2006—DPS—127 (10)
2006766

HEEA HRLEES HARE
IPSJ SIG Technical Report

A Fiulf-Tolefant Transactional Agent Model on
Distributed Object Systems 3

Youhei Tanaka!, Naohiro Hayashibara', Tomoya Enokido?, and Makoto Takizawa'

1Dept. of Computers and Systems Engineering, Tokyo Denki University, Japan

%Faculty of Business Administration, Rissho University, Japan
Yyouhei, haya, taki}@takilab.k.dendai.ac.jp, *eno@ris.ac.jp

Abstract

A transactional agent is a mobile agent to manipulate objects with some type of commitment condition. We
assume computers may stop by fault while networks are reliable. In the client-server model, servers are fault-
tolerant according to traditional replication and checkpointing technologies. However, an application program on
a client cannot be performed if a client computer is faulty, e.g. blocking problems in the two-phase commitment
protocol. An application program can be performed on another operational computer even if a computer is faulty
in the transactional agent (TA) model. There are kinds of faulty computers for a transactional agent; current,
destination, and sibling computers where a transactional agent now exists, will move, and has visited, respectively.
We discuss how the transactional agent is tolerant of the types of computer faults.

AT FORTFLIZEITAHES
FSUHOSaFrILI—Cz U M ETIL

ER ST B I S R R
LR B KR FED: BT AR B R T A TEHEK
2 STIERZ BB
27AT YR« P—NEFATE, V—\DEEERSEL, FoyZRA v MBIV EDONRT
WABR, J7ATY ORBIZEV T 7V r—a UREIELRLS 2 ABBEANRD D, ARFETIE, T4
NT—PxV beANWTT Y r—va VERBERICEFTESRR L 2E25. FFUPrvaFrz—
Tz bhlid, arta—FLEBBL, BEkOoa Y a—dROL TV FERETEEAM N Z—
VzV I Thd o, avta—dREELTOMOIV E2a—FItBHTEZLILLD, 77V I—
VavEETIRRILNTES. AHETE, FSr¥Frvatiz—V=r b EENWT, WEET 7Y

F—=vavEREBTAINI VI A —Uay hEFARETICRRT B,

1 Introduction

Various types of objects [7] like databases [9, 11]
are distributed on multiple servers. An application
program manipulates objects distributed in comput-
ers. A transaction [3] of the application program is
an atomic sequence of methods issued to objects. In
the client-server (CS) model [6], a transaction on a
client issues access requests like SQL [1] to servers.
Servers can be made more reliable and available by
using multiple replicas of the servers [15] and taking
checkpoints [10]. However, application programs can-
not be performed if the clients are faulty. For exam-
ple, servers might block if a client is faulty in the two-
phase commitment protocol [12]. On the other hand,
mobile agents [4] are programs which move around
computers and then locally manipulate objects in each
computer. Here, an application program moves to
objects while data objects are transmitted in the CS

model. In a mobile agent model, the application pro-
gram can be performed on another operational com-
puter by escaping from faulty computers. In this pa-
per, we assume computers may stop by fault while net-
works are reliable. We discuss how to reliably realize
an application program manipulating objects in a mo-
bile agent in presence of computer faults. In this paper,
atransactional agent (TA) is a mobile agent which au-
tonomously moves around computers in networks and
locally manipulates objects in each computer. In ad-
dition, a transactional agent is specified with one of
commitment conditions like atomic and at-least-one
conditions. For example, a transactional agent with
the majority condition can commit only if objects in
more than a half of the objects could be successfully
manipulated.

In order to reduce the overhead for transfering
classes of a mobile agent, a transactional agent is de-
composed into smaller pieces, a routing subagent and

a collection of manipulation subagents. The routing
subagent makes a decision on what computer to visit
next and then moves to the computer in networks. A
manipulation subagent is only a part of an application
program to locally manipulate objects in each com-
puter. On arrival of a routing subagent at a computer,
a manipulation subagent is loaded to the computer. In
order to resolve the unrecoverable abort, a manipu-
lation subagent still holds locks on objects even after
the routing subagent leaves the computer. In the TA
model, there are types of computers which might be
faulty, i.e. destination, sibling, and current computers
where a transactional agent moves, has passed and a
manipulation subagent exsits, and currently exists, re-
spectively. We discuss how a transactinal agent to be
tolerant of faults of the types of computers. An appli-
cation program manipulating objects in multiple com-
puters like database applications are reliably realized
in the TA model.

