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Abstract

The mdLVs (modified discrete Lotka–Volterra with shift) scheme for computing singular
values is evaluated. Convergence and stability of the mdLVs scheme are guaranteed. It is
shown that numerical accuracy of the scheme is equal to or higher than that of the existing
routines of LAPACK.

1 Introduction
SVD (singular value decomposition) routines are
widely used in, for example, data search systems,
image processing, and applications for least square
problems.

The QR scheme [1, 2, 5, 6, 7] and the qd (quotient–
difference) scheme [4, 14, 15] are known as the effi-
cient SVC (singular value computation) algorithms.
By introducing shift the convergence of these schemes
is extremely accelerated [1].

On the other hand, two of the authors [10] designs a
new SVC algorithm by using the integrable dLV (dis-
crete Lotka–Volterra) system. A convergence to SVs
(singular values) of the mdLVs (modified dLV with
shift) scheme is proved in [11]. It is expected that 1)
the computational cost of the mdLVs is smaller than
that of the QRs (QR with shift) scheme, 2) a nu-
merical accuracy is equal to or higher than the dqds
(differential qd with shift) scheme.

In this paper, a performance of the mdLVs scheme
is evaluated with respect to both computational time
and numerical accuracy. To this end the mdLVs
scheme is implemented to a new routine named the
DLVS.

2 Bidiagonal SVD
A rectangular matrix A is decomposed to a product
of suitable orthogonal matrices and a matrix having
an upper bidiagonal block B by a sequence of House-
holder transformations [1, 6], where the SVs of B are
congruent with those of A.

We can calculate SVs and SVECs (singular vec-
tors) simultaneously by the QRs scheme [1, 2, 5, 6, 7].
Namely, B is decomposed to a product of orthogonal
matrices and a diagonal matrix by the QRs itera-
tions, where column vectors of the orthogonal matri-
ces and diagonal elements of the diagonal matrix give
SVECs and SVs, respectively. Once B is decomposed
to such a form, an SVD of A is terminated. The QRs
scheme generates sufficiently orthogonal SVECs. In
the case of large scaled matrices, the QRs scheme of-
ten converges slowly and the relative accuracy of the
computed SVs becomes worse.

In late 1990’, Dhillon and Parlett [3] introduced
a scheme for SVECs using a twisted factorization of
tridiagonal matrices. In their scheme, an approxima-
tion of SVs is computed by some SVC scheme first.
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Figure 1: Flowchart of the I–SVD scheme.

Then approximationed SVECs are computed by us-
ing the SVs through the twisted factorization tech-
niques. Finally, more accurate SVECs are obtained
through an inverse iteration one time. However, since
errors of SVs spread to all SVECs, it occurs that the
orthogonality of SVECs often deteriorates. The com-
putational costs of SVs and SVECs are O(M2) and
O(M3), respectively [1], where M is the dimension
of the bidiagonal matrix B. Hence, for the SVD by
the twisted factorization, an SVC with high accuracy
should be most important.

As an accurate SVC scheme, the dqds scheme [4,
14, 15] and the mdLVs scheme [9, 11] are known.

A maximal error per one iteration is estimated as
follows. Let B be M × M bidiagonal matrix. The
errors of the QR, the dqd, and the dLV schemes are
69M2ε [1], 3Mε [4], and (2M − 1)ε + (2M − 1)ε′,
respectively, where ε indicates a sufficiently small
number and ε À ε′. An error analysis for the
SVC schemes with shift, namely, the QRs, dqds and
mdLVs, can be done similarly.

We develop LAPIS (Linear Algebra Package by In-
tegrable Systems), which includes a new SVD pack-
age based on the dLV system. Fig.1 gives a flowchart
of LAPIS’s library named the DBDSLV where the I–
SVD (Integrable–SVD) scheme is implemented. This
includes the DLVS where the mdLVs scheme [9] is
implemented.

