making use of the previous valuation for doing next valuation. In this 
paper we propose a method to reduce computational burden for combinatorial ascending auctions 
and verify the effectiveness of the algorithm through the evaluation.   
 
1. Introduction 

Auctions are thought to be an efficient way of 
allocating items and have been popular in 
portals and e-marketplaces nowadays, such as 
ebay[1] and yahoo[2]. In particular, 
combinatorial auctions, where bidders can 
quote for a combination of the items have been 
studied in many places[3]. However, when we 
try to apply existing mechanisms for 
combinatorial auction to portal sites for 
anonymous users, these mechanisms are 
insufficient in terms of restrictions such as 
one-shot sequence or activity rules, where 
users must bid actively from the beginning of 
the auction to the end.  

In order to be effectively used on the internet, 
in a previous article, we have proposed a 

Combinatorial Ascending Auction (CAA) where 
the bidders can place a bid at an arbitrary 
timing on the Internet[4].  

For combinatorial auctions, computational 
complexity increases exponentially as the 
number of possible combination increases. 
Although some algorithms for reducing the 
complexity have been proposed, they are only 
suited for one-shot auctions where bidders 
submit bids only once simultaneously[5][6][7]  

Thus, we can improve the performance by 
making use of previous valuation for doing next 
valuation. In this paper we propose a method to 
reduce computational burden for combinatorial 
ascending auction.   

Section 2, describes the overview of the 
existing combinatorial auctions and 
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combinatorial ascending auction. Section 3 
discusses about the complexity issues. Then in 
Section 4, proposed algorithm with an actual 
example is described. Section 5 shows the 
evaluation and Section 6 concludes the paper.  

 
2. Overview of Combinatorial Auctions 

and CAA  
2.1 Combinatorial Auctions 

Let 1 2{ , ,..., }nI i i i= be a collection of goods. Let 
| |I n=

{G g=

 be the number of the goods. Let 
be a set of combination of 

elements of I. Then | | , where the 

empty set is excluded.  

1 2, ,...}g

2 1nG = −

 The auction system consists of the seller, 
the bidders, and the auctioneer who determines 
an allocation for the seller. First, the seller 
sends the collection of heterogeneous goods I to 
the auctioneer, and the auction begins. Then 
the bidders send the price to an element of G, 
specifically bj={g , pj jj(g )}, where pj(gj) is the bid 
price in bj. The auctioneer valuates the bid and 
sends the result to the seller. When valuating 
the bids, the auctioneer chooses the allocation 
A which maximizes the revenue. Let A={a1, 
a2,,,} be an allocation where ai be an 
combination of elements. This is a problem of 
choosing the combination of goods which does 
not overlap each other. Let . Then this 
problem is expressed as: 

S G∈

∑
∈XSi

i Sp
],[

)(max  

such that }',,'|],{[ XSSSSSiX ∈∀Φ=∩=  

and the total revenue T(A), is the sum of 
revenue of the elements in A, which is a bid 
price. 
 
 

2.2 Characteristics of CAA 
CAA is an ascending auction which accepts 

combinatorial bids. In contrast with the 
standard one-shot combinatorial auction or the 
multi-round auction where all the bidders have 
to be present at the beginning of the auction, 
CAA has the following features: 
1. Bidders can place bids at any timing. 
2. Auctioneer valuates bids whenever new 

bids are accepted, and determines a 
provisional allocation 

3. There are three provisional results for the 
bid. The first possibility is winning (W), 
where the bid wins the goods at this 
moment. The second possibility is losing 
(L), where the bid does not and will not win 
the goods. The last possibility is pending 
(P) where the bid is not winning at this 
moment but it is possible to win in the 
future with the help of bids for other 
combinations. 

4. The auctioneer keeps and updates the 
combination table (CT) for storing 
maximum bids b ={gj j

j j j

t

j t

t i

j, pj(g )},  and states 
for each elements of combination G , and 
allocation table (AT) for storing member of 
the allocation, A until the auction ends.  

Specifically, the valuation will be done in 
following three steps.  
1. For an incoming bid bj={g , p (g )}, compare 

pj(gj) with p (gj) which is a price for gj  in 
CT. If pj(g ) is smaller than p (gj), then we 
set the state of bj to be L, and quit the 
valuation process. Else, we overwrite CT 
by bj and go to the next step. At this 
moment, bj can take one of W or P.  

2. We check the CT. If there exists {gi gx } 
such that, pj(gi) + pt(gx) > p ({g  gx})   
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then{ g  gi x }   does not have a possibility of 
being a winner. Thus we set the state of the 
bid for {gi gx } in CT to be L. 

