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Abstract

The airline crew scheduling problem has been investigated for over twenty years. Previous
studies have assumed that every flight is available every day during the scheduling period. But
these days, the number of irregular flights is increasing to satisfy the passengers’ requirements.
This article presents a new approach that reduces the total number of man-days in pilots’
round-trip flight patterns (called crew pairings) that cover alt the regular and irregular flights.
It systematically find ways to merge irregular flights into pairings consisting only of regular
flights. The approach is validated by using real-world datasets provided by an airline company.

1 Introduction

We discuss the flight crew scheduling problem under a new circumstance where many‘ flights are
scheduled only on certain parts in the given period of time. The flight crew scheduling problem
is to find the optimal aésign_ment of flight crews to a set of scheduled flights, or flight legs, on
aircraft of the same type. More precisely, we consider a crew pairing that starts from the crew’s
base and returns to the same base after consecutive flights while satisfying various regulations
and other conditions. It can contain deadheads, which represent the repositioning of crews as
passengers. Each crew pairing is assigned a cost. The crew scheduling problem is then, given
a set of flight legs in a given period of time, to find a set of crew pairings that covers all the
flight legs with the minimum cost. It has been attracting practical interest for over twenty years
(12, 10,1, 6,7, 2, 3, 8, 5, 11], since the crew’s cost usually accounts for the main portion of the
operational cost of every airline company. In most cases it can be formulated mathematically
as the set partitioning problem (SPP), and many heuristics and approaches have followed this
line of investigation [10, 6, 9, 4, 13].

Recently, the authors had an opportunity to perform a feasibility study of the automation
of the crew scheduling procedure for an airline company. The real data sets supplied by the
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airline company differ significantly from those discussed in published studies, in that each of
‘them contains a significant number of irregular flights. By irregular flights we mean those
that are scheduled only in certain parts of the given period. We call flight legs that have the
same schedule every day in the given period regular flight legs. The existing literature on crew
scheduling discusses data only for regular flights. Moreover, the cost of crew scheduling in the
airline company strongly depends on the total number of man-days of crew pairings. Here the
man-day of a pairing is defined as its duration, or how many days it lasts. The primal objective
of the crew scheduling system in this paper is to find the crew pairings with the minimum
* number of man-days when there are many irregular flights.

The simplest approach for handling many irregular flights and for finding pairings with the
minimum number of man-days is to solve the full-sized SPP defined over the full range of the
given period (usually a month). But the size of the full-sized SPP becomes far too large to
handle. "

An approach to reducing the problem size is to separate flights into two sets: one of regular
flights and the other of irregular flights. For a set consisting only of regular flights we can easily
transform a full-sized SPP defined over a month into a compact SPP defined over only three
days (three is the maximum permissible duration of a crew pairing). This approach is not useful,
however, if the total number of man-days is an important measure, as in the present case. In the
abovementioned airline company, experienced engineers have hitherto scheduled crew parings
manually. Many useful techniques have been developed for reducing the total number of man-
days when there are many irregular flight legs. We found that the simple separation approach
cannot outperform the manually created schedule.

We therefore propose a new approach to solving the crew scheduling problem with many
irregular flight legs, and show that this approach can find a schedule superior to a manually
designed one both in terms of the total number of man-days and other costs. Our approach
systematically finds ways to merge irregular flight legs into pairings consisting only of regular
flights, without solving the set partitioning problem of the full size. It has five steps: (1) We
begin by solving the full-sized SPP defined over a month for irregular flights. From the obtained
schedule we extract irregular flight blocks, or a sequence of flights that is to be used in the
insertion step below. (2) For regular flights we enumerate all feasible paths within a day for
all pairs of airports. We define each path’s cost so that it reflects how well the path accepts
irregular flight blocks. (3) We solve the compact SPP defined over three days for regular flights:
(4) We insert as many irregular flight blocks as possible into the pairings for regular flights. (5)
For irregular flights not inserted into regular pairings, we solve the full-size SPP again.

The organization of this paper is as follows. In section 2 we explain our crew scheduling
problem in detail. In section 3 we describe our approach, and discuss its performance through
numerical experiments for real-life data sets in section 4. Summary is given in section 5.

