
Autonomic Computing Systems on Distributed Multimedia Objects

Kenichi Watanabe, Tomoya Enokido, and Makoto Takizawa
Tokyo Denki University, Japan

E-mail {nabe, eno, taki}@takilab.k.dendai.ac.jp

Abstract
We discuss an autonomic computing system to manipulate multimedia objects distributed in multiple peer

computers interconnected with high-speed networks. Multimedia objects are distributed, replicated, and versioned
in nature since the objects are cached and downloaded to local computers in peer-to-peer (P2P) systems. Thus,
various types of replicas of objects are distributed in various types and large number of peer computers. Even
if servers which have objects are faulty or do not support enough quality of service (QoS) due to overloads and
congestions, applications can obtain service of object by accessing to types of their replicas with different parts,
QoS, and versions. In this paper, we discuss how to autonomically support applications with enough service on
objects in presence of faults and QoS changes.

自律分散マルチメディアオブジェクトシステム

渡辺健一 榎戸智也 滝沢誠
東京電機大学大学院理工学研究科情報システム工学専攻

E-mail {nabe, eno, taki}@takilab.k.dendai.ac.jp
本論文では、高速ネットワークで相互接続された複数のピアコンピュータ上に分散されたマルチメディ

アオブジェクトを操作するためのオートノミックコンピューティングシステムについて議論する。オブジェ
クトが P2Pシステム上のコンピュータにキャッシュ、またはダウンロードされることによって、レプリカ
が分散される。また、オブジェクトの更新により、バージョンが生成される。このようにして、さまざま
な種類のレプリカが、ピアコンピュータ上に分散される。過負荷、輻輳、障害によるオブジェクトの QoS
の変化に対して、アプリケーションはレプリカをアクセスすることによって、必要な QoSを取得すること
ができる。本論文では、障害や QoSが変化するなかで、オブジェクトの提供するサービスをもとにアプリ
ケーションの要求するサービスを自律的に提供する方法について議論する。

1 Introduction

Traditional information systems are realized in the
client-server model. Application programs are per-
formed on clients and application servers while is-
suing requests to servers like database servers [9] in
2-tier and 3-tier client server models, respectively.
On receipt of requests from application programs
on clients/application servers, requests like SQL [2]
are performed on servers and then the responses are
sent back to the application programs. Each com-
puter plays one role of client, application server, and
database server in the client-server model. According
to the development of internetworking and computing
technologies, various types and huge number of com-
puters, possibly millions of personal computers (PCs)
are now interconnected in networks. Here, each com-
puter is peer named servant, i.e. each computer can
play both roles of client and database server. This is a
peer-to-peer (P2P) framework [11] which is now tak-
ing a central position in information systems.

Autonomic computing systems are developed by
IBM [1] and Sun Microsystems [14] on the basis
of new concepts, self-configuration, self-optimization,
self-healing, and self-protecting to support fully avail-
able and reliable computation service in presence of
component faults. Grid computing [4] is another ex-

ample of P2P model, where computers, mainly per-
sonal computers in the Internet cooperate to perform
a program to obtain as large computation power as a
supercomputer.

A peer-to-peer (P2P) system is composed of large
number and various types of peer computers intercon-
nected in high-speed networks. Multimedia objects
are distributed in multiple computers. Service sup-
ported by computers and networks is characterized by
quality of service (QoS). Response time, throughput,
reliability, and availability are also QoS parameters of
computers. Delay time, bandwidth, and packet loss
ratio are QoS parameters of networks. Change of a
system is modeled to be change of QoS supported by
the computers and networks. It is critical to support
applications with enough quality of service (QoS) in
change of computer and network services. In this pa-
per, we discuss how to support applications with QoS
required even if computers and networks do not sup-
port QoS required due to congestions, overloads, and
faults.

In multimedia applications, a multimedia object is
often replicated in nature on multiple computers since
the object is downloaded and cached to local com-
puters. In addition, only a part of a multimedia ob-
ject may be stored in a computer. Furthermore, ob-
jects downloaded in computers may have QoS dif-

1

研究会Temp 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp 
2004－DPS－116　（3）

研究会Temp 
2004／1／29

研究会Temp 
－13－



ferent from the original object. For example, a full-
coloured video object stored in a video server is down-
loaded to personal computers. A monochromatic ver-
sion of the video object is stored in a computer and
only some scene of the video is stored in another com-
puter since users are interested only in them and in
order to reduce the storage size. Thus, an object is
partially distributed to multiple computers, i.e. only
part of the object, a version of the object, and object
with different QoS. Here, even if a server is faulty, ob-
jects on the faulty server have been distributed in other
computers as stated here. An application can access to
a computer which has a part of the object which the
application would like to manipulate. The application
may obtain a part of the object from the partially dis-
tributed parts, which satisfies the requirement. We dis-
cuss how to obtain and manipulate multimedia objects
which are distributed and replicated in networks.

