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Abstract

In the present paper we consider the problem of minimizing systems’ errors, where a system
consists of many components. Many individuals are supplied for each component, so we are
going to combine individuals such that the worst error of the combination is minimized.

This problem is formulated as an integer programming problem. We consider a simple al-
gorithm which we can be carried out in a production site. We consider easier cases where the
system consists of two or three components.

When the system consists of two components, we present a method of an optimal combination.
We also show by probabilistic analysis how to maximize the number of systems whose error is
less than a given bound.

When the system consists of three components, we outline an optimal method.

lenses, which are supplied in groups at fixed
time intervals. Although lenses are made
carefully, every lens has some error. Since

1 Introduction

The background of the problem with which

we are concerned in this paper is to combine
lenses for a semiconductor exposing equip-
ment. Each equipment includes about 30

lenses ‘are very expensive it is required to
make the number of rejected lenses as small
as possible. Sometimes we have to combine



“good” lenses with “bad” ones in order not to
reject too much.

We suppose that the equipments consist
of lenses (hereafter, we call components)
Aj, Ay, ..., Ay and for each component A;
there are n individuals. So we have n™ com-
binations in total. We denote the error of a
combination C by E(C). In order to make
the analysis simple, we make an assumption:
Assumption 1  The error E(C) of a com-
bination C is the sum of the errors g1 + &9 +

- -+€&m, where ¢; is the error of the individual
chosen for the component A;.

"We call a set of n combinations a selec-
tion when every individual appears only once.
There are (n!)™ ! selections. We denote the
family of all selections by S. For a selection S
we call the maximum value of the error of the
n combinations of S the error of S, and denote
it by E[S]. Thus, E[S] = max.es E(C). We
would like to find a selection S whose error is
less than a given bound Ey, i.e., E[S] < Ey.

In Section 2 we formulate this problem as
an integer programming problem.

In Section 3 we consider the simplest case
m = 2, and show how to find the optimal se-
lection for which the error is minimum. We
analyse the error of the optimal selection sta-
tistically.

When a bound for the system’s error is
given, we can calculate the expected num-
ber of combinations that are under the bound.
We also show a method of increasing the num-
ber of combinations falling under the bound
when the bound is tight.

In Section 4 we consider the case m > 3
and propose a method of combining such that
the maximum error is minimized and outline
a systematic approach to get the optimal so-
lution.

2 Formulation of the prob-
lem

We slightly modify the above statement of the
problem as follows: find a selection S whose
error is the minimum among all selections,

ie., E[S] = minges E[S]. This problem is
stated as an integer programming problem as
follows:

Problem 1 Minimize 2
subject to
Z Z Z thiz dm = 1)
Tt 1 th—1 i1 i
ik =1,2,...,n)
Tiyig..im — 0 or 1 (2)

Z T Z(ail +a,+--+ aim)mhiz...im <z
im 2

(1 =1,2,...,n) (3)
Constraint (2) is essential, since otherwise we
would usually obtain a noninteger solution.

3 The simplest case m = 2

We formulated the problem as a mixed integer
programming problem(MIP) in Section 2. In
the present paper, however, we deal with this

~ problem from a different point of view.

In this section we consider a simple method
which we can apply easily in producing sites.
Then we analyse the method statistically.

3.1 The algorithm

If the equipment consists of only two com-
ponents, i.e., m = 2, the problem becomes
simple. First, note that
Lemmal Ifa;<ay<---
by < --+ < by, then

max(a; + bp, a2 + bp_1, . ..

< ap and b <

aan+b1)

< max(a; + br,, 32 + bryy .-, 8n + br,) (4)

for any permutation (m,72,...,7,) on

(1,2,...,n). [
The algorithm for the optimal selection can

be derived directly from this lemma:

Algorithm 1

Stepl : Sort individuals of component A; by

the value.

Step2 : Sort individuals of component Ay by

the value.