2 Problem Statement

2.1 Objective of Crew Scheduling

The objective of the given crew scheduling problem is to find the set of crew pairings with the
minimum cost that covers all flight legs in a given period of time (a month). A characteristic of
the present case is that the real data we consider contain many irregular flights. The number




of irregular flights is large in our case. In one month of 1996, it amounted to 3116 out of 5760
flights, over 55% of the total. The airline company expects this proportion to increase year by
year. '

The airline company’s prime goal for the crew scheduling is to minimize the total number
of man-days (which is to be described below) involved in a crew schedule for the given period.
Tts secondary goal is to find the one that minimizes a quantity determined by crews’ expenses
and various preferences about pairings. Examples of factors that determine this quantity are
on-duty hours, hours used for deadheads, and the number of flights. ‘

We define the number of man-days by the duration of each pairing; a one-day-long pairing
occupies one man-day, while a three-day-long pairing occupies three man-days. We then sum up
the man-days for all pairings in a crew schedule to obtain the total number of man-days N4P
Consider the case in which a crew schedule for a month consists of a two-day-long pairing
(pairing p) composed only of regular flights and a qne—da.y-long pairing (pairing ¢) composed
only of irregular flights which are scheduled only for the first ten days of the month. Suppose
the paring p is composed of

lstday: Bi;— < FR; > —-A1— < FRy; > fAz
2nd day: A3— < FR3 > —A3— < FRy> -8B

where B;, A;, FR;, are the i-th base airport, a.irport, and regular flight, respectively. Suppose
also that the pairing g is composed of ‘

By — (DHl) —A1— < FIL > —-A4y—- < FI, > -_Al - (DH;) - By,

where F1, is the i-th irregular flight. The total number of man-days NP for this crew schedule

then becomes 70 (= 2 x 30 + 10).

If we can find a good combination of irregular flights with regular flights, we can reduce the
total number of crew pairings. In the above examples of pairings, p and g, if we can merge
irregular flights, FI; and FIy, into the pairing p for the first ten days in a month as

lst day: Bi1— < FR; > -A3— <FI;1 > -A4— <FI3 > -A;—- < FR; > —A,
2nd day: Az~ < FR3 > —A3— < FRy > —B,,

then we can reduce NP from 70 to 60 (= (10 + 20) + 1 x 30). In the airline company we
worked with, crew scheduling has hitherto been done manﬁally by experienced engineers. Many
techniques have been developed for reducing N}4P. Our main motivation is to find a systematic
method to reduce NMPD. ‘ '

2.2 Set Partitioning Formulation

We formulate the crew scheduling problem as the SPP as

minimize 37, ¢;T; : 3 (1)
- 8.t Y1 i =1 foralli=1,...,m
z; € {0,1} i=1.,n

1 ifa pairing j is adapted in the schedule

h ;=
where i { 0 otherwise,



c; is the cost of pairing j,

o = 1 if a pairing j contains the flight leg j
B 0 otherwise,

n is the total number of possible pairings, and m is the total number of flight legs in a month.
We construct the cost ¢; of the pairing j from two parts:

cj = CMD x (number of man-days of pairing j) + C’fu‘sc (2)

where CMD js the coefficient and CMISC is the function of cost related to the secondary goal
described in the previous subsectlon We set the coefficient CMP to be large enough compared
to CMISC g4 that the man-day part dominates the cost c;.

In the full-sized SPP, which is defined over the full range of the given penod {(a month), the
flight leg index 4 specifies not only its flight number but also its service date; thirty different
indices are used for one regular flight number. In the compact SPP defined over three days, on
the other hand, the index ¢ specifies only the flight number.

3 Approach

3.1 Outline

First we solve the full-sized SPP for irregular flights and the compact SPP for regular flights
separately in order to reduce the problem size and thereby the computation time. We then
perform multi-step insertion of irregular flight blocks into pairings of regular flight legs. Here we
define a flight block as a sequence of flight legs, or a part of a pairing within a day. Our approach
reduces the total number of man-days by using the multi-step insertion as a post-processing to
the solution of the compact SPP for regular flights. : ‘

Multi-step insertion is a generalization of the merging procedure introduced in Section 2.1.
Single-step insertion of an irregular flight block is a procedure for merging it into a pairing
consisting only of regular flight legs. Such-insertion is possible in two cases: (1) inserting the
flight block into an interval in a pairing, or into a period when a crew is staying at an airport,
(2) replacing a deadhead in a pairing with the ﬂlght block. The prevmus sectxon contained an
example of case 1.

In multi-step insertion, we first merge a lrregula.r flight block into a pairing by pushing out a
regula,r flight block in it. We then insert the pushed-out regular flight block into another pairing.
We continue these processes until the pushed-out blocks fit into a pairing without creating any
more pushed- -out blocks. As an example of two-step 1nsert10n, let us consider the case in which
there is an irregular flight block By~ < FI5 > —Ajp— < FIs > —31 and two regular pamngs

Pairing 1: B;— < FRy > —A7— < FRyg > —Byi— < FRy; > —As— < FR;3 > -B;
Pa.iring 2:B—-< FRyj3 > —Ag— < FRy4 > —B;. )

We first insert it into pairing 1 by pushing out the block Bi— < FR1y > —~As— < FRia > -B;
as

Pairingl:Bl—- < FRg > —A7— < FRyp > —B]_—<FI5 > —Ai0— < Flg >—-B;

then merging it into pairing 2 to obtain




Pairing 2: By~ < FRi3 > —Agy— < FRjy > -B; — < FR11 > —Ag— < FR;3 > - B;.