In section 2, we discuss a system model. In section
3, we present replications of objects. In section 4, we
discuss how to manipulate replicas distributed in peer
computers.

2 System Model

An object is an instantiation of a class. A class
is composed of attributes and methods for describing
the class and manipulating its object. A new class can
be derived from existing classes whose attributes and
methods are inherited to the derived class. The de-
rived class is referred to as subclass of the classes. A
subclass is in an is a relation with the classes. In ad-
dition, a class is composed of component classes, i.e.
domains of attributes are classes. A component class
is in a part of relation with a class.

A system is composed of multiple peer computers
p1, . . . , pn, which are interconnected in communica-
tion networks. Each computer pi supports an object
base (OBi) which is a collection of persistent objects.
An object is an encapsulation of data, i.e. values of
attributes and methods for manipulating the data. Ob-
jects are mainly multimedia objects. Each object is
characterized by types of service, i.e. a collection of
methods and quality of service (QoS) like frame rate
and number of colours. QoS of an object obtained by
an application depends on what QoS is supported not
only by the object itself but also networks among the
application and the object. For example, even if an
object supports high bandwidth in a computer, appli-
cations in another computer cannot take enough band-
width if the network is slower than the object.

QoS supported by an object is changed in a com-
puter. For example, QoS is degraded due to some fault
like performance fault of the computer. If a computer
pi is faulty, the object base OBi in the computer pi

is also faulty. Availability and reliability are kinds of

QoS. If an object is in a mobile computer, QoS of the
object is changed depending on QoS of the commu-
nication connection, e.g. wireless channel according
to the movement. Thus, the change of an object in-
cluding movement of the computer can be modeled to
be change of QoS supported by the object. Response
time, throughput, bandwidth, reliability, and availabil-
ity are QoS parameters of an object.

QoS of an object is supported to applications by
performing methods on a state of the object. Let s
be a state of an object o. Let op(s) and [op(s)] de-
note a state of the object o and output obtained by per-
forming a method op on a state s, respectively. Here,
Q(s) shows QoS of a state s itself. On the other hand,
Q([op(s)]) indicates QoS of the output of the method
op. Even if a state s of an object supports enough QoS,
an application cannot obtain enough QoS from the
state s if a method op is not facilitated to manipulate
the object with its QoS. For example, a video object v
is composed of fully coloured video data. However,
the object v supports only a display method which
can display monochromatic version of video object.
An application can only watch monochromatic video
from the coloured video object. Thus, QoS of an ob-
ject depends on both state QoS and method QoS.

A computer can communicate with the other com-
puters by exchanging messages in networks. A mes-
sage is a unit of data transmission among computers.
A message is decomposed into a sequence of pack-
ets and then the packets are transmitted in a network.
The service supported to a computer by the underlying
network is characterized by quality of service (QoS),
delay time, bandwidth, and packet loss ratio. QoS of
the network is changed due to faults and congestions.

An application program is initiated and then per-
formed on a peer computer. The application program
issues a method request to an object, which exists lo-
cally on the computer or remotely on another com-
puter. On receipt of the method request, the method
is performed on the object and the response is sent
back to the application program. The method being
performed may issue methods to other objects. The
remote procedure call (RPC) is an example of this
computation on which applications in the client-server
model are based. A transaction is an atomic unit of
work and is a program which is being performed by
manipulating objects. A transaction is defined to be an
atomic sequence of methods issued to objects which
satisfies ACID (atomicity, consistency, isolation, dura-
bility) [3, 5]. Multiple transactions are required to be
serializable in order to keep objects mutually consis-
tent.

In another way, an application program only locally
manipulates objects by moving to remote computers
where the objects are stored. Then, the program moves
to another computer. The program which is moving

2

研究会Temp 
－14－



around computers and locally manipulates objects is
referred to as mobile agent [13]. A transactional agent
[12] is a mobile agent which manipulates objects in
computers so as to satisfy commitment constraints like
atomicity and majority ones.