Tab.1 shows the relationship between the schemes
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Table 1: Schemes and routines.
scheme routine

LAPACK QRs DBDSQR
dqds DLASQ

LAPIS I–SVD DBDSLV
mdLVs DLVS

and the routines considered in this paper.

3 mdLVs scheme
In order to develop LAPIS, we implement the DLVS
based on the mdLVs scheme.

3.1 SVC based on the dLV system
In the mathematical biology, the LV (Lotka–Volterra)
system is known as a fundamental prey–predictor
model. In some case, the LV system is a completely
integrable dynamical system which has explicit solu-
tions and sufficiently many conservation laws. A time
discretization

u
(n+1)
k =

1 + δ(n)u
(n)
k+1

1 + δ(n+1)u
(n+1)
k−1

u
(n)
k (1)

of the LV system is known (cf. [10]). This sys-
tem also has explicit solution and many conservation
laws. Therefore, it is called the integrable discrete
LV (dLV) system. Here k (k = 1, 2, ..., 2M − 1)
indicates the k–th species and the discrete time n
(n = 0, 1, 2, ...) corresponds to an iteration number of
the scheme, u

(n)
k is the value of uk at n, and the arbi-

trary nonzero number δ(n) is a discrete step–size. Let
the initial value u

(0)
k be positive. In the case where

δ(n) > 0, any substraction and division by zero do
not occur in Eq.(1) and u

(n)
k is always positive. Con-

sequently, cancelling and numerically unstability do
not emerge. Let us note here we do not need treat
negative numbers in SVCs.

The boundary condition and the initial condition
are u

(n)
0 ≡ 0, u

(n)
2M ≡ 0, (2)

u
(0)
k =

(bk)2

1 + δ(0)u
(0)
k−1

. (3)

respectively. Here b2i−1 (i : 1 ≤ i ≤ M) and b2i

are diagonal and upper–subdiagonal elements of the
M × M bidiagonal matrix B, respectively. When
n →∞, u

(n)
2i−1 and u

(n)
2i converge to the square of the

i–th SV σi and 0, respectively. Thus the dLV system
gives rise to a stable scheme for computing SVs [10].

3.2 Speed up by means of the shift
The mdLVs scheme, the integrable dLV system with
shift, can compute SVs in higher speed. The mdLVs
scheme is formulated as follows [9, 11].

Let us introduce new elements w
(n)
k and v

(n)
k by

w
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k−1),

v
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k+1). (4)

By Eq.(3), the initial w
(0)
k is just bk

2. The shifted
integrable dLV system is defined by adding a shift
S(n) to Eq.(1). Namely,

w
(n+1)
2i−1 = v

(n)
2i−1 + v

(n)
2i−2 − w

(n+1)
2i−2 − S(n),

w
(n+1)
2i = v

(n)
2i−1v

(n)
2i /w

(n+1)
2i−1 . (5)

In general, the convergence is accelerated by enlarg-
ing S(n). However, since the positivity of u

(n)
k may

be destroyed by a larger S(n), it causes a numerical

unstablity. It is proved in [11] that u
(n)
k > 0 if and

only if 0 ≤ S(n) < σ2
m where σm is the minimal SV

of B. Hence the shift S(n) can be determined by us-
ing the Gersgorin [8] or the Johnson [12] bound for
estimating σm.

3.3 SVC Routine of the dLV system
The DLASQ of LAPACK (Linear Algebra PACK-
age) [13] is an SVC routine (DOUBLE PRECISION)
based on the dqds scheme for bidiagonal matrices.
When a subdiagonal element is extremely smaller
than the diagonal, SPLIT, which divides the matrix
to two parts, and a deflation of dimension size are
done [14].

The DLVS has a dissimilarity to the DLASQ rou-
tine at each iteration. Each iteration is described as
follows.

©1 u
(n)
k is calculated from w

(n)
k by Eq.(4).

©2 v
(n)
k is calculated from u

(n)
k by Eq.(4).

©3 S(n) is calculated.

©4 After checking S(n), w
(n)
k is calculated.

• In the case of a valid S(n), w
(n)
k is calculated

from v
(n)
k by Eq.(5).