The complete procedure in our approach is as follows, and the details of each step are given
in following subsections.

Step 1: Generate a crew 'scheduling for irregular flights by solving the full-sized SPP defined
over a month for irregular flights.

Step 2: Construct a set of irregular flight blocks from the crew pairings obtained in Step 1.
Enumerate all feasible paths within a day for all pairs of airports, using only regular flights,
and define the cost of each path so that it reflects the potential to include irregular flight
blocks.

Step 3: Generate a crew scheduling for regular flights by solving the compact SPP defined over
three days by the column generation method, using the paths enumerated in Step 2.

Step 4: Apply multi-step insertions of irregular flight blocks into the crew pairings for regular
flights.

Step 5: List the irregular flight legs that were not merged into regular pairings in Step 4. Solve
the full-sized SPP for these irregular flights again to obtain the crew schedule.

3.2 Solving the SPP

In the feasibility study the airline company limited the computation time for generating a crew
schedule to two hours on a workstation. We thus content ourselves with finding approximate
solutions to the SPP.

We employ the linear programming relaxation (LPR) of the SPP and the column generation
approach [10, 6, 3. Starting from a limited number of columns selected from candidate pairings,
we iteratively solve the LPR, extract a fixed number of promising pairings that have negative
reduced cost with respect to the dual potential in the optimal solution of the LPR, and add
them to the column set. We repeat this procedure until no further improvement of the LPR is
attained. More precisely, we first include all one-day-long pairings, then iteratively add a ﬁxed
number of promising two-day-long pairings to the column. After it terminates, we start the
iteration for the three-day-long pairings. For the columns used in the last iteration, we solve
the SPP itself.

The generation of pairings is one of the most time-consuming parts of the column generation
method. Laboie et al. [10] discuss a fast column generation ‘approach- based on calculation of
the shortest path in a graph. In our case, however, this approach is not applicable, since the
constraints and the cost evaluation for a pairing are more complicated. Thus, we enumerate
all feasible one-day paths for all pairs of airports, and calculate their costs in advance. Later,
during the column generation procedure, we patch two one-day paths to generate a two-day-long
pairing. The number of feasible three-day-long pairings explodes, and the candidates are priced
out after their first two paths are fixed by checkmg whether the minimum avallable reduced. cost
is negative or not. Co

An advantage of the path-connecting method lies in the efﬁcmncy of checking whether a flight
block b can be inserted into a path pt of a pairing p or not, which is required in modifying pairings’
cost to reflect their potential to include irregular flight blocks. Such test can be implemented
efficiently by using hashing techniques. :



3.3 Constructing flight blocks

A flight block, which is a unit of a multi-step insertion operation, can be as small as a single flight v
leg. However, we consider only-flight blocks that either start or end at one of the base airports.
We adopt this approximation on the basis of the following observations. First, multiple flight legs
are inserted at the same time in case 1 in section 3.1. Second, in the irregular pairings obtained
in Step 1, there are many series of irregular flights whose components are tightly connected,
which start or end at one of the bases.

We divide the pairings obtained by solving the SPP into flight blocks, using base airports as
delimiters. As for Paring 1 in section 3.1, for example, splitting at base B; gives us two flight
blocks, B1— < FRg > —A7— FRyo — Bs, and Bi— < FRy1 > —Ag— < FR12 > ~Bj.

3.4 Cost adjustments for regular pairings

We modify the costs of pairings defined in equation (2) for regular flights so that larger number
of irregular flight blocks are inserted in regular pairings. More concretely, for each regular path,
which is a component of a regular pairing, we check if any irregular flight block can be inserted
in it. If such block exits, we decrease the path’s cost by a fixed amount CFB_ As CFB increases,
the number of insertable flight blocks increases. At the same time, the number of man-days of
regular pairings increases. We thus need to set CCB so that the best trade-off is realized.

3.5 Multi-step insertions using auxiliary graph

In executing multi-step insertions in Step 4, we use an auxiliary graph G where each node
represents a flight block or a pairing. Arcs are defined between a flight block node and a pairing
node. A pairing node which has incoming arcs and outgoing arcs can participate in a push-out.
A pairing node with only incoming arcs can be the end of a multi-step insertion. In graph G, a
multi-step insertion is represented as a path from a irregular flight block nede to a pairing node.