3 Replication of Objects

3.1 Replications

An object o can be replicated to be a collection
{o1, . . . , on} of replicas. The replicas are distributed
to object bases in multiple peer computers. For exam-
ple, a user downloads an object o in a remote server
computer into the local computer in object-oriented
database systems [15]. Then, the user locally manipu-
lates the objects downloaded in its local computer and
eventually uploaded to the server computer. The opti-
mistic concurrency control [7] is used to maintain the
mutual consistency of objects and their replicas. An
object downloaded is a replica of the object o. An ob-
ject is also replicated in multiple computers in order to
increase the reliability and availability of the object.
There are many discussions of replicas is distributed
relational database systems [10].

There are various discussions on how to decom-
pose and replicate tables in distributed database sys-
tems [10]. A table is decomposed into segments by
projection and restriction, horizontal and vertical de-
compositions of the table [10], respectively. On the
other hand, an object is composed of not only data but
also methods. Hence, we have to discuss how data
and methods are replicated in multiple computers. In
addition, it is critical to discuss how much QoS is sup-
ported by data and methods of the object.

In a way, one new version is created if an object is
updated. Thus, an object is realized to be a sequence
of versions.

3.2 State-based replication

There are ways to replicate an object o. A replica
oi of the object o is referred to as a full replica of the
object o (oi ≡ o) iff oi is the same as the object o, i.e.
oi has same values of attributes and methods as the
object o. If a replica oi has only a part of the object
oi, the replica oi is referred to as partial (oi ⊆ o). For
example, if only some attributes of an object is down-
loaded into a local computer, the object downloaded is
a partial replica of the object. A replica with a subset
of methods is also a partial replica. If a replica oi has
the same attributes as an object o, the replica oi is re-
ferred to as fully instantiated (oi ≡I o). Otherwise, the
replica oi is partially instantiated (oi ⊆I o), i.e. oi is
composed of a subset of attribute values of the object

o which is obtained by horizontal and vertical decom-
positions of the data of the object o. A replica oi is
fully equipped (oi ≡E o) if the replica oi has a same
set of methods as the object o. Otherwise, the replica
oi is partially equipped (oi ⊆E o).

In Figure 1, boxes indicate attributes and circles
show methods. A replica o1 is created from an ob-
ject o. Here, o1 is a full replica of o (o1 ≡ o). Then,
a replica o2 is created. Here, since o2 has a subset
of attribute values of the object o while having the
same methods as the object o, o2 is partially instan-
tiated while fully equipped, i.e. o2 ⊆I o and o2 ≡E o.
A replica o3 is partially equipped while fully instanti-
ated, i.e. o3 ⊆E o and o3 ≡I o. A replica o4 is partially
instantiated and equipped, i.e. o4 ⊆I o and o4 ⊆E o.

o o1 o4

o2 o3

: method. : attribute.

Figure 1. Instantiation and equipment of
replicas.

3.3 QoS-based replication

Each object o is characterized by quality of ser-
vice (QoS) like frame rate. If a replica oi supports
the same QoS as the object o, the replica oi is referred
to as fully qualified (oi ≡Q o). If a replica oi sup-
ports lower QoS than the original object o, the replica
oi is less-qualified (oi ⊆Q o). If a replica oi supports
higher QoS than the object o, the replica oi is more-
qualified than the object o (oi ⊇Q o). An application
obtains QoS of an object by performing a method. For
example, high-resolution image data can be displayed
only through a high-resolution display method. Unless
there is a high-resolution display method, an applica-
tion can only view less-qualified image even if the ob-
ject itself has high-resolution image data. A method
t of a replica oi is fully qualified if the method t of
the replica oi supports the same QoS as the object o.
Otherwise, a method t of a replica oi is less-qualified.

A replica oi is a full replica of an object o (oi ≡
o) if the replica oi is fully instantiated, qualified, and
equipped. Otherwise, the replica oi is partial.

For a part of objects oi and o, oi ≡IEQ o means
that oi ≡I o, oi ≡E o, and oi ≡Q o. oi ⊆IEQ o shows

3

研究会Temp 
－15－



that oi ⊆I o, oi ⊆E o, and oi ⊆Q o. oi ≡ o and oi

⊆ o indicate oi ≡IEQ o and oi ⊆IEQ o, respectively.
Notation like oi ≡IE o and oi ⊆EQ o are similarly
used.

The relation ≡α is equivalent and ⊆α is transitive
when α ∈ 2{I,E,Q}. There are following properties on
the relations ≡α and ⊆α for every pair of objects o1

and o2:

1. o1 ≡α o2 if o1 ≡α o3 and o3 ≡α o2 for some
object o3.

2. o1 ≡α o2 if o2 ≡α o1.

3. o1 ≡α o1.

4. o1 ⊆α o2 if o1 ⊆α o3 and o3 ⊆α o2 for some o3.

