o000 oooogoooogg 20040 MPSO 5000 (1)
IPSJ SIG Technical Report 20040 60 22

Jo0oodoobooooboooTSsPOODOoooooooona

g gobooo

gobo boooboob obbooo
0 739-8527 (DUOOOO0OO 100000

U0 OoooooobbooobooobobOooOoooobooooooobobooooobooobobon
O000o0oO0o0oooooOooo TSPOO0OO0O00OOCO0OO0OOOOODOOOOOO0O0O 19980
0 Papadimitrioud Sideri0 00000000000 OCOOOODOOOODOOODOOODOOOO
gooogbobobooobbobobobobobooboobobooboboobobobooboon
gooobooboobobooboboobboobn

oooOoo ooogg,TTsp,00000ooooooooon

An Improved Heuristic for Solving TSP
Based on the Evolution of Easy Instances

Satoshi Fujita and Shin’ichiro Umezane

Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, JAPAN

Abstract In this paper, we propose a heuristic scheme for solving TSP in the Euclidean plane
based on the notion of “evolution of easy instances.” The proposed scheme is an improvement of
the scheme proposed by Papadimitriou and Sideri in 1998. We conducted several experiments to
evaluate the goodness of the schemes. The result of experiments indicates that our scheme really

improves the accuracy of solutions compared with the previous one.

Keywords Evolutionary computation, TSP, Landscape of the energy space.

1 Introduction

Evolutionary computation (EC, for short) is a
heuristic scheme for solving inherently hard op-
timization problems. The basic idea of EC is
to imitate livings that could evolve themselves
into the given environment. For example, in
the genetic algorithm (GA) that is known as a
typical EC scheme [1, 5, 6], such an evolution
is controlled by the way of selecting individu-
als that could survive in the next generation,
and by the rule of generating individuals from
a collection of survived ones [2]. In general EC
schemes such as GA, each individual is asso-
ciated with a solution to the given instance,
that is encoded as a “gene” in an appropriate
manner. For example, in solving the travelling

010

salesman problem (TSP), such a gene is gener-
ally designed so as to represent the visit order
of cities and the total length of the correspond-
ing tour.

On the other hand, it is widely believed
that livings in the real-world would take dif-
ferent ways of evolution if they were placed
in different environments.
point of mathematical optimization, such a
phenomenon could be regarded as a dynamic
change of the given instance as is frequently
observed in many online problems such as the
cache replacement protocols. In [4], Papadim-
itriou and Sideri initiated the study of the
evolution of easy instances, and proposed a
heurstic scheme for solving TSP based on that

From the view-

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004－MPS－50　(1)

事務局
2004／6／22

事務局
－1－

idea. The objective of the current paper is to
extend the observations made by them, and
to develop a new heuristic scheme to evolve
easy instances in a more efficient manner. As
a concrete problem, we will focus our atten-
tion to TSP in the Euclidean space as was did
in [4], by the following reasons: 1) we could
easily realize continuous modification of the in-
stances, 2) we could effectively visualize the
modification of instances that would help to
understand the underlying evolution processes,
and 3) a fair comparison of the schemes would
be possible by using a standard benchmark set
such as TSPLIB [7]. The proposed method
is evaluated by using several instances drawn
from TSPLIB. The result of experiments im-
plies that our scheme really improves the ac-
curacy of solutions compared with the previ-
ous scheme, and it efficiently realizes evolution
of instances so as to lead to a nearly optimal
solution.

The remainder of this paper is organized as
follows. In Section 2, after reviewing the Pa-
padimitriou’s scheme, a new heuristic is pro-
posed, whose performance is experimentally
evaluated in Section 3. Section 4 concludes the
paper with directions for future research.

2 Scheme

2.1 Preliminaries

Let V denote a set of vertices and C be the
set of all Hamiltonian cycles over V' (note that
IC| = (|V|—1)!)O Let F denote the set of all
functions from V to the Euclidean plane, and
¢ 5 denote the cost of cycle C' € C under func-
tion f € F. Under such a model, problem TSP
could be formulated as a problem of finding C*
that satisfies

P r — min d 1
Cc*fo = i O g, (1)

for given initial function fo (€ F). In conven-
tional schemes for solving TSP, initial function
fo is given as an input and does not change
during the execution of the algorithm. How-
ever, the complexity of TSP depends on the
difficulty of the class of given instances. In

020

fact, if 7/ (C F) is a set of functions that
maps vertices in V to the points on a circle
in the Euclidean plane, T'SP could be solved in
a constant time for every instance in F’.