In section 2, we discuss the TA model. In section
3, we discuss how fault-tolerant model of the transac-
tional agent. In section 4, we evaluate the TA model.

2 A Transactional Agent (TA) Model
2.1 Transactional agents

A mobile agent is an object-based program com-
posed of classes like Java [13] programs which moves
around computers in networks and locally manipulates
objects in each of the computers [4] as follows:

1. A class c is stored in a home computer Home(c).

2. If amethod on a class c is invoked on a computer
D. cisloaded to D from Home(c). If ¢ is cached
in D, c in the chache is invoked.

3, A mobile agent A is initiated on a base computer
Base(A) by loading classes from Home(A).

An application program which manipulates objects
is realized in a mobile agent. A transaction of an ap-
plication can be operational in a mobile agent model
as long as the transaction is performed on an oper-
ational computer. A transactional agent is a mobile
agent with the following properties:

1. Autonomously makes a decision on what com-
puter to visit in presence of computer faults and
change of service supported by computers.

2. Moves from computers to computers and locally
manipulates objects in each computers.

3. Negotiates with other transactional agents with
respect to which one takes conflicting objects.

4. Commits only if a commitment condition is sat-
isfied, otherwise aborts.

Target objects are objects to be manipulated by a
transactional agent. Target objects are stored in a
target computer. A program, i.e. classes are trans-
ferred to a target computer in the transactional agent
(TA) model while the program is fixed on a client in
the client-server (CS) model. In order to reduce the
communication overhead, a transactional agent A is
decomposed into smaller pieces, a routing subagent
RA(A) and manipulation subagents M A(A, D), ...,
MA(A, D,) (n > 1), where D; stands for a target
computer. Each M A(A, D;) is a part of an application
program to locally manipulate objects in D;. RA(A)
moves around computers. On arrival of RA(A) at
D;, classes of M A(A, D;) are loaded to D; from
Home(A) [Figure 1]. In the TA model, only a part of
an application program is loaded to each target com-
puter, which is required to manipulate objects in the
computer.

Figure 1. TA model.

2.2 Routing subagents

A transactional agent A is initiated on a base com-
puter Dy (= Base(A)). Here, the routing subagent
RA(A) is loaded to D; from the home computer
Home(A). RA(A) makes a schedule Sch(A) to visit
target computers and moves to another computer D,
from D;. Thus, RA(A) moves to a computer D; from
D;_1. On arrival at D;, RA(A)loads classes of a ma-
nipulation subagent M A(A, D;) from Home(A). Ob-
jects are locally manipulated in the current computer
D; through M A(A, D;). Then, M A(A, D;) may out-
put intermediate objects Out(4, D;). In turn, M A(A,
D;) may use the intermediate objects In(A4, D;) out-
put by another M A(A, Dy) (h < ©). An object z flows
from a computer D; to D; (D; 2 D;) iff MA(A,
D;) outputs an intermediate object = and M A(A, D;)
uses the object = as an input. Here, D; and D; are
source and destination computers of the object z, re-
spectively. D; = D; means that a transactional agent
A has to visit D; before D; and = is delivered from D;
to D;. The authers discuss how to deliver intermediate
objects [14]. A navigation map Map(A) is a directed
graph where each node D; shows a manipulation sub-
agent M A(A, D;) [Figure 2]. A directed edge D; —

D; shows that M A(A, D;) is performed after M A(A,
D;),ie. D; 3 D; for some object z.

[D}—= [+ computer.
) / — : output-input relation.
2] B

Figure 2. Navigation map Map(A).