5. o1 ⊆α o2 if o1 ⊆α o3 and o3 ≡α o2 for some o3.

6. o1 ⊆α o2 if o1 ≡α o3 and o3 ⊆α o2 for some o3.

3.4 Version-based replication

An object state is changed by update types of meth-
ods, i.e. attribute values are changed. A version is a
snapshot, i.e. state of an object. Each time an object is
updated, a new version of the object is created. Thus,
an object is considered to be a sequence of versions
which shows a history of the object. Replicas might
be different versions of an object. Suppose a version
oi of an object o is obtained by updating a version oj

of the object o. Here, oi is referred to as directly fol-
low the version oj (oj � oi) (or oj directly succeeds
oi) [Figure 2]. The version oi follows oj (oi �∗ oj ) iff
oi � ok and ok �∗ oj for some object ok.

Each version oi of an object o has a starting time
st(oi) when oi is created and an ending time et(oi)
when oi is changed. The version oi is valid from st(oi)
to et(oi). Every version of an object o is identified by
the identifier of the object o and version identifier. On
the other hand, each replica is considered to be an ob-
ject with the different identifier than the object o.

update
oi oj

oj oi

⊥

Figure 2. Version.

4 Acquaintances

We discuss how to manipulate multimedia objects
whose replicas are distributed in peer-to-peer (P2P)
networks. There are numerous and various peer com-
puters in peer-to-peer (P2P) systems. Objects are

replicated and distributed in peer computers with vari-
ous ways as discussed in the preceding subsection. An
application has to find computers which have objects,
maybe replicas of objects which satisfy application’s
requirements. Since replicas of objects are dispersed
to large number of peer computers in P2P systems, it
is not easy to find the computers. Furthermore, it is not
easy, maybe impossible to perceive what objects and
replicas are stored on what computers in P2P systems.

Each computer pi has its own view which is a sub-
set of computers to which the computer pi can access
in a P2P network. An acquaintance of a computer
pi is another computer pj which the computer pi per-
ceives to have what objects and can directly commu-
nicate with pi. Here, pi ⇒ pj (pj is an acquaintance
of pi). Let view(pi) be a set of pi’s acquaintance com-
puters, { pj | pi ⇒ pj }. The acquaintance relation
⇒ is neither symmetric nor transitive while reflexive.
Even if the computer pi thinks a computer pj to be its
acquaintance, the computer pj may not think pi to be
an acquaintance. That is, pi /∈ view(pj) even if pj ∈
view(pi). A pair of computers pi and pj are referred to
as friends iff pi ⇒ pj and pj ⇒ pi.

The acquaintance relation “pi ⇒ pj” is weighted

by the trustworthy factor f (pi
f⇒ pj). Suppose that

pi
f1⇒ pj and pi

f2⇒ pk. If f1 > f2, the process pi con-
siders that pj is more trustworthy than pk. Suppose a
pair of the processes pj and pk have different knowl-
edge about a replica oi. Here, pi takes usage of the
knowledge of the object o owned by pj .

OBi ABi

pi peer computer

Figure 3. Computer.

Each computer pi has an object base (OBi) with
acquaintance base (ABi) [Figure 3]. The acquain-
tance base ABi is composed of information on what
objects are stored in what computers, which the com-
puter pi perceives. The acquaintance base ABi is real-
ized in a directed graph Gi named object graph. Each
node oi in the object graph Gi shows an object oi.
A directed edge from a node oi to another node oj

shows the replication relations ≡, ≡I , ≡Q, ≡E , ⊆I ,
⊆Q, ⊆E , �, and �∗ among objects and replicas [Fig-
ure 4]. Here, α ∈ { I, Q, E }. For full replication
relations oi ≡ oj , oi ≡I oj , oi ≡E oj , and oi ≡Q oj ,

there are directed straight edges oi −→ oj , oi
I−→ oj ,

oi
E−→ oj , and oi

Q−→ oj from oi to oj , respectively.
For partial replication relations oj ⊆ oi, oj ⊆I oi, oj

⊆E oi, and oj ⊆Q oi, there are directed dotted edges

4

研究会Temp 
－16－



oi ��� oj , oi
I��� oj , oi

E��� oj , and oi
Q��� oj from oi

to oj , respectively. For a version relation oi � oj , there
is a directed edge oi +−→ oj from oi to oj .

oi oj

oi oj

: object

: oi oj

α

: oi oj

o

oi oj
: oi

⊥

oj

α

α

α

Figure 4. Object graph.

