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Enhancing Multiobjective Evolutionary Algorithms by
Local Dominance and Local Recombination:
Performance Verification in Multiobjective 0/1 Knapsack Problems

Hiroyuki Sato, Hernan Aguirre and Kiyoshi Tandka

This paper proposes a method to enhance multiobjective evolutionary algorithms (MOEAS) by performing a dis-
tributed search based on local dominance and local recombination. In this method, first, all fitness vectors of
individuals are transformed to polar coordinate vectors in objective function space. Then, the population is recur-
sively divided into several subpopulations by using declination angles. As a result, each sub-population covers
a sub-region in the multiobjective objective space with its individuals located around the same search direction.
Next, local dominance is calculated separately for each sub-population and selection, recombination, and muta-
tion are applied to individuals within each sub-population. The proposed method can improve the performance of
MOEAs that use dominance based selection, and can reduce the entire computational cost to calculate dominance
among solutions as well. In this paper we verify the effectiveness of the proposed method obtaining Pareto optimal
solutions in two representative MOEAs, i.e. NSGA-Il and SPEA2, with Multiobjective 0/1 Knapsack Problems.

1. Introduction increase, it becomes gradually difficult for them to ob-
tain POS with sufficient diversity in objective space,
Recently, multiobjective evolutionary algorithms i.e. solutions tend to be distributed in a relatively nar-
(MOEASs) [1, 2] are being increasingly investigated row region of the Pareto optimal front.
to solve multiobjective problems. MOEAs evolve si-
multaneously a population of potential solutions to the ) o
problem in hand and are able to find a set of Pareto op-MOEAS by performing a distributed search based on
timal solutions (POS) in a single run of the algorithm. local dominance and local recombination to obtain

Two important goals of a MOEA are to achieve POS POS satisfying div_ersity (_:onditions. The proposed
converging to the true Pareto front and keep a good method can be easily applied to MOEAs that use dom-

distribution in objective space of the solutions found. inance based selection. An additional and important
Among the various methods proposed so far [1, 2], ap- advantage of the proposed method is that it can reduce
proaches that use elitism based on dominance are pethe entire computational cost to calculate dominance
coming the state of the art. In general, these algorithms@Mong solutions. We chose NSGA-II [3] and SPEA2

are quite effective obtaining POS when the search [4] as two representatives of the Igtest generation of
space is relatively small. However, when the search €litiSt MOEAs and enhance them with our method. We
space becomes large and/or the number of objectivesve_r'fy the effec'glvenessiof the prop_qsed method ob-

taining POS satisfying diversity conditions by compar-
LN Koz T2k ing the search performance between the conventional
2Shinshu University, Faculty of Engineering algorithms and their enhanced versions.

In this work we propose a method to enhance
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2. Proposed Method

2.1 Concept

Dominance offers important advantages to multiobjec-
tive algorithms. However, some global non-dominated
solutions may have a too strong influence and may
undermine the contribution of other solutions that, al-
though globally dominated, have the potential to make
the entire population diverse in objective space.

In order to introduce necessary diversity and ac-
complish efficient search for POS, we divide the en-
tire population into several sub-populations generation
by generation. Each sub-population consists of indi-
viduals having similar search directions. Then, we
calculate local dominance among individuals in each
sub-population after rotating the the sub-population’s
search direction of towards/4. Next, we apply parent
selection and genetic operations to individuals within
each sub-population by reflecting local dominance.
Population division allows us to reduce the entire com-
putational cost while obtaining dispersed POS. After
calculation of local dominance, we can simply apply
conventional MOEASs [3, 4] in each sub-population. In
the following we detail the procedures for population
division and local dominance.

2.2 Population Division in Objective Space

The objective of the population division is to group
individuals with similar search direction in the:-
dimensional objective space. To achieve this effi-
ciently, the m-dimensional fithess vectof (x) for
each individual is expressed in polar coordinates by
a normr and m — 1 declination angled,;(; =
1,2,...,m — 1). The joined population of parents
and offspring P(¢) at t-th generation is split itera-
tively according to declination angles int3* ! sub-
populationsPy(t)(k = 1,2,---,d™ '), whered is

a parameter indicating the division factor at each one
of them — 1 iterations. In other wordsP(t) is split
into d sub-populations according &3, then each one