Step3 : Combine the best individual of A
with the worst individual of Ag; combine the
second best of A; with the second worst of Ao;
combine the third best of A; with the third
worst of As, and so on. ]

3.2 Statistical analysis

In order to perform a statistical analysis we
assume that the error of each individual fol-
lows a uniform distribution between 0 and 1,
and those values are distinct each other. Then
we can derive the following theorems.
Theorem 1 The mean and the variance of
the combination of the kth best individual of
‘the component A; and the k th worst individ-
ual of the component Ay are 1 and

2k(n+1—k)
(n+2)(n+1)2

respectively. on
Theorem 2 Algorithm 1 makes the means
of all combinations equal and the maximum
of variances the minimum. n

3.3 The probability of falling within
a given bound

We now calculate the probability that the sys-
tem’s error is less than the given bound Ej.
We denote: the error of the n individuals of
the components A; and Az as X3, Xa,..., X,
and Y1,Y3,...,Y, in ascending order, respec-
tively. According to Algorithm 1, the error
of the system(combination) consisting of the
kth best individual of A; and the kth worst
individual of Ag is Xg + Y,,_k+1. So we have

Prob(Xy + Yp—k+1 < Eo)
(n))?

1
= 1—m/0 S(y)dy (5)

where

k
Sy) =Y

i=1
v = ) (B — )" (1~ Bo +y)" T
=k i)l(k—3)! '

3.4 Improving the probability and
the numerical experiment

In order to increase the probability, we have
only to remove in turn the worst individuals of
Ay and Aj respectively. -After their removal,
combining the remaining individuals for A;
and As in the same way yields a higher proba-
bility that the combination’s error is less than
Ey, while the total number of combinations
decreases.

Example 1 Let n = 100 and Ey = 1.014.
The given bound Ej is equal to the sum of the
mean and the standard deviation of X7+ Yig0-
We seek the critical point at which the num-
ber of combinations falling within the bound
is the maximum. '

In result, we can find effect of removing in-
divuduals as given in Table 1, where r is the
number the worst individuals removed from
consideration for each of A; and As and pass-
ing is the number of the number of combina-
tions falling within the bound. From Table 1
we can conclude the critical point is 10.

Table 1: Effect of removing individuals

Value
T | passing
0 61.40
5 82.56
10 87.19
11 87.01
12 86.61

4 The case m >3

For m > 3, we do not have an exact algorithm
like Algorithm 1. But we outline an approach
for this case here. Again, we assume that each
individual follows a uniform distribution be-
tween 0 and 1.



4.1 Fundamental case n =3

For the case m = 3 and n = 3, namely, A; :
X1, X2, X3; A2 : Y1,Y2,Y3; A3 : 21,22, Z3, we
have the following theorem.

Theorem 3 In order to minimize the vari-
ances when m = n = 3, it is optimal to
combine individuals such that all suffixes 1,
2, and 3 appear in each combination, that is,
(Xh Ya, Z3)’ (X2, Ys, Zl), (X3’ Yy, Z2) a

42 Casem=3andn>3

We now extend the result of Section 4.1 for
the case n > 3. For the sake of simplicity, we
assume that n = 3p(p=2,3,...).

Our proposed idea is as follows : divide
each set of components A;, Ay , and A3,
into three blocks of the same size. Let’s
denote these by A1, A1, A13; A21, Ag2, A23;
Az, Asg, Ass. Combine the blocks fol-
lowing Theorem 3 such as (A1, A2z, As3),
(A12, Ag3, A3r), (Ai3, As1,A3p).  Continue
this operation recursively until each block has
three elements.

4.3 The general case m > 3 and n>
3

For m > 3, we slightly extend the method
considered in Section 4. When m = n,
we simply combine the components like the
method outlined in Section 4.1. When m < n,
we first divide each component into m blocks
of the same size, and then we combine the
blocks as show in Section 4.2. We apply this
procedure recursively until each block has m
elements.

5 Further problems

In the present paper, we have assumed that
the system’s error is the sum of each individ-
ual’s error and all errors are scalar. In most
cases, however, errors are not scalar but vec-
tor. We have to extend our results to the case
of error vectors.

Also, we have assumed that the compo-
nents’ error follow the uniform distribution.

We have to extend to other types of distribu-
tions.

We also need to compare the solution ob-
tained by our method and the one obtained
by solving the MIP directly.

These problems are left for further research.

6 Conclusions

In the present paper, we dealt with the prob-
lem to improve the system’s error. First we
considered the case when the system consists
of two components and assumed the indi-
vidual’s error follows a uniform distribution
between 0 to 1. Then we demonstrated a
method to minimize the system’s error with
an example.

We also considered the case when the sys-
tem consists of three components. We out-
lined a recursive method of making the sys-
tems(combinations) such that the maximum
variance is minimized. :

The method of maximizing the number
of systems(combinations) that fall under the
bound for the case m > 3 is left for further
research.
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