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A Unified Approach for Solution of a Large System
of Linear Equations with Special Structures and its Applications

SHIGEMICHI SUZUKIt and Qru Lit

We present here an approach for direct solution of a system of linear equations with struc-
tures. The approach is motivated by our analysis of a large scale system of linear equations
obtained in modeling systems of automatic warehousing and production lines. Large scale
systems often have special structures. The systems mentioned above have special structures.
By exploiting the structure we have developed efficient methods of analysis. The idea is to
assume the values of certain variables known and express the rest of variables in terms of as-
sumed variables. The process is, in effect, to decompose the original equations into a number
of smaller scale systems. We will show that the approach can be applied to a wider class of

problems.

1. Introduction

We propose here direct solution methods for a sys-
tem of linear equations with special structures. The
work is motivated by our research on queuing-systems
analysis of serial production lines with unreliable ma-
chines and intermediate buffers”) . The system of linear
equations derived from the analysis has a special struc-
ture?®) . We devised a method of solution for such a
system which is some generality to be applicable to
other types of problems such as the Dirichlet problem
of discrete Poisson’s equation. We will show that the
present approach performs better than conventional

4)~7)

ones by two examples from quite distinct origins.

2. Basic Idea

Let A be a nonsingular square matrix of the order
n and consider a system of linear equations Az = b.
It can be easily proved that the equation can be
transformed to the following form by interchanging
rows (equations) and columns (variables) of A and
of elements of b such that super diagonal matrices

Aiiy1(i=1,2,.--, k) are nonsingular:

t 00000000 0,Graduate School,Chiba Institute of
Technology

0390

Al A O0--- 0

A A A 0.0
21 22 23 T = b (1)
. . A(k—l),k)

A Ag2 - Arg

The above system of equations has k blocks, the so-
lution vector # and the right-hand-side vector b which
consist of k subvectors z(¥ and b(i)(i =1,2,---,k).
We will try to find or recognize a ” good” transforma-
tion in the sense that it can help to reduce the over-
all computational complexity involved in solving the
original linear equations compared with conventional
methods.

Assuming that #") is known, the other solution sub-
vectors x(i)(i =2,3,--+,k) can be obtained as

i—1

20 = Ai_—ll,i(b(i_l) _ ZAi—lﬂ(J))v (2)
=1

(1=2,3,--,k).
The solution subvectors thus obtained can be ex-
pressed in terms of zWas

W=+ P2 (i=1,2,-- k), (3)

where ¢; and F; are defined recursively as
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ci:Az_lz ZAz 1,jcj (5)

':_Az_lz ZAl 1L (6)

(1= 2,3,~~~,k).

The values of the elements of z{!) are obtained by
substituting the expression for subvectors z) (: =
2,3,---,k)in (3) into the k-th block of the transformed
system and solving the derived system

k k
D A B =p% =N Ay e, (7)
=1 =1

The solution procedure is valid since the matrix A and
the submatrices A;;41(: =1,2,---,k — 1) are nonsin-
gular.

Whether applications of the procedure are effective
or not in solving systems of linear equations is heavi-
ly dependent on the special structures of the systems.
We will present two examples in the following sections
to show how the proposed method can be effectively

applied.

3. Applications to the Dirichlet Problem
of Discrete Poisson’s Equation

Consider a five-point finite difference approxima-
tion to the problem and partition the region into
(l+1 Let u;; be the value of
u at (2, 7)-grid point, then the finite-difference approx-

X (m + 1) squares.

imation of the Dirichlet problem is described by the
following system of linear equations:

-B I 0 - 0
I —-B 1 0 0

R . R R : u=f, (8)
0 0o --- -8B 1
0 0 - I -B
where [ is a unit matrix of order [ and B is an | x
matrix shown as follows:
bii =4,bi; =—-1=1,2,---,|i—j| =1), (9)
and the solution T = (u(l) u® u(m)) and the right-
hand-side vector f7 = (f(l),f(2)7 ~,f(m)) are defined
by

(“(]))T = (u1,5,uz2,5,+, uy)
(]: 1727"'7m)7

(f(J))T = (f17.]7f27.]7...7fl7.])
(]: 1727"'7m)7

where each f; ; is evaluated from the boundary values
associated with the grid point (3, 7).