of thesed sub-populations is split again into othér
sub-populations according t, and so on. The pop-
ulation dividing scheme slightly varies the size of sub-
populations. This fluctuates the regions covered by

rotate
Py(r) with Y

=

© Non-dominated
O Dominated

(a) before rotation (b) after rotation

Figure 1: Rotation of sub-populatidf,(¢) and its af-
fection to dominance among solutions

and o (j 1,2,---,m — 1), in Py(t), and
determine the principle search direction ﬁyj =

w +0p(j =1,2,--- ,m—1). Second, cal-
culatem — 1 rotation angles),; = ékj -2
1,2,---,m — 1). Third, rotate all declination an-
gles of the polar coordinate vectors of individuals in
Py(t) by p'(x) = (rk(®),061(®) — vp1, Opa() —
Yr2y Okgm—1(€) — Yrm—1) as shown inFig.1.
Fourth, transform all rotated polar coordinates vectors
p (x) in Py(t) to modified temporal fitness vectors
£ (@) = (fiy (@), frao(@), . .., frm(®)). Fifth, calcu-
late local dominance using the modified fitness vectors

"

£ () in Pu(t).

2.4 Local Dominance and Local Recombination

Recalculation of fithess vectors for individuals in
each sub-population after rotation changes dominance
among solutions in objective function space. This
brings more chance to potential solutions to be se-
lected as parent individuals rather than conventional
schemes. As shown iRig.1(a), if we calculate dom-
inance among solutions with a conventional scheme,
say NSGA-II [3], individualsa, d and e would be
dismissed with high probability in the parent selec-
tion process since they are dominatedbogndc. On

the other hand, if we take into account the principle
search direction of, and properly rotate declination
angles, as shown iaig.1(b), the individuala becomes

the sub-populations avoiding the appearance of gapsa non-dominated solution, which is expected to make

among sub-populations in objective space.

2.3 Calculation of Local Dominance in Sub-
population

Local dominance among individuals in each sub-
populationPy(k = 1,2,--- ,d™~1) is calculated af-
ter rotating the principle search direction Bf. The
main steps of this procedure are as follows. Firts,
find maximum and minimum declination anglég™

the entire population spread. In this exampiehas
the potential to disperse the distribution Bf to the
direction of objective functiorfs.

Local dominance is reflected in parent selection
within the current sub-population. We apply crossover
and mutation operators to parent individuals selected
within each sub-population based on local domi-
nance. Because the individuals included in each sub-
population have similar search direction, the enhanced
algorithm locally achieves recombination between in-
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dividuals having similar fithess vector. This effectively
works to avoid inefficient recombination in MOEAs.

3. Computational Cost Reduction

Recent MOEAs generally require the computation
of order O(mN?) to calculate dominance, where
m and N denote number of objectives and popula-
tion size, respectively. Since we divide the entire
population intod™~! sub-populations, the proposed
method can reduce substantially the overall compu-
tational cost to calculate dominance(ib( mi 2) +

dm—1
O(mN log, N) < O(mN?)form > 2andd > 2, as-
suming that population division také§mN log, N),
where sorting by angle information is used.

4. Results and Discussion

In this paper we use multiobjective 0/1 knapsack prob-
lems (KP:-m) to verify the search performance of the
proposed method. The problems consist.o& 500
objects andn = {2,3} objectives, with known true
POS only in the case ofi = 2 objectives. We adopt
two-point crossover with probability. = 1.0 and bit-
flipping mutation with probabilityp,,, = 1/n. In the
following experiments, we show the average perfor-

laying the mean represent 95% confidence intervals.
From these figures we can see that th&" achieved

by the proposed method is remarkably better than the
HYV achieved by conventional algorithms. Also, note
that there is an optimum paramet&r to maximize
HYV depending on the algorithm to be used. If we in-
creaseal excessively, the performance is gradually de-
teriorated because the algorithm searches with many
but very small sub-populations, which leads to unsta-
ble performance with larger variance. Larger improve-
ment by our method can be observed in case of SPEA2
rather than NSGA-II, while conventional NSGA-II al-
ways outperforms SPEA2 in these problenisig.2

(b), (c) andFig.3 (b), (c) show the Pareto front of the
obtained POS. We can see that enhanced NSGA-Il and
SPEA2 implementing our method achieve robust per-
formance obtaining fully dispersed POS close to the
true POS form = 2 andm = 3 objectives. On the
other hand, the range of the obtained POS by conven-
tional NSGA-II and SPEAZ2 is narrow for the entire
distribution of the true POS.