A schedule Sch(A) to visit target computers is ob-
tained by using the topological sort [5] of nodes in
Map(A). A node without any incoming edge is initial.
One of initial nodes D; and Dy, say D, is arbitrarily
selected in Figure 2. D; is removed from Map(A).
D, is taken. Finally, Sch(A) is a sequence of comput-
€ers (Dl, Dg, Da, .D4, D5)

2.3 Manipulation subagents

A manipulation subagent M A(A, D;) is a part of an
application program of a transactional agent A, which
locally manipulates objects in a computer D;. Even if
a routing subagent RA(A) leaves D;, M A(A, D;) still
holds objects manipulated in D;. M A(A, D;) com-
mits only according to the indication of RA(A). Here,
suppose RA(A) is now on a computer D; after visit-
ing computers D1, ..., D;_,. Here, D; is current and
MA(A, Dy), ..., MA(A,D;_,) are sibling manipula-
tion subagents. Suppose a routing subagent RA(A) is
now on a current computer D, after visiting Dy, ...,
Dp_y. If a manipulation subagent M A(A, D,,) fin-
ishes manipulating objects in D,,, RA(A) checks if
the commitment condition CC(A) is satisfied. There
are the following types of the commitment conditions:

1. Atomic: all the target computers.

2. Majority: more than half of the target computers.
3. At-least-one: at least one target computer.

4, (’:) more than 7 out of n target computers.

Suppose M A(A, D;) holds objects and a rout-
ing subagent RA(B) of another transactional agent B
would like to manipulate objects in a conflicting way.
Here, RA(B) negotiates with M A(A, D;) and it is de-
cided which transactional agent A or B holds the ob-
jects based on the commitment conditions [11]. For
example, if CC(A) is an at-least-one type, M A(A,
D;) can abort and release the objects.

3 A Fault-Tolerant Model
3.1 Types of faults

A routing subagent RA(A) of a transactional agent
A moves in a network. First, RA(A) is initiated on a

base computer D, (= Base(A)). Then, RA(A) moves
to a computer Dy from D; and a manipulation sub-
agent M A(A, D,) locally manipulates objects in Ds.
Thus, RA(A) visits computers Dy, Dy, ..., D;. Then,
RA(A) moves to D; 4, from D;. D;_, and D;; are
the direct predecessor and successor of D;,. respec-
tively. D;_p, and D;1 (h > 0) are the predecessor and
successor of D;, respectively. A transactional agent A
itself is assumed to correctly behave according to the
specification. We assume a computer may stop. There
are the following types of faults [Figure 3]:

1. A destination computer D;;, on a current com-
puter D; is faulty.

2. A sibling computer Dy, (k < i) which RA(A) has
visited is faulty.

3. A current computer D; is faulty,

4. A home computer Home(A) is faulty.

If Home(A) is faulty, another replica of Home(A)
delivers the classes. We discuss the other three types
of computer faults.

O : Rouing subsgent.

O Q9 Q9 _ o=
5. 8- 88 %

D, D, b, Dy,

Figure 3. Faults of computers.

3.2 Faults of destination computer

First, suppose a routing subagent RA(A) finds a
destination computer D; from the navigation map
Map(A) on the current computer D;. However, sup-
pose D; is faulty. RA(A) first tries to find another op-
erational destination computer from D;. If not found,
RA(A) backs to the direct precedessor Dy, or waits
on the current computer D;. Suppose RA(A) desides
to wait on D;. If RA(A) waits for some time units,
RA(A) backs to the direct predecessor or aborts if D;
is still faulty. Next, suppose RA(A) backs to the direct
predesessor Dy,. Here, RA has to find another opera-
tional destination computer.

There are following ways for a routing subagent
RA(A) on a current computer D; to find another des-
tination Dy, if D is detected to be faulty:

1. RA(A) finds an independent computer D, of D;.

2. RA(A) finds a replica computer D) where
M A(A, D;) can be performed.

Independent and replica computers of D; are can-
didate ones from a current computer D;. If a candidate

Dy, is found, RA(A) moves to Dy. If another destina-
tion from D; is not found, RA(A) backs to the direct
predecessor Dy. Here, M A(A, D;) is aborted on D;.
Then, a node D; is marked “faulty” in Map(A).

On backing to the predecessor Dy, RA(A) brings
information on faulty computers. If RA(A) on Dy
finds another candidate Dy, (k # 1) as discussed here,
RA(A) moves to Dg. Otherwise, RA(A) furthermore
backs to the direct predecessor. If D; is Base(A), the
transactional agent A aborts.

3.3 Detection of faulty computer

In the TA model, a routing subagent RA(A) leaves
manipulation subagents on computers. Hence, sibling
computers are chached as shown on Figure 4. Each
sibling manipulation subagent M A(A, D;) exchanges
control messages with M A(A, D;_;) and MA(A,
D;;1) as shown in Figure 4. If M A(A, D;) is faulty,
neither M A(A, D;_1) nor M A(A, D;11) receives any
control message from M A(A, D;). Here, MA(A,
D;_1) and M A(A, D;41) find D; to be faulty by the
time-out mechanism.