3.1 Computational procedure

Assume that the solution subvector u'") is known.

Then the rest of the solution subvectors can be ob-
tained as follows:

u® = FO 4 By

ul® = FU=D 4 By U= _ =2 (10)

(1=3,4,---,m) .
The equation for u™ can be derived from the last-
block equation of Equation(8) by substituting ul® (=
m—1,m) expressed as functions of u™ in it (note here
there are only two subvectors in the last-block equa-
tion). Observe here that u(J)(j =2,3,---,
expressed in terms of u as

U(J) =DPj + Qj—lu(l)(j = 1727 t '7m)7 (11)

where (I x 1) vectors p; and (I x l) matrices Q; are

m) can be

obtained recursively as

P = 07 Ql = ]7

p2:f(1)7 Q2:B7

Py = f(J_l) + Bpj—1 — pj-2, (12)
QJ—I :BQJ—2 _QJ—3
(j:3,4,~~~,m—|—1)

To facilitate following discussions we will introduce a
series of polynomials S;(v) (j = 2,3,--+) with a vari-

able v by recurrence relations:

SO(U) = 17
S;j(v) =wvS;_1(v) — Sj—2(v) (13)
(5 =2,3,--).

Using polynomials S; (j =0,1,--+) , u? can be ex-

pressed as:

- s

(] :2737"'7771).
Using Equations (12) and (14) we can derive the

"4 S (B (14)

system of linear equations for u™ as:
—Sm(B)u(l) = Dm+1- (15)

We wish to preserve the sparsity of matrices involved
in the computational procedure as much as possible.
For this purpose we first observe that the matrix B can
be transformed to a diagonal matrix I by an orthog-
onal transformation D = VT BV, where the diagonal
elements dq,ds,---,d; of D are eigenvalues of B and
the i-th column vector of V' is the normalized eigen-
vector corresponding to the eigenvalue d;. With this
diagonalization property premultiplying both sides of
Equation (15) by V7 yields

—S(DWTu = VTp, 0. (16)
The solution for u!! can be obtained as

u = V(S (D) 'V prgs. (17)

The solution process for Equation (8) will be com-
plete after we substitute the expression (17) to the

first equation in (10) to compute u® and proceed to

g4o0
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evaluate the rest of ul)’s by the second equation in
(10).
At this point we will note that the eigenvalues and

eigenvectors can be explicitly given by

di:4—2005(ﬁ) (i:1727~..7l)7 (18)
. T ..
vy = r,'sm((l i 1)) (1,5 =1,2,---,1), (19)

where v, ; is the j-th element of the :-th column eigen-
vector of B, and r; is the normalization constant of
the vector.

We are now in the position to clarify the whole com-
putational procedure in sequence:

o Compute eigenvalues di,d>, -, d; and eigenvectors
V of B by Equations(18) and (19 ).
Compute Sm,(D)™! by recursion.
Compute py41 recursively by Equation(12).
Compute uM by Equation (17).
Compute u(J)(j =2,3,---,m) by Equation (10).

4. Applications to Equilibrium-State
Equations of Queuing Systems

4.1 Model

The model is concerned with a serial production
line with unreliable machines and having intermediate
buffers with finite capacities. On assumptions made
about arrivals of work pieces at the production line,
service time, time to failure, repair time at each ma-
chine, and some other operating rules of the line, the
the system can be modeled as a Markov process.

Let n be the number of machines in a produc-
tion line, M; + 1 be the capacity of intermediate
buffer B; including capacity one of machine (i + 1)
(l = 1,2,"',” — 1) Let Nn(Ml,MQ,“',Mn_l) be
the total number of the system states of the produc-

tion line, then it will be expressed recursively as:

Np(My, My, -, Mp_1)

= 2(Mi 4+ 1)Np_1 (M2, Ms,-+-, Mp_1)+
-1-1\771—2(]\437 My, -, Mn—l)
(n = 2737"')7

where Ni(e) =2, No(e) = 0.