In this section, we describe a heuristic
scheme for solving TSP based on the heuristic
transformation to “easy” instances [4]. More
concretely, it first transforms the given in-
stance fo into another instance f’ that could
be solved in a rather easy way by an evolution
process, and constructs the solution to the orig-
inal instance by regarding the visit order in the
solution to instance f’ as the solution to fq.

2.2 Outline

The algorithm first picks up p random initial
tours from C. It then locally improves each
tour by repeating 2-opt under initial function
fo; let C1,C5,...,C, be p local optima ob-
tained by the local improvements. In what
follows, we call a pair (f,C) as an individ-
ual, where f is a function and C' is a tour, and
call a collection of p individuals a pool. Thus,
the current contents of the pool could be rep-
resented as {(fo,C;) : 1 <i < p}.

Next, it repeats the following sequence of
operations for a predetermined, say ¢, times:

1. Select ¢ individuals from the current pool
according to a selection rule.

2. Generate new individuals from selected
ones according to a generating rule.

3. Transform generated individuals to local
optima by applying 2-opt repeatedly, and
let them be a set of individuals in the next
generation.

Finally, it outputs a shortest tour constructed
in the above procedure as the solution to the
given instance, where the tour length is mea-
sured by the cost under the initial function fy.

2.3 Papadimitriou’s Method

The selection and generating rules proposed in
[4] are described as follows:

Selection Rule: Let n;; denote the num-
ber of individuals in the current pool that con-
tains edge (i, 7) in the corresponding tour. The

事務局
－2－

selection rule selects ¢ individuals in a nonin-
creasing order of the fitness, where the fitness
of (f,C) is defined as

> (i), (2)

(i,5)eC

where o > 1 is an appropriate parameter. This
definition of the fitness is based on the intu-
ition such that an individual is well adapted
to the environment when it contains as many
commonly used edges as possible.

Generating Rule: The first child of a se-
lected individual (f, C') is reserved for a copy of
the parent to avoid possible degradation of the
accuracy of solutions. The rule for generating
the remaining p/q — 1 children is described as
follows: 1) randomly and independently select
vertices in V' with the same probability 1/|V]|,
and 2) the coordinate of the selected vertex
u, i.e., f(u), is moved to the X- and Y- co-
ordinates independently according to a normal
distribution with mean zero and standard de-
viation o.

2.4 Proposed Method

Selection Rule: In the proposed method,
the selection of individuals that could generate
children in the next generation, is designed to
satisfy the following two requirements: 1) a va-
riety of individuals could be maintained, and 2)
individuals with short tours are selected with
high probability. The selection rule consists of
two phases: i.e., the selection of candidates and
the selection of individuals from the nominated
candidates.

In the first phase, it constructs a set of can-
didates for each parent (f,C) of individuals in
the following manner:

1. Let k be the number of children of (f,C)
with a tour shorter than that of C' under
the initial function fj.

2. If k < 1, an arbitrary individual with a
shortest tour is randomly selected as a
candidate; otherwise, an arbitrary individ-
ual is selected for each length shorter than
C (i.e., candidates generated from the
same parent must have distinct length).

030

Table 1: Comparion of selection rules (“A” is
a degrading rate [%], and “B” represents the
average execution time of a trials [sec]).

Previous[4] Proposed

instance A | B A | B
st70 1.534 | 1.79 | 0.000 | 2.26
eil76 2.707 | 1.84 | 0.864 | 2.38
pr76 2.203 | 2.02 | 0.134 | 2.56
kroA100 | 3.325 | 4.08 | 0.000 | 5.03
kroC100 | 3.524 | 4.52 | 0.015 | 5.45
kroD100 | 4.256 | 4.53 | 0.567 | 5.44
eil101 4.836 | 3.33 | 1.562 | 4.13
lin105 | 0.569 | 4.79 | 0.395 | 5.64
ch130 | 2.886 | 9.09 | 1.117 | 10.75
ch150 | 5.820 | 13.66 | 0.919 | 15.69

All individuals in the initial pool are selected
as the candidates since they have no parents.
Let P be the set of all candidates.