Second, we observe the performance separately on
convergence and diversity by using optimum parame-
ter d* for test problem KP500-2 for which we know
the true POS. We show iRig.4 (a) and (b) the tran-
sition of GD and IGD over the generations as indi-
cators of convergence of POS, respectively. Conven-

mance with 30 runs, each of which spent 2,000 gener-tional NSGA-Il and SPEA2 achieve smalléD than

ations. Population sizes are set|/f®| = {200,600}
for m = {2, 3} objectives, respectively.

We use the hyper-volumeH(V'), generational dis-
tance (GD), inverse generational distancédD),
and spread{P) as performance measures [1, 2] to
evaluate MOEAs performance.HV measures the
m-dimensional volume covered by POS in objective
function space and POS showing highél” can be

their enhanced versions because conventional meth-
ods tend to incline the search to the direction of a
part of the true POS, which advantageously works to
reduceGD. On the other hand, enhanced NSGA-II
and SPEA2 achieve clearly smallé& D than con-
ventional ones. This is because the enhanced meth-
ods evolve the search dispersively inducing a neces-
sary diversity in the entire population. Population di-

considered as better POS from both convergence and/iSion and calculation of local dominance within sub-

diversity viewpointsG D measures the degree of con-

vergence to the true POS by taking the average dis-

tance from all members in the obtained POS to their
nearest solutions in the true PORY D measures the

populations are quite effective to keep the search dis-
persive in the objective space. Furthermore, we show
the transition ofS' P over the generations as an indica-
tor of diversity of POS irFig.4 (c). From this figure,

average distance from all members in the true POS towe can see that initiallyy P’ increases substantially in
their nearest solutions in the obtained POS. Note thatconventional NSGA-Il and SPEA2 for all problems in-

IGD gives a small value only if all members of the

dicating that these algorithms remarkably lose diver-

obtained POS dispersively converges to all memberssity in an early stage of evolution. On the other hand,

of the true POS, whilé& D becomes small even if they
converge to some of the members in the true PEXS.

the enhanced methods continuously induce diversity
into the entire population from the beginning of evo-

measures the degree of dispersion on the distributionlution. Precisely, enhanced SPEA2 always achieved

of POS. POS showing smalléfP can be considered
as better POS satisfying diversity condition.

First, we show irFig.2 (a) andFig.3 (a) the normal-
ized HV obtained by the enhanced MOEAs over the
parametet used for population division. Note that the
size of sub-population is given by| ~ N/d™~ 1.

The two parallel dashed lines are the results by con-

ventional NSGA-Il and SPEA2. Vertical bars over-

smaller SP than enhanced NSGA-II, which support
the result that the former algorithm shows larger im-
provement orHV'.

These results illustrate the difficulty a single popula-
tion algorithm faces to cover widely spread POS in the
objective space and also show the effectiveness of the
proposed method based on local dominance and local
recombination.
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5. Conclusions mally controlling the degree of local dominance and

local recombination.

In this paper, we have proposed a method to enhance

MOEAs by performing a distributed search based on References

local dominance and local recombination. We veri- [1]
fied that enhanced NSGA-Il and SPEA2 implemented
with our method show better search performance to 2]
obtain fully spread POS than the conventional versions

of the same algorithms. Also, we showed that another [3)
important advantage of our method is a reduction in
the entire computational cost. As future works, we
would like to improve this method to achieve higher
convergence of POS while keeping diversity as it is. [4]
We would also like to introduce a more flexible and
adaptive mechanism for population division by opti-

0120

K. Deb, Multi-Objective Optimization using Evolution-
ary Algorithms John Wiley & Sons, 2001.

C. Coello, D. V. Veldhuizen, and G. Lamoriyolution-
ary Algorithms for Solving Multi-Objective Problems
Boston, Kluwer Academic Publishers, 2002.

K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A
Fast Elitist Non-Dominated Sorting Genetic Algorithm
for Multi-Objective Optimization: NSGA-1I" KanGAL
report 200001 2000.

E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm”,
TIK-Report No.103, 2001.


島貫
テキストボックス
－12－