Dy b, D,
O: routing subagent C> : manipulation subagent
>< + fuulty computers

Figure 4. Communication among manip-
ulation subagents.

Suppose a routing subagent RA(A) moves to a
computer D; from D;_;. RA(A) carries a log infor-
mation Log to .D;, which shows a history of computers
D, ..., D;—; which RA(A) has so far visited. Hence,
M A(A, D;) knows what computers are its predeces-
sors Dy, .., D;—;. On time RA(A) leaves a com-
puter D; for D;,1, RA(A) gives information of the
destination D;y; to M A(A, D;). Here, a variable
Pred; denotes a sequence of the predecessors (D1,
. Di_1) and Suce; indicates a sequence of its suc-
cessors (D;41). Variables DSucc; and D Pred; show
the direct succesor and predecessor of M A(A4, D;),
respectively. A notation “(ay, ..., an) + b ” shows (a;,
. Gn, b). a; and a, are the top and last elements
of (ay, ..., an). Dy and M A(A, Dy) in Succ; { D,
..., Dy) are referred to as the Jast successor of D;
and MA(A, D;), respectively. Sibling manipulation
subagents M A(A, D), ..., M A(A, D;) communicate

with each other to detect faulty computers as follows
[Figure 4]: .

1. A manipulation subagent M A(A, D;) is created
on a computer D; on arrival of RA(A) with
the log Log from D;_;. Here, Pred; := Log,
DPred; := D;_y, and Succ; := DSucc; = ¢.
MA(A, D;) sends a State message s; to M A(A,
D;_1) where s;.suce; = Succ;.

2 On receipt of a State message s;.; from M A(A,
Djt1), M A(A, D;) manipulates a valiable Succ;
as Suce; = 8;y1.8ucc + D;y; and send a State
message 8; to MA(A, D;_;) where s;.succ :=
Succ; and a State-response message r; to M A(A,
D;+1) where r;.pred .= Pred;.

3. Onreciept of a State-responce message r;_, from
Dj_1, Pred; = r;_y.pred + D;_; in MA(A,
D;). M A(A, D;) sends a State-responce message
75 to MA(A, D;y1) where r;.pred == Pred;.

4. When RA(A) leaves D; for D;y;, Log := Prec;
+ D; and Dsuce; = D;11. RA(A) carries Log.

If M A(A, D;) does not receive any messsage from
MA(A, D;_;) and MA(A, D;y;1) for some time
units, M A(A, D;) sends a State-responce message ;
and State-message s; to MA(A, D;_;) and MA(A,
D;1), respectively. After sending some number of
State-response and State messages, if MA(A, D;)
does not receive any message, M A(A, D;) perceives
MA(A, D;_y) and MA(A, D;41) to be faulty. Thus,
MA(A, D;) obtains information Pred; of the prede-
cessors Dy, ..., D;—; from RA(A). M A(A, D;) ob-
tains information on what computers are the succes-
sors on receipt of the State-responce messages from
MA(A, D;t1). In addition, M A(A,D;) forwards a
State message from the direct predecessor to the direct
successor. The change of the predecessors is propa-
gated up from the predecessors to the current com-
puter. RA(A) is moving, i.e. the successors are in-
creasing. The change of the successors is also propa-
gated down from successors to the base computer.

3.4 Fault of current computer

A routing subagent RA(A) is faulty only if the cur-
rent computer D; is faulty due to the fault of D;. Sup-
pose that RA(A) comes from D;_; to D;. Suppose
the direct prodecessor M A(A, D;_1) detects D; to
be faulty, i.e. RA(A) is faulty on D;. Here, M A(A,
D;_1) recreates a new incarnation of RA(A). The new
incarnation tries to take another destination Dy, in the
navigation map Map(A) as discussed before. Here,
MA(A, D;_y) sends a State message s;_1 to its di-
rect predecessor M A(A, D;_»), where s;_1.succ =
(Dj—1). If another destination Dy, is found, RA(A)

moves to Dg. If not found, RA(A) further backs to
MA(A, D;_,) from D;_; and M A(A, D;_) aborts.