3. In CT, we re-compute the revenue from the 
new bid and compare with the revenue at 
current AT. If the revenue from the new 
bid is greater than the revenue from the 
current allocation, we make the new 
allocation a new provisional winning 
allocation,  and make a bid contained in 
the new winning allocation a winner. We 
set the states of other bids to be P.  

  
3. Complexity Issues 
3.1 Complexity issues for CA and existing 
research 

Combinatorial auction is computationally 
expensive. Thus in order to solve the problem 
in polynomial time, several methods have been 
proposed. The first category is pruning and the 
second category is obtaining an approximate 
solution.  
 As examples of algorithms in the first 
category, Sandholm et al[6] proposed an 
algorithm to search a best allocation based on 
iterative deepening algorithm. Also, Fujishima 
et al[5] proposed an algorithm to search for a 
best allocation based on the algorithm in depth 
first search. This algorithm is called CASS 
(combinatorial auction structured search). 
 As an example in the second category, 
Sakurai et. al[7] used limited discrepancy 
search (LDS) which limits the search effort to 
the range where the optimal solution can lie in 
high probability. This is good for any-time 
characteristics and they can achieve high  
quality for only short running time. 
 

3.2 Complexity in CAA 
In contrast with the previous combinatorial 

auction, the characteristics of CAA are as 
follows: Firstly, since the bids arrive over time, 
the bid is processed immediately so that 
feedback can be given, rather than being 
processed all at once after the auction is closed. 
Secondly, since it is an ascending auction, the 
previous result can be used for valuation. As a 
result, especially for CAA, there are still rooms 
for improvement in traditional methods. 
 
4. Algorithm 
4.1 Our approach 

Our approach is basically to make use of  
existing CT and AT, while doing CASS or LDS 
for search. 

We have two improvements: Imp 1) to 
determine an allocation for items which are not 
used in the incoming bid then compared with a 
current allocation, and Imp 2 ), pruning.   
 Let Dk={dk1, dk2…} be an element of ak 

which is a member of A. Let h(i) to be the  
heuristic function which gives us the potential 
highest value for item i. This is defined as 
follows (see [6]): 

∑
∈

=
Si

S
Sbih }||

)({max)(  

 For Imp 1), we set Fh to be A minus the 
elements of the incoming bid, bh. First, 
determine the allocation for Fh (=T(Fh)) ,and 
compare T(Fh)+p(gh ) with T(A). If T(Fh) + p(gh ) 
is larger than T(A), we set the elements of Fh  
and gh to be the winner, and replace the current 
allocation. Otherwise, we set the state of the 
element of gh to be P.  

For Imp 2), we have two pruning methods. 
For the first pruning, if we find the subset of A, 
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called A’, which has the same members with gh, 
then we will determine the state by comparing 
T(A’) and p(gh ). For instance, when gh ={d, e} 
and A={(a,b,c)(d)(e)} then A’ is {(d)(e)}. In this 
case, if p(gh ) is larger, bh will be W, and we set 
it as a current allocation and delete A’ from the 
current allocation. Otherwise, it becomes a 
loser, and we set its state to be L. 

For the second pruning, after calculating the 
summation of heuristic function h() for the 
member of Fh, called SUMH, we compare p(gh ) 
+ SUMH with T(A). If it is smaller than T(A), 
then it becomes loser and the valuation ends. 
 
4.2 Detailed Mechanism 

Valuation is carried out as follows: 
1) Initialization: As an initialization, we make 

a dummy bid with value 0 for all items and 
initial allocation,  T(A) = 0. 

2) Every time when the auctioneer accepts 
incoming bids, bh, does the following: 

3) Compare p(gh ) with the price of gh in 
CT ,and if it is larger than the price of gh in 
CT, then the auctioneer updates CT and 
recalculate h for the item of gh. 

4) Check whether bh meets the condition of 
pruning (1), and if it meets, then apply 
pruning (1). If bh is a loser, valuation ends. 
If bh becomes a winner, replace bh with A’ 
and update the state then valuation is 
finished. 

5) Calculate Fh. 
6) Check whether bh meets the condition of 

pruning 2 and if it meets, then apply 
pruning 2. If bh becomes a loser, valuation 
is finished. 

7) Apply the Imp1). If bh becomes a loser, 
valuation ends. If bh becomes a winner, 

then replace gh with A’ and update the state 
then valuation is finished. 

8) Update all the states in CT  according to 
the valuation. 

 
4.3 Examples 

We explain how the valuation works by 
showing actual example. Table 1 shows the CT 
at a certain point. Here, h(i) for each good is 
calculated. 

