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In the present study, to predict the development of myocardial infarction (MI) and classify the
subjects into personally optimum development patterns, we have extracted risk factor
candidates (RFCs) that comprised a state that is a derivative form of polymorphisms and
environmental factors using a statistical test. We then selected the risk factors using a criterion
for detecting personal group (CDPG), which is defined in the present study. By using CDPG,
we could predict the development of MI in blinded subjects with sensitivity greater than 80%.
It can be an effective and useful tool in preventive medicine and its use may provide a high
quality of life and reduce medical costs.

1. Introduction

The interaction between genetic and environmental
factors, including diet and lifestyle, contribute to
cardiovascular diseases, cancers, and other major
causes of mortality. Myocardial infarction (MI), a
cardiovascular disease, is generally caused by the
occlusion of a coronary artery and is often induced by
the rupture of a plaque, which occurs due to

atherosclerosis of the coronary arteries. MI is a
multifactorial disease that is caused due to complex
between
environmental factors on a polygenic basis [1]. The

interactions various  genetic  and
involvement of several environmental factors in the
development of MI has been suggested; these include
obesity, smoking, hypertension, diabetes mellitus,
hypercholesterolemia and hyperuricemia [1]. In

addition, the genetic factors responsible for the
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susceptibility to MI are believed to differ among
patients based on environmental factors and other
susceptible genes, despite the fact that the same
disease is being considered. Therefore, it is very
important to propose models that are a combination
of various genetic and environmental factors that are
associated with multifactorial diseases such as MI for
the prediction of disease development and associated
causes on an individual basis. This concept is useful
for determining the treatment protocol for a patient
and for disease prevention.

Methods with a high accuracy for the detection of
the interaction between genes and the environment or
between the genes themselves and for the prediction
of the development of multifactorial diseases have
rarely been proposed. Detection of these interactions
by using conventional parametric statistical methods
is difficult. Attractive and convenient tools showing
of performance should be
established. In addition, stepwise forward selection,

an adequate level

which is one of the methods for selecting reasonable
variables, appears to omit important interactions of a
combination that are statistically significant. The
interaction containing only the first selected variable
is selected, and the other significant interactions
appear to be omitted. On the other hand, conducting
an exhaustive search of the combined interactions of
genetic and environmental factors by stepwise
backward elimination is either impossible or time
consuming if the model that is constructed first
includes too many input variables. Similarly, it is
impossible to select statistically significant factors
when the sample size is relatively small.

Therefore, in the present study, first, exhaustive
combinations comprising up to 3 factors were
analyzed, and the risk factor candidates (RFCs) were
extracted using binomial and random permutation
tests. Second, the minimum number of risk factors
from RFCs was selected and the development of MI
was predicted in order to correctly classify not only
the modeling data but also the blinded data by the
criterion for detecting personal group (CDPG), which
is defined in the present study [2]. The CDPG, our
proposed method, was compared with AdaBoost

(proposed by Freund and Schapire (1997)) and
majority voting, which is whereby the option with a
simple majority of votes wins. This is the first report
on automatic selection of susceptible gene-gene and

gene-environmental factor interactions in
multifactorial diseases such as MI by using
polymorphisms and environmental factors. For

conducting a comparison of the performance of the
CDPG, the personal developmental patterns of
blinded data were analyzed by employing models
constructed by using thousands of subjects. Further,
to investigate the flexibility of this analysis, a 10-fold
cross-validation was performed in RFC and risk
factor selection processes.

2. Subjects and Methods

2.1 Subjects and data of polymorphisms and
environmental factors

In our previous study, 22 and 20 polymorphisms
were selected in males and females, respectively,
from 112 common polymorphisms [1]. Candidate
genes including these polymorphisms have been
characterized and potentially associated with
coronary atherosclerosis or vasospasm, hypertension,
diabetes mellitus, or hyperlipidemia. The study
population comprised 4152 Japanese subjects; 2460
subjects (1776 males and 684 females) had MI and
1692 subjects (1082 males and 610 females) did not
exhibit any symptoms of MI. In the present study, the
subjects with MI are referred to as “cases” and those
without any symptoms of MI are referred to as
“controls.” Since sex-based differences in the
association between genetic polymorphisms and the
risk of MI might be attributable, at least in part, to the
differences in the levels of estrogen or other
hormones between males and females, these were
particularly analyzed.