In the second phase, it picks up ¢ individuals
from P in a nondecreasing order of the tour
length, as the parents of individuals in the next
generation.

Generating Rule: Individuals in the
next generation could be obtained by repeat-
edly applying 2-opt after moving several points
in the instance, in a similar way to the pre-
vious scheme [4]. A key idea of the proposed
generating rule is to maintain an edge in a tour
as much as possible if it is commonly used in
many individuals contained in the current pool.
It is in contract with the previous scheme that
randomly selects vertices and their new coor-
dinate values with a uniform probability. A
concrete description of the proposed generat-
ing rule is omitted in this extended abstract.

3 Experiments

We conducted a series of experiments to eval-
uate the goodness of the proposed scheme. In
the experiments, we used ten instances ex-
tracted from TSPLIB, and fixed parameters
used in the schemes as follows: Parameters
concerned with the number of individuals are

事務局
－3－

fixed as p = 60 and ¢ = 15, and each trial con-
sists of £ = 60 generations. The environment of
the experiments is as follows: CPU: Pentium4
2.53GHz, Memory: 1024 MB, and all programs
are written in C.

3.1 Selection Rule

At first, we examine the effect of the proposed
selection rule by comparing it with the rule
proposed in [4]. To make the difference of se-
lection rules clear, in the experiments, we fixed
the other part of the scheme as in [4]. We con-
ducted 20 trials for each of the ten instances,
and measured the accuracy of the best solution
obtained during the 20 trial, as well as the av-
erage execution time of a trial.

Table 1 shows the result. The degrading rate
shown in the table represents how much the
resultant solution increases compared with an
optimum solution, e.g., if the resultant solu-
tion is 70 and an optimum solution is 50, the
degradation ratio is calculated as (70—50) /50
100 = 40 [%]. As is shown in the table, our se-
lection rule improves the accuracy of solutions
generated by the previous selection rule with-
out significantly increasing the average execu-
tion time; e.g., the accuracy is improved by 5%
in the best case, and we could obtain an opti-
mum solution for two instances, that was zero
under the previous rule.

3.2 Generating Rule

Next, we examine the effect of the proposed
generating rule. In the experiments, we com-
pare the accuracy of solutions and the average
execution time of a trial under the same se-
lection rule proposed in the previous section.
The result implies that the proposed rule re-
ally improves the accuracy of solutions, and
moreover, it obtains an optimum solution for
four instances that was two under the previous
rule.

3.3 Evolution of the Instances

In this and the next sections, we evaluate how
given instances could evolve under the pro-
posed scheme. As the first step, we count the
number and the distribution of local optima

040

under initial and final mappings by providing
2000 random tours, where a tour is called lo-
cal optima if it could not be improved by 2-
opt. The result implies that although the num-
ber of local optima does not change for several
instances, it reduces to a half for several in-
stances.

4 Concluding Remarks

In this paper, we proposed a heuristic scheme
for solving TSP based on the notion of evolu-
tion of easy instances, that is an improvement
of the scheme proposed in [4].

An important future problem is to refine the
proposed scheme as a heuristic scheme for solv-
ing TSP so as to be competitive to other heuris-
tics such as Lin-Kernighan method [3]. An-
other future problem is to apply the notion of
evolution of easy instances to the other prob-
lems.

References

[1] L. Davis, Handbook of Genetic Algorithms,
Van Nostrand Renhold, 1990.

[2] J. H. Holland, Adaptation in natural and
artificial systems, The University of Michi-
gan Press, 1975; MIT Press, 1992.

[3] S. Lin, B. W. Kernighan, “An effec-
tive heuristic algorithm for the traveling-
salesman problem,” Oper. Res. 21:498-516,
1973.

[4] C. H. Papadimitriou, M. Sideri, “On the
evolution of easy instances,” manuscript,
1998. URL: http://www.cs.berkeley.
edu/~ christos/

[5] R. Tanese, “Distributed genetic algo-
rithms,” Proc. 8rd Int’l Conf. on Genetic
Alg., pp.434-439, 1989.

[6] D. Thierens, D. E. Goldberg, “Elitist re-
combination: an integrated selection re-
combination GA,” Proc. 1st IEEE Conf. on
Evolutionary Comp., pp.508-512, 1994.

[7] http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/

事務局
－4－