Table1: CT at a certain point 
g p(g) h(i) State 

a 5 8.3 P 

b 7 8.3 P 

c 9 9 P 

d 6 6 W 

e 7 7.5 W 

a,b 13 - P 

a,e 15 - P 

d,e 10 - L 

a,b,c 25 - W 

 
Here, A={(a,b,c), (d), (e)} and T(A) = 38. We 
show three examples. 

First, Let b1={(d,e), 14} be the incoming bid. 
In this case, at step 3), A’={(d),(e)} is found and 
T(A’)=13. As p(b1 )  is larger than T(A’), it wins 
and new allocation becomes {(a,b,c), (d,e)}. 

Second, Let b2={(c,d), 13} be the incoming bid. 
In this case, at step 5), SUMH = h(a)+h(b)+h(e) 
= 23.1. As p(b2) + SUMH (= 36.1) is smaller 
than T(A), then b2 becomes a loser and 
valuation ends. 

Third, Let b3={(c,d), 20} be the incoming bid. 
As p(b3)+SUMH (=43.1) is larger than T(A), 
step 5) is skipped and move onto step 6). Here, 
F3 = {a, b, e}. Next calculate the allocation and 
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A’={(a,e), (b)} and T(A’) = 22. As p(b3)+T(A’) 
(=42) is larger than T(A), b3 wins and new 
allocation is {(a,e), (b), (c,d)}.  
 
5. Evaluation 

In this section, we evaluate our proposed 
mechanism in terms of the performance and 
quality by comparing with existing batch 
methods. 
5.1 Settings 

Parameters for the evaluation are as follows: 
z The number of items: M=32 
z The number of biddings: N=30,60,90 
z Bid distribution: Two patterns 
¾ Random: For each bid, pick the 

number of items randomly from 1 to M 
and pick the prices from [0, 1]*(number 
of items in the combination) 

¾ Uniform: Draw the same number of 
randomly chosen items for each bid. 
The number is 3 and prices from [0, 3] 

z New incoming bid for our model: Random 
combination and price. We calculate the 
average  by trying 100 times. 

z Target calculation methods: 
¾ LDS 
¾ CASS 
¾ Incremental LDS: LDS with applying 

proposed improvements. 
¾ Incremental CASS: CASS with 

applying proposed improvements. 
 
5.2 Results 

The number of calculation steps and the total 
revenue for each calculation method for two bid 
distributions are shown in the following 
figures.  

Figure 1 depicts the calculation steps 

required for each method in the case of  
Random distribution. For CASS, 360354 for 
N=60 and 637681 for N=90, which are too large 
to be presented in the figure. Here, both 
incremental methods using the proposed 
technique are effective and the step decreases 
about 10 times less than original methods.  
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Figure 1 Calculation steps for Random bids 

 
Figure 2 shows the calculation steps required 

for each method in the case of  Uniform 
distribution. For CASS, 233273 for N=30, 
535793 for N=60, and  819724 for N=90, which 
are large to be presented in the figure. Both 
incremental methods using the proposed 
technique are effective and the step decreases 
about 2 to 3 times for LDS and 10 times for 
CASS less than original methods 
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Figure 2 Calculation steps for Uniform bids 
 
Figure 3 and 4 show the comparison between 

LDS and Incremental LDS in terms of the total 
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revenue. Incremental LDS can have as much 
revenue as LDS for both bid distributions. 
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Figure 3 Efficiency for Random bids 
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Figure 4 Efficiency for Uniform bids 
 

As a result, we can say that our proposed 
mechanism is effective when incoming bids 
arrive sequentially or at most less than 10 bids 
at the same time. 

 To be practical, in general, since ascending 
auctions have a tendency of having last-minute 
bidding behavior, it can be a good way to have 
our incremental algorithm from the beginning 
of the auction to a certain period of time to get 
quick feedback, and switch the algorithm to the 
normal method at the very last moment when 
many bidders give up getting prompt feedback. 

   
6. Conclusion 

In this paper, we proposed an efficient 
winner determination algorithm for 
combinatorial ascending auction with two 

improvements against existing methods. Then 
we demonstrated the effectiveness of our  
algorithm through evaluation. 
  We now have several further studies for 
improving our algorithm. First, as we know the 
characteristics of the ascending auctions that 
same bidder may repeat the bids, we may have 
another technique by using this tendency. 
Second, we may have approximate reduction 
method for incremental search though, this 
time, we do not use approximate method for 
improvement but for original method. Third, 
we may make use of the history of bids from the 
beginning of the auction to the middle to 
dynamically change the strategy. 
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