D, is found

O manipulation subagent

i recreate

(@
oO0O X0

D, D, D, D,

@: new incarnation of RA(4).

Figure 5. Reincarnation of routing sub-
agent.

3.5 Fault of manipulation subagents

A sibling manipulation subagent M A(4, D;) may
be faulty. MA(A, D;_1) and M A(A, D;y;) detect
the fault of M A(A, D;) by the time-out mechanism
as discussed before. If the commitment condition
CC(A) s not an atomic type, RA(A) can continue the
computation even if MA(A, D;) is faulty. MA(A,
D; 1) knows every predecessor M A(A, Dp)(h < 1)
while M A(A, D;_,) knows M A(A, D;) but may not
know every successor M A(A, Dp) (h > i). Hence,
M A(A, D;,.1) sends a State message s;11 to M A(A,
D;_1). Here, MA(A, D;11) and M A(A, D;_;) are
now neghbouring.

Secondly, the predecessor M A(A, D;_,) of the
faulty MA(A, D;) creates a new incarnation of
RA(A) on D;_;. The new incarnation finds another
operational destination than the faulty computer D; as
discussed here. Here, M A(A, D;_1) sends a State
message s;—1 where s;_;.succ=¢ to MA(4, D;_5)
to inform the fault of D;. Thus, the predecessors
of MA(A, D;_,) eventually know that D; is faulty
and the successors D;y1, Djya, ... "are not sibiling
ones. The direct successor M A(A, D;y1) also de-
tects M A(A, D;) to be faulty. M A(A, D;.1) sends
an Abort message to M A(A, D;,) and then aborts.
On receipt of Abort, M A(A, D;,3) forwards Abort
to M A(A, D;3) and then aborts. Eventually, Abort
is delivered to the current manipulation subagent and
catches up with the old incarnation of RA(A). On re-
ceipt of Abort, the old incarnation aborts.

If each M A(A, D;) forwards an Abort message to
only its direct successor M A(A, D;41), it takes time
to inform the old incarnation RA(A) of Abort. We
take the following ways to reduce the time [Figure 6]:

1. On receipt of Abort from MA(A, D;_1),
M A(A, D;)finds the last successor M A(A, Dp)
in the log Suce; = (Djt1, Dita, ..., Dp).

2. M A(A, D;) forwards Abort to not only M A(A4,

D;41) but also the last successor M A(A, Dp).
Then, M A(A, D;) aborts.

3. On receipt of Abort from a predecessor M A(A,
Dj) (j <i—1), MA(A, D;) forward Abort to
both M A(A, D;+1) and MA(A, D;_1). Then,
M A(A, D;) aborts. If D; is current, the incarna-
tion of RA(A) on D; aborts.

A manipulation subagent M A(A, D;) delivers an
Abort message directly to the last successor Dy, in
Suce; = (Diy1, .. Da—1, Dp) by skipping the other
successors Djy1, ..., Dp—1. MA(A, D) also for-
wards an Abort message to not only M A(A, Dp_1)
and M A(A, Dpy1) but also its last successor. The
Abort message can be earlier delivered to the old in-
carnation.

@:mﬂh‘m‘m

Figure 6. Transmission of Abort.

4 Evaluation

We evaluate the transactional agent (TA) model in
terms of how log it takes to deliver an Abort message
to an old incarnation of a routing subagent after a sib-
ling computer is detected to be faulty. In addition, a
routing subagent is moving even after a sibling com-
puter is faulty. We measure has many computers a
routing subagent visits after a faulty computer is de-
tected.

We assume that it takes 160 [msec] to perform a
transactional agent on each computer, i.e. move a rout-
ing subagent, load classes of a manipulation subagent
from the base computer, and perform the manipula-
tion subagent which manipulates objects in a database.
We also assume it takes 30[msec] to deliver a message
from a computer to another computer in a network.
In this evaluation, each subagent is implemented as
thread in AMD Opteron Processor 248 2GHz and 2
GBytes memory. The movement of a routing subagent
is realized as creating a thread. That is, each time a
routing subagent moves to another computer, a thread
is created and show a manipulation subagent on the
computer.