Six environmental factors, namely, smoking, body
mass index (BMI), hypertension, diabetes mellitus,
hypercholesterolemia, and hyperuricemia, were used
as the conventional risk factors for coronary artery
disease. Their data were converted into binary data

using a clinical protocol. In the present study, the
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subjects who smoked and those with hypertension,

diabetes  mellitus,  hypercholesterolemia, and
hyperuricemia are referred to as “positive” data,
while the others are referred to as “negative” data.
The subjects with and without obesity were classified
based on their BMI as “high” and “low,” respectively.
Each of the 1692 control subjects (1082 males and
610 females) had at least one “positive” or “high”
data.

The data was divided into

randomizing and alternating the data. Nine groups

10 groups by

were assigned as modeling data, and 1 group was
assigned as blinded data. Each group was assessed
once as blinded data (10-fold cross-validation).
Modeling data was used for combination analysis of
gene-gene or genetic-environmental factors and for
the selection of RFCs and risk factors mentioned later
to predict the development of disease in blinded data
and their classification into personal optimum
development patterns. The more detailed information
on data and their processing are shown in our report

[2].

2.2 Extraction of RFCs

A binomial test was used to extract RFCs that
might be associated with the development of MI. The
test was performed in various combinations of up to 3
factors: (1) 1 polymorphism, 1 environmental factor,
and (2) a combination of 1 polymorphism and 1
of 2
and (3) a combination of 2

environmental factor;, a combination
polymorphisms,
polymorphisms and 1 environmental factor, a
combination of 3 polymorphisms by using modeling
data, except the missing data, that is, the subjects who
had lost at least 1 of the polymorphism and
environmental factor data in the combination.
Combinations among environmental factors were not
considered. The reason for employing this analysis
was that we particularly considered the genes
susceptible to each environmental factor related to
the development of MI and the classification of each
effect

relationship in the combinations was evaluated

development pattern. The cause and

against exhaustive combinations of less than 3 of the

factors mentioned above.

The most important cause and effect relationship
defined as the
remarkable rule (Figure 1) in which the existing ratio

among the combinations was

between the case and control is mostly biased among
all combinations. The rule represents one square
matrix in Figure 1; thus, in dominant or recessive
analysis, there are 4 and 8 rules in case of 2 and 3
SNP combinations, respectively. For example, in rule
1 of Figure 1, subjects with the genotype AA of SNP
A, B allele of SNP B, and negative state of the
environmental factor are considered to be one of the
rules for using the 2 SNP and 1 environmental factor
combination.

Polymorphism A
Rule table AA Aat o

rule 1 rule 2
Nease,2” Neontrol2

N,

case,

negative

1/ N

ontrol, 1

BB +Bb

rule 3 rule 4
Nease. 3/ Neontrot3 | Nease.4” Noontrol.4

positive

rule 5 rule 6
Neases/ Neontrols | Nease.6/ Neontrol,

Polymorphism B

Environmental factor

negative

bb

rule 7 nle 8
Nease,7/ Neontrol,7 | Nease.6/ Neontrol8

positive

Figure 1. The rule table using a combination between 2
polymorphisms and 1 environmental factor. N,; and
Neonmor Tepresent the number of case and control subjects,

respectively, belonging to rule /.

We assessed only one rule by using the P value
mentioned below. The biased degree of relationship
was evaluated with the existing ratio by the binomial
n!

Nc se, ) = ——————————————————
f( “ ) Ncase,l!(n—Nca:e,l)!

test using the binomial distribution as follows:

Pl (1= p)" ™= (1)

where n is the sum of the observed number for N,
and N, existing in rule /. The probability p
represents Nyase / (Noase T Neontror), Where N and Nooummr
represent the total number of cases and controls
analyzed in the combination. The null hypothesis
(Neaset / Nease < Neomrot ! Neonror) 18 tested by computing
the sum (P value) of all AN, that are equal to or
lesser than that for the observed value of N,
(one-tailed test)