• In other case, w
(n+1)
k = v

(n)
k .

Arrays of the DLVS are as follows. In Step©1 , the
array U =(u(n)

1 , u
(n)
2 ,..., u

(n)
2M−1) is calculated from

the array W =(w(n)
1 , w

(n)
2 ,..., w

(n)
2M−1), where n rep-

resents the iteration number. Since the data at each n
does not keep, each array consists of one–dimensional
array corresponding to under suffix. In step©2 , the
array V =(v(n)

1 , v
(n)
2 ,..., v

(n)
2M−1) is calculated from

U . By using a valid S(n), W is overwritten by V in
Step©4 .

In the loops of Step©1 and ©2 , U and V is updated
in ascending order of k. For the update of u

(n)
k , we use

w
(n)
k and u

(n)
k−1 in Step©1 , For the update of v

(n)
k , we

need u
(n)
k and u

(n)
k+1 in Step©2 . For the update w

(n+1)
k

from w
(n+1)
k−1 in Step©4 , two types of calculations are

chosen which is corresponding to whether k is even
or odd.

3.4 Worn point for implementation
The number of arrays rather influences the mount
of memory. To execute the DLVS in computers, the
mount of memory should be detained minimum size
by an essential array requirement.

In Eq.(4), u
(n)
k only uses the update of v

(n)
k and

u
(n)
k+1 that v

(n)
k+1 needs. Therefore, the necessary u

(n)
k is

maintained using temporary values (TMP1, TMP2).
Fig.2 expresses an adoption of a loop fusion and

unrolling in Steps ©1 and ©2 , when the SPLIT and
the deflation do not occur. The number of sub-
stitutions in Steps ©1 and ©2 is 2M − 1 and 2M − 2,
respectively, where the number of iterations of loop
is excepted. Therefore the number of substitutions
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Figure 2: A loop fusion and unrolling.

Table 2: The performance of each computer.
80bit register (default)

CP4 CI
CPU (Intel) Pentium4 2.6GHz Itanium2 1.6GHz
Memory 1GB 8GB
L1 D 8KB 32KB
L1 I 12Kµops 32KB
L2 512KB 256KB
OS Debian 3.0 (Linux 2.4.24) RedHut 2.1AS (Linux 2.2.24)

64bit register (default)
CG5 CO

CPU Power PC G5 2.0GHz AMD OPTERON 2.4GHz
Memory 3.5GB 2GB
L1 D 32KB 64KB
L1 I 64KB 64KB
L2 512KB 1024KB
OS Darwin 7.5.0 Fedora Core 2 (Linux 2.6.5)

in Fig.2 is 4M − 3, and the number of judgments of
loop becomes to 1/4. Consequently, the computa-
tional time decreases.

An access to lower cache and memory frequently
occurs, since difference elements need in each iter-
ation for the case of the array U . On the other
hand, the temporary value is kept in registers or L1
D during loop calculations. Consequently, in the case
where the number of substitutions is equal to each
other, the routine of Fig.2 is faster than the others.

A value consists of 64bit in usual memory and
cache. On the other hand, in expand registers such
as Intel Pentium Series etc., a value consists of 80bit.
In the case of ’g77 –O3’, a routine prior uses regis-
ter’s value as the needed value in loop calculations.
Hence, the routine becomes to have a high accuracy,
since the temporary values can be kept in register in
the case of the expand ones. However, when the value
of the 80bit register is copied to cache, a round–off er-
ror occurs because of 64bit cache.

4 Numerical experiments
In this section, we inspect the mdLVs scheme in a
comparison with the QRs and dqds schemes. We use
the DLASQ and the DBDSQR without SVEC cal-
culations as the dqds and QRs scheme, respectively.
While we prepare the DLVS as an implementation of
the mdLVs scheme. Here the parameter δ(n) is set
constant as δ(n) = 1, and the shift S(n) is given by
using the Johnson bound. Tab.2 shows the perfor-
mance of each computer which we use in numerical
experiments. We use GNU compiler as a common free
compiler and recommended compilers as in Tab.3.