Initially, there are a sequence of fifty manipulation
subagents Dy, ..., Dgg. Dyg is current and Dy is a
base computer. Every 160 [msec], one subagent D; is
created (¢ = 50, 51, ...). In the evaluation, each D; is
referred to as node. We assume one node out of fifty

nodes Dy, ..., Dyg is faulty. Then, Abort messages
are exchanged among nodes as discussed in the pre-
ceding subsection. In one way, an Abort message is
sent to only neighboring nodes, i.e. direct successor
and precedessor. On the other hand, Abort is sent to
not only neighboring nodes but also the last successor
node. The former way is referred to as traditional one.
The latter way is a new one. We measure how long
it takes to deliver Abort to the old incarnation of the
routing subagent after a faulty node is detected. Figure
7 shows how long it takes to abort the old incarnation
for which node D; is faulty (i =0, ..., 49). For exam-
ple, if the 10th node D, is faulty, it takes 1585 [msec]
and 857 [msec] to deliver Abort in the traditional and
new ways, respectively. Until Abort catches up with
the old incarnation of the old incarnation of the routing
subagent, the old incarnation moves in networks, i.e.
manipulation subagents are created. Figure 8 shows
how many nodes the old incarnation visits after some
computer is faulty. In the new way, only one node is
created until the old incarnation recieves Abort. In the
tranditional way, 16 nodes are created for the fault of
the node.

3000
- \“\A
g 1000 fo w"v ‘v‘vA
™ W
¢ 0 5 10 35 20 5 30 % 40 45 50!

Figure 7. Recovering time.

0
—+— traditional way |
8= now way

Figure 8. Number of nodes.

5 Concluding Remarks

We discussed how to realize a fault-tolerant ap-
plication to manipulate objects distributed on mul-
tiple computers with a mobile agent in presence of
computer faults. There are types of computer faults
in- the transactional agent, home, destination, sibling,

and current computers. We discussed how to make
a transactional agent tolerant of the types of com-
puter faults through the cooperation of the sibling ma-
nipulation subagents. In the traditional client-server
model, applications cannot be performed if the clients
are faulty. In the transactional agent (TA) model, a
transactional agent autonomously finds another desti-
nation computer even if computers are faulty. Thus,
application programs, especially database application
programs can be reliably realized in the transactional
agent model. We evaluated how long it takes to abort
the old incarnation of the routing subagent.

References

[11 American National Standards Institute. The Database
Language SOL, 1986.

[2] L. Gong. JXTA: A Network Programming Environ-
ment, pages 88-95. IEEE Internet Computing,, 2001.

[3] J. Gray and A. Reuter. Transaction Processing : Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[4] IBM Corporation. Aglets Software Development Kit
Home. http://www.trl.ibm.com/aglets/.

[5] D. E.Knuth. The Art of Computer Programming, Vol.
2. Auerbach Publications, 1998.

[6] N. A. Lynch, M. Merritt, A. F. W. Weihl, and R. R.
Yager. Atomic Transactions. Morgan Kaufmann,
1994,

[7] Object Management Group Inc. The Common Object
Request Broker : Architecture and Specification. Rev.
2.1,1997.

[8] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolks-

dorf. Coordination of Internet Agents. Springer-
Verlag, 2001.

[9] Oracle Corporation. Oracle8i Concepts Vol. 1 Release
8.1.5,1999.

[10] R.S.PamulaandP. K. Srimani. Checkpointing Strate-
gies for Database Systems. In Proc. of the 15th Annual
Conf. on Computer Science, IEEE Computer Society,
pages 88-97, 1987.

[11] M. Shiraishi, T. Enokido, and M. Takizawa. Fault-
Tolerant Mobile Agent in Distributed Objects Sys-
tems. In Proc. of the 9th IEEE International Workshop
on Future Trends of Distributed Computing Systems
(FTDCS 2003), pages 145-151, 2003.

[12] D. Skeen. Nonblocking Commitment Protocols, 1982.

[13] Sun Microsystems Inc. The Source for Java (TM)
Technology. http://java.sun.com/.

[14] Y. Tanaka, N. Hayashibara, T. Enokido, and M. Tak-
izawa. Design and Implementation of Transactional
Agents for Manipulating Distibuted Objects. In Proc.
of the IEEE 19th Advanced Information Networking
and Applications (AINA2005), pages 368-373, 2005.

[15] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding Replication in Databases
and Distributed Systems. In Proc. of IEEE ICDCS-
2000, pages 264-274, 2000.