Since there are 3 genotype patterns in each genetic
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factor, i.e.,, homozygote of the major allele,
heterozygote, and homozygote of the minor allele in
the SNP, the number of rules in a combination of 2
SNPs is 9. However, in the present study, since the
method of SNP analysis using dominant and
recessive concepts appears to be practical for the
application of various phenotypes (such as diseases),
the heterozygote is combined with either of the
homozygotes mentioned below. Based on this
information, data in high dimensions that is
constructed by combining 3 genotype patterns can be
reduced to lower dimensions by constructing it with
combinations of the dominant and recessive genotype
patterns and important evidence on the biological
aspects might be obtained. The procedure for
extraction of RFCs has been divided into 2 steps and
is outlined in cited reference 2. In step 1, the P values
were calculated from genotype
of the recessive

genotypes, for example, 2% dominant and recessive

exhaustive
combinations dominant and
combinations and 2% x 28 rules in a combination of g
SNPs. Then,
recessive genotypes among the 28 combinations was

a combination of dominant and

determined as a preferable combination for the
prediction of MI, in which the P value in one of the
rules under the condition N.ue; / Nease > Neonnror,i ! Neoniror
was the lowest among the 2% x 28 P values. The
dominant model is a comparison of the Aa plus aa
genotypes with the AA genotype, while the recessive
model is a comparison of the aa genotypes with the
AA plus Aa genotypes.

In order to RFCs, the

significance of the rule in each combination was

extract statistical
assigned to the P value. In step 2, this was done by
modeling the null distribution that had the lowest P
value in each combination by using the random
permutation test. In the random permutation test, the
signal of the subject was randomized, thereby
ensuring that the number of subjects in the rule did
not change. We then examined how well the rule of
correctly labeled data in each combination explains
the extent of risk compared with the rule of randomly
labeled data. The significance of the rule is P™'(P,)
(equation 2), which is the percentage of random rules.

1 L 5

P (P) = OP.-P
(P) TMZZ (P.-P)) )

i=l j=1

0(z) = 1 if z> 0, and it is equal to 0 otherwise. P;; is
the lowest P value of the rule obtained by using the
randomly labeled data calculated with the binomial
test in one combination and the permutation test in
the other. P, is the P value of the rule that uses
correctly labeled data calculated with the binomial
test. In other words, P"™"(P,) is the P value of P, in
the null distribution, which is the lowest P value in
each combination, and this value is calculated using
the random permutation test. T, and T, are the
number of permutations and the number of
combinations, respectively. In the present study, T; is
1000. T, is 5,C, = 231 in the combination of 2
polymorphisms in males because in the random
permutation test, the combination of dominant and
recessive genotypes was already determined using the
correctly labeled data mentioned above. In the
present study, RFCs were inferred at the P""(P,) level
by using this distribution and was calculated to be
less than 0.01 (P™(P,) < 0.01) by using a random
permutation test.

2.3 Selection of risk factors from RFCs for the
prediction of development and causal factors of
blinded data

This section describes our new criterion, the
CDPG [2], which is used for selecting the minimum
number of risk factors in order to classify the blinded
data into personally optimum development patterns
and predict the disease development in these patterns.
We refer to the RFCs that are selected by CDPG and
other classification methods as “risk factors.” The

— M (m)RFC.case _ N (m) RFC,control ©))
N, case N, control

selection of the m™ risk factor is carried out in order
to maximize the index /1.

N™ e case ad N™ gc comnor Tepresent the number
of case and control subjects who have more than 1
RFC while selecting the m™ risk factor. N, and
Neonror TEpresent the number of case and control
subjects, respectively, in the modeling data, which
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adjust the difference of the number of subjects
between cases and controls. Accuracy (4c),
sensitivity (Se), and specificity (Sp) in the selected M
risk factors are defined as follows:

N(wRFC,sase+(Ncontral - NM RFC.control)

Ac= (©)]
N, case *N, control
N MRF C,case
Se=—"—"— 6]
N, case
sz Ncamrol - N(M) RFC,control (6)
N,

control

NM REC,case and NMRFC,C,,,,,,U, represent the number
of case and control subjects who had more than 1 risk
factor among M risk factors. If the subject is a case
and has more than 1 risk factor among M risk factors,
the prediction is considered true (true positive; TP)
and if the case subject has no risk factors, the
prediction is considered false (false negative; FN). If
the subject is a control and has no risk factor among
M risk factors, the prediction is considered true (true
negative; TN) and if the control subject has more than
1 risk factor, the prediction is considered as false
(false positive; FP). The concept of selecting risk
factors by the CDPG is employed to enable the
selection of RFCs that would include more case
subjects and less control subjects, preferably in the
modeling data. Information on obtaining the execute
code, for example, data and documentation of the
CDPG software, is available at the following URL.
http://www.nubio.nagoya-u.ac jp/proc/english/indexe.
htm