4.1 Accuracy comparison
To get better SVECs, we should compute SVs as ac-
curate as possible.

In our experiments for accuracy comparison, 100
1, 000–dimensional bidiagonal matrices are prepared,
where 1, 000 SVs of each matrix are randomized on
the interval [1, 500]. Tab.4 shows the result in the
case of GNU compiler. In the average, the DBDSQR

Table 3: Compilers in each computer.
Compiler Options

CP4 GNU 2.95.4 -O3
Intel Fortran 8.1 -O3 -axN -xN -prefetch

CI GNU 2.96 -O3
Intel Fortran 8.1 -O3 -tpp2

CG5 GNU 3.4 -O3
XL Fortran 8.1 -O5

CO GNU 3.3.3 -O3
PGI Fortran 5.2 -fastsse -Mipa=fast,inline

Table 4: Summation of relative errors. (using GNU
compiler)

Max Min Average

CP4
DBDSQR 1.26E-12 7.08E-13 9.48E-13
DLASQ 1.27E-12 1.90E-13 4.56E-13
DLVS 2.51E-13 1.43E-13 1.85E-13

CI
DBDSQR 1.68E-12 9.15E-13 1.27E-12
DLASQ 2.26E-13 1.60E-13 1.87E-13
DLVS 1.05E-12 3.28E-13 5.32E-13

CG5
DBDSQR 1.70E-12 9.51E-13 1.31E-12
DLASQ 2.59E-13 1.59E-13 1.91E-13
DLVS 9.94E-13 3.26E-13 5.39E-13

CO
DBDSQR 1.83E-12 1.05E-12 1.41E-12
DLASQ 1.05E-12 2.92E-13 5.64E-13
DLVS 1.05E-12 3.28E-13 5.32E-13

is the worst. The results for other recommended com-
pilers are similar to Tab.4.

In CP4, though the number of iterations is almost
the same, errors of the DLVS is smaller than those
of the DLASQ. In the case where the bit number in
each register is changed to 64bit by FPU head–file,
the average relative errors of the DBDSQR, DLASQ,
and DLVS are 1.41E−12, 5.41E−13, and 5.21E−13,
respectively. Hence, the DLVS becomes to have a
higher relative accuracy because of 80bit registers.

In CO, errors of the DLASQ and DLVS are almost
in the same level. To confirm an influence of 80bit reg-
isters in CO, we experiment the case of the compiler
option ’–mfpmath’, which make use the 387 floating
point coprocessor. The resulting average errors of
the DBDSQR, DLASQ, and DLVS are 1.28E − 12,
5.65E−13, and 4.98E−13, respectively. Though the
improvement of accuracy is smaller than Intel’s CPU
case, SVs become higher accurate by using the 387
floating point coprocessor.

In CI and CG5, the DLASQ seems better. It is
guessed that round–off errors become smaller, since
the intermediate result is stored in the fourfold pre-
cision in the fused multiply–add. Since the DLVS
include more divisions than the DLASQ, the DLVS
does not make use of this property of the CPUs ef-
fectively.

Fig.3 and Fig.4 illustrate the relative and absolute
errors of computed SVs in terms of the DLASQ and
DLVS. In the figures, the horizontal axis indicates
the SV number, namely, the descending order of SVs,
and the vertical line represents the size of errors. The
absolute errors of large SVs computed by the DLASQ
are larger than those by the DLVS, especially, in CP4

and CO. It gives rise to a large error of the resulting
SVECs. On the other hand, the absolute errors by
the DLVS are within a constant rate overall. Hence,
the DLVS is better than the DLASQ in accuracy.
4.2 Computational time comparison
In the experiments for computational time, 100
10, 000–dimensional bidiagonal matrices are prepared
whose diagonal and bi–diagonal elements are ran-
domized on the interval [1, 100].