The number of system states blows up as n increases.
The system of equilibrium equations for the Markov
process will become as

rQ =0, re =1, (20)
where (@ is a matrix denoting the state-transition
rates, x is a row vector of the steady state probabili-
ties and e is a columnn vector with each of its elements
being 1.

We will now take an example. The example is for
a production line with 3 machines and 2 intermediate
buffers having capacities 2 for each of them. There
are 74 states in the system and the pattern of nonzero
elements of the matrix ¢ will be as shown in (21).

0410

. .....ﬁ!fg*?;!;,. 1.
-] : ...::ziifi;q;!;z;:.

(21)

As was pointed out in Section 1 a transformation of
Equation (20) for @ as shown in (21) is not unique.
A strategy here is to seek transformations which re-
duce the over-all computational complexity involved
for solving the original system of equations. The com-
putation includes construction of the transformation
and solution of the transformed system. While the
former may be combinatorial in nature and this may
cause difficulties, the latter can be carried out with-
out such difficulties and is easier than the former. At
present we will contented with finding ”good” trans-
formations not for general type of equations but for
specific type of equations. Then the construction of
”good” transformations will be much easier, even triv-
ial.

Now returning to transformation of @ in (21), we can
easily find good transformations. One of such transfor-
mations which may be the simplest is to take the first
12 variables corresponding to the first 12 rows of @
as Y and interchange the columns of Q. The result
of the transformation with interchanging of columns
(no interchange of rows necessary in this case)yields
matrix Q shown in (22).

The solution of the transformed system can be ob-
tained by the procedure described in Section 1 with
much less computation time than solving the original
system.

5. Issues of Computational Complexity

5.1 The Dirichlet problem

To simplify the evaluation of computational com-
plexity for solution of a system of linear equations, we
will take a model problem with n X n interior points.
There exists n° equations in (8) for the model prob-
lem. There are five items to evaluate as pointed out
in Section 2. The asymptotic number of operations

required for each item will be:
(1) n?/2, (2) n?, (3) 3n?,
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(4) Computation of u™ by Equation (17):

VTpm+1 can be evaluated with nlogn operations em-
ploying FFT, premultipying this by (S.(D))™" re-
quires n operations since (S,,(D))™" has been obtained
in (2) and finally premultipying this by —V to obtain
u® is carried out with nlog n operations employing
FFT. The total number of operations needed here is
2nlog, n.

(5) Computation of u(J)(j =2,3,.--,m) by Equation
(10):

This requires 3n’> operations since each row of B has
at most three elements.

The total number of operations for the discrete Pois-
son equation on a square with n X n interior grid
points is now evaluated as 7.5n° asymptotically ignor-
ing 2nlog, n operations required in (4) above.

5.2 Basic scheme

To simplify evaluation of computational complexi-
ty we will take an example problem of Equation (1)
with each of k subvectors (") having ! variable. The
total number of variables n in the system is then
n = kli. Now let C;,C3, Cs, and Cy4 be the num-
bers of operations required for computation of each
of equations (3),(5),(6), and (7). Let p be the densi-
ty of nonzero elements in the matrices A;;(1 < i <
j—1<n—1). Then the total number of operations
C =C1 + Oy + Cs + C4 will be approximately

4k pk*
C= (? + T)l .

If we solve the system of equations under consid-
eration by LLU decompositons without making use of
the structure and the sparsity of the matrix, then the
number of operations required C'ry will be approxi-
mately
(k1)*

3

Cruv = + (k1Y%

Therefore
C _ 84 kp
Crv ~— 2k2
This implies that for a problem with & = 20 and
p = 0.1, % = 0.0175 and a big reduction of compu-

tational complexity is expected in this case.

6. Conclusions

A general scheme of solving a system of linear equa-
tions with special structures is proposed and applied
to Dirichlet problms of the discrete Poisson’s equation
in a rectangle and a system of equilibrium equations of
a queuing system. In the former example the number
of operations required for the Dirichlet problem with
n X n interior points in a square is proved to be 7.5n2
asymptotically compared with the estimates of 11.5n?
of the marching methods which is the fastest ever pro-
posed4). The applications to the latter example are
quite effective compared with conventional methos.

Applications to other types of problems are now un-
der way.
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