Figure 5 shows an object graph for Figure 1. For
example, since o1 is a full replica of an object o, o −→
o1. o1

E−→ o2 and o1
I��� o2 since o2 ≡E o1 and o2

⊆I o1.

o2 o3

o o1 o4

E EI
I

IE

Figure 5. Object graph.

Each node o is associated with following informa-
tion:

1. computers where the object o exists.
2. class, i.e. attributes and methods.
3. types, i.e. replica, version.

It is critical to discuss who can manipulate an ob-
ject in what way. Let pi be a peer computer and o
be an object in a computer pj . If the object o is in a
computer pi, we assume the computer pi is allowed to
manipulate the object o. Suppose the object o is in a
different computer pj from pi. There is information
on the object o in the acquaintance base ABi in the
computer pi, i.e. pj is an acquaintance of pi (pi ⇒
pj). Here, if the computer pi is granted an access right
〈o, t〉 for some method t, the computer pi is allowed to
directly manipulate the object o. Here, pi is referred
to as qualified acquaintance of pj (pi

α⇒ pj where α is
an access right on an object in pj). If the computer pi

is not qualified on the object o, the computer pi is re-
quired to ask the acquaintance computer pj to access
to the object o.

Next, we discuss how to find a computer which has
an object which we would like to manipulate. First, an
application specifies properties showing what object
the application would like to manipulate. By using
the ontology [6], identifies of objects which satisfy the
properties are found. Then, it is found what computers
have the object by taking usage of the acquaintance.
We take a local-to-global strategy to find computers:

1. A computer pi broadcasts a request to all the ac-
quaintance computers in the view.

2. On receipt of the request, an acquaintance com-
puter sends a reply to the computer pi, i.e. infor-
mation on the objects.

3. If the objects are not found in the view, the com-
puter pi asks some number of acquaintances in
the view to find the object, which are more trust-
worthy.

In another way, mobile agents are moving around
in the P2P network.

5 Concluding Remarks

We discussed how to manipulate multimedia ob-
jects distributed in peer-to-peer (P2P) systems. Mul-
timedia objects are replicated in various ways,
fully/partially instantiated/qualified/equipped, in the
P2P systems. We discussed what types of replicas
of multimedia objects are distributed. Then, we dis-
cussed how to manipulate objects through acquain-
tance.

References

[1] Autonomic computing architecture : A
blueprint for managing complex comput-
ing environments. 2002. http://www-
3.ibm.com/autonomic/pdfs/ACwhitepaper1022.pdf.

[2] American National Standards Institute. The database
language SQL. Document ANSI X3.135, 1986.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database S ystems.
Addison-Wesley, 1987.

[4] I. Foster and C. Kesselman. The grid: Blueprint for
a new computing infrastructure. Morgan Kaufmann
Publishers, 1999.

[5] J. Gray. Notes on Database Operating Systems. Lec-
ture Notes in Computer Science, (60):393–481, 1978.

[6] N. Guarino. Formal ontology and information sys-
tems. Proc. of FOIS 98, pages 3–15, 1998.

[7] H. T. Kung and J. T. Robinson. On Optimistic Meth-
ods for Concurrency Control. ACM Transactions on
Database Systems, 6(2):213–226, 1981.

[8] N. A. Lynch, M. Merritt, A. Fekete, and N. Lynch.
Atomic Transactions (Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann Pub-
lishers, 1993.

5

研究会Temp 
－17－



[9] Oracle8i Concepts Vol. 1. 1999. Release 8.1.5.
[10] M. T. Ozsu and P. Valdurie. Principles of Distributed

Database Systems. Prentice Hall, 2nd edition, 1998.
[11] N. S. Ross, L.Grahman, and G. Carroni. Proc. of the

Third Internationlal Conferenceon Peer-to-Peer Com-
puting. 2003.

[12] S. Shiraishi, T. Enokido, and M. Takizawa. Trans-
actional agent model for distributed object sys-
tems. Proc. of the 14th International Conference on
Database and Expert Systems Applications (DEXA
2003), pages 340–349, 2003.

[13] A. D. Stefano, L. L. Bello, and C. Santoro. A
distributed heterogeneous database system based on
mobile agents. Proc. of the 7th Workshop on En-
abling Technologies WETICE98 IEEE Computer So-
ciety, pages 223–229, 1998.

[14] Sun Microsystems, Inc. N1 - intruducing just in time
computing. White paper, Sun Microsystems, Inc.,
2002.

[15] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases
and distributed systems. Proc. of IEEE ICDCS-2000,
pages 264–274, 2000.

6

研究会Temp 
－18－