Tab.5 shows the computational time in the case of
GNU compiler. The computational time of the DLVS
is duplication or treble of that of the DLASQ in all
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Figure 3: Relative errors of SVs.
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Figure 4: Absolute errors of SVs.
CPUs. This is because the recurrence relations of
the mdLVs scheme are more complex and have more
divisions than those of the dqds scheme. Since all
elements of the matrix are needed to compute the
Johnson bound, an estimation of shift by this bound
takes 40% of the computational time of the DLVS.
Through the shift S(n) in the mdLVs scheme is safely
determined by using the bound, this bound causes
more computational cost of the scheme. On the other
hand, in the DLASQ, shift is roughly given by using
only few elements of the matrix. This is the second
reason why DLASQ is faster than the DLVS. How-
ever, the DLASQ needs an exceptional processing to
avoid division by zero. There is a big difference be-
tween the design principles of the DLVS and DLASQ.

The DBDSQR is faster than the DLVS in CG5 only.
It is caused that the rate of inner product calculation
takes a large part in the QRs scheme.

Tab.6 shows the computational time using recom-
mended compilers. In the case of recommended com-
pilers, the computational time of the DLVS is 1.5
times of that of the DLASQ in most CPUs. Remark
that the computational time of the Johnson bound
can be reduced under the effect of pipeline. We note
that the DLVS is the fastest in CI case. The variance
of computational times of the DBDSQR and DLASQ
is larger than that of the DLVS. Indeed, the DBD-
SQR is extremely slow in CI .

5 Conclusion
The QRs scheme has a high reliability, however, it
takes a relatively large computational cost, and has

Table 5: Computational time for 10, 000–dimensional
matrices. (using GNU compiler) [sec.]

Max Min Average

CP4
DBDSQR 19.59 16.33 18.22
DLASQ 5.05 3.93 4.73
DLVS 10.57 9.49 9.62

CI
DBDSQR 31.60 25.75 28.85
DLASQ 9.13 7.10 8.55
DLVS 21.24 17.50 19.96

CG5
DBDSQR 13.71 11.44 12.53
DLASQ 4.45 3.66 4.21
DLVS 12,38 9.38 11.38

CO
DBDSQR 10.18 7.67 8.94
DLASQ 2.84 2.20 2.65
DLVS 6.29 5.07 5.80

Table 6: Computational time for 10, 000–dimensional
matrices. (using recommended compilers) [sec.]

Max Min Average

CP4
DBDSQR 33.74 27.67 30.87
DLASQ 5.55 4.31 5.17
DLVS 8.83 7.22 8.21

CI
DBDSQR 200.14 164.16 188.57
DLASQ 7.31 6.05 6.82
DLVS 6.72 5.54 6.32

CG5
DBDSQR 14.44 4.76 11.00
DLASQ 5.31 1.83 4.21
DLVS 7.46 2.53 5.75

CO
DBDSQR 9.41 7.6 8.65
DLASQ 2.72 2.12 2.54
DLVS 6.01 4.84 5.54

a low accuracy. The DBDSQR of LAPACK has been
nevertheless widely adopted, for example, in MAT-
LAB, Mathematica. The dqds scheme is a high–speed
scheme for SVC with a good accuracy, however, a safe
choice of shift has not been known. While a conver-
gence and stability of the mdLVs scheme is theoreti-
cally guaranteed.

In this paper, we discuss a practicality of the
mdLVs scheme for SVC through the DLVS. On ac-
curacy, the DLVS is more accurate than the DLASQ
of LAPACK where the dqds scheme is implemented,
except for fused multiply–add type CPUs. The DLVS
is rather accurate than the DBDSQR.

In the case of GNU compiler, the computational
time of the DLVS is duplication or treble of that of
the DLASQ and 0.6 times to the DBDSQR. In the
case of recommended compilers, the computational
time of the DLVS is 1.5 times of that of the DLASQ.
In Itanium2, the DLVS is faster than two.

For the SVD by the twisted factorization, a higher
accuracy of the computed SVs is most important. A
rich practicality of the mdLVs scheme is then verified
in this paper.
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