To obtain a set of edge disjoint paths in G that maximize the total number of inserted irreg-
ular flight blocks, we apply a greedy method whose primal priority is the number of operation
dates of irregular flights. We also consider a minimum-cost-flow approach with the same graph
G with different cost settings for arcs.. The details of G and the both methods will be given in
the full paper. '

4 Computational experiments

4.1 Setups

We use two datasets, A and B, supplied by the airline company for periods of 30 days,
containing the actual flight schedules for two months in 1996. These two differ in the ratio of
regular and irregular flights as shown in Table 1. Table 1 also includes the scheduling results
obtained with our prototype. Data A has the largest number of irregular flights for any month
up to the present, and the airline company predicts that the number of irregular flights will grow
in future. We will therefore use Data A as a basis for our discussions in the following sections.

~ We built our prototype by using the IBM Optimization Subroutine Library to solve set
partitioning problems (SPPs) and their linear programming relaxations (LPRs). All runs were
made on an IBM RS/6000 model 990. ' : R




We add a fixed amount of new pairings to the column of the constraint matrix in the SPP
at each iteration of the column generation procedure. ‘We set the fixed size to 4,000 for two-
day-long pairings, and to 20,000 for three-day-long pairings. The column size then becomes
between 70,000 and 90,000 when the column generation procedure terminates. We adopt, as the
final solution, the first feasible solution found in the course of the»bra,nch—an&-bound,* which is
available in several minutes. It is well known that feasible solutions found during the execution
of the branch-and-bound hae costs quite near to the optimal one [9]. In our case with Data A,
the cost of the first feasible solution is 0.6% over the optimal one. »

4.2 Results

We compare the output of our prototype system with the schedule generated by the experi-
enced engineers in the airline company. They have several techniques for reducing the number
of ma.n-da.ys, as we have described in section 2. Their teohniques, however, do not take into
account of the miscellaneous cost CMI 5C in equation (2).

As shown in table 2, our result outperforms that of expenenced engineers in both the total
number of man-days and the total cost: the total man-days are lesser by 1.2% and the cost is
smaller by 2.1%. The values of the cost are normalized so that the cost of the schedule output '
by our prototype is equal to 100.

Table 3 shows the effects of insertions and cost adjustment. The first row indicates that,
without the cost adjustment, only a few irregular flights can be inserted, and the result is inferior
to that obtained by human experts, shown in Table 2.

In Table 3, C represents the degree of the adjustment. Its value should be determined
relative to other cost parameters. Here, we use CMP in equation (2) as a measure for C. As the
value of C' increases, the number of inserted units tends to increase. This means that the cost
adjustment works. However, the number of man-days for regular flights also increases. Thus,

the total number of man-days after the insertions first decreases, then increases as the value of
C increases. Hence the value of C should be carefully selected reflecting the cha.ra.ctenstlcs of
da.ta.set

Table 1: Specifications of datasets and computational results

| Dataset’ : Data A , Data B
Specifications ‘ B

'Regular flights x operation dates (=30) | 5760 (=192 x30) 8730 (=291x30)

Irregular flights X operation dates ' 3116 | T4
computational results ' ’

CPU time 41 minutes 92 minutes
Man-days (regular) .| 2580 © . (86x30) | 3030 (101x30)
Man-days (inserted) 420 . (14x30) 90 (3x30)
Man-days (irregular)- . .~ ' ... } 188 . (6x30+8) | 170 ~ (5%30+20)
Man-days (TOTAL) - - | 3188 . (106x30+8) | 3290 ©  (109x30+20)



We also inveétigate how far we can reduce the total number of man-days of regular pairings.
‘We add a constraint regarding the total number of man-days to the SPP for regular flights. It
turned out that no solution exists with the total number of man-days less than 99 x 30. It means
our approach with the cost setting in equation (2) sticcessfully found the minimum possible value
of the total man-days of regular flights. ’

5 Conclusions

‘We have addressed the crew scheduling problem with many irregular flights whose primal goal is
to minimize the total number of man-days of pairings. We have presented a new approach to the
problem: We first solve the SPP for a set of regular flights and that for a set of irregular flights
separately, and then merge irregular flight blocks into regular pairings as many as possible
through multi-step insertions. We have validated our approach by using real-world datasets
provided by an airline company, without any mmpllﬁca.txons for constraints. The schedule output
by our prototype system was feasible in practice, and outperformed the schedule created by
experienced engineers in the airline company, in both the total man-days and other cost.

.Not only the airline company we worked with, but also other compé.nies are increasing the
number of irregular flights to cope with the various requirements of their passengers. ' Thus,
there are growing needs for heuristics for solving the crew scheduling problem including many
irregular flights. .
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