We then compared our proposed method
—CDPG—with 2 other classification methods,
AdaBoost
multifactorial disease, there might be no conclusive

namely, and majority voting. In
and sole risk factor for elucidating the developmental
mechanism. The reason for employing these methods
was that AdaBoost and majority voting have the same
strategy for selecting input variables as CDPG. The
strategy is that these methods predict the
development of the disease with a focus on case or

control subjects who can not be still explained with

selected risk factors by selecting another risk factor
stepwise [2].

The basic concept of AdaBoost is to repeatedly
apply a simple learning algorithm called the weak
learner to different weightings of the same training
set (modeling data in the present study). In its
simplest form, AdaBoost is intended for binary
prediction problems where the training set consists of
pairs (X1, ¥1), (X2, ¥2), ***s (Xms Ym); X; corresponds to
the features of an example and y; € {-1,+1} is the
binary label to be predicted. A weighting of the
training examples is an assignment of a real value w;
to each example (x;, y;). Given a learning algorithm
., ht, the
combined

that generates a set of weak learners hy, h,, ..
AdaBoost
hypothesis f of the form.

F6)=Y e, hx) o

oy is the weight of the weak learner h, and both
weights and hypotheses are learned by the AdaBoost

algorithms  construct a

algorithm. The final prediction learned by AdaBoost
is sign [f(x)], which is weighted by majority voting
(f(x) > 0: prediction result is case; f(x) < 0: prediction
result, control). Majority voting is whereby the option
with a non-weighted majority of votes wins. The
difference between them is that selected risk factors
are weighted or not [2].

3. Results and Discussion

3.1 Subjects and data of polymorphisms and
environmental factors

In the present study, we analyzed 22 and 20
polymorphisms in 16 candidate genes of males and
females, respectively, and 6 environmental factors as
conventional risk factors for coronary artery disease.
In males, diabetes mellitus had the lowest P value (P
=2.18 x 107'®) as a single factor. This was used as the
sole factor for discriminating between the cases and
controls in one of the modeling data sets. The
accuracy of prediction was 52.9%, and the sensitivity
and specificity were 34.3% and 83.5%, respectively,
when the number of case subjects and control
subjects were compared in order to assess the
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discrimination Thus,  sensitive

prediction of disease development in all subjects by

performance.

using a single factor was impossible, even though it
had a statistically significant P value.

Therefore, initially, we focused on the combination
analysis of polymorphisms and environmental factors.
In data set 1 of males, in the 1 polymorphism-1
environmental factor combination, there were 80
RFCs; this constituted approximately 15% of the 528
of 2
polymorphisms, there were 18 RFCs; this constituted

rules, whereas in the combination
approximately 2% of the 924 rules. This tendency
was observed in all data sets and females. Therefore,
as analyzed in the present study, it is suggested that
the development of MI might be more sensitive to
environmental factors combined with polymorphisms
that are susceptible to these factors. In addition, it is
suggested that several risk factors that are susceptible
combinations for the development of MI may be
selected by a combination analysis of polymorphisms
and environmental factors. Thus, we found that it was
very important to analyze the combinations of
polymorphisms and environmental factors for
elucidating the mechanism of ML In the present study,
analyses of up to 3 combinations were performed
because greater the number of factors constituting the
combination, lesser the number of the subjects
belonging to the rule and longer is the time required
for the calculation. Therefore, the RFCs were used
later for analysis. On the contrary, it is considered
that subjects having MI comprise several groups in
which the risk factors differ on an individual basis.
Further, we selected susceptible risk factors for MI
from RFCs to predict the development of MI in the
subjects in the personal group. A personal group is a
virtual group of individuals. We considered that all
MI subjects are characterized by a pattern on the
basis of which they can be classified into personal
groups. We defined the CDPG that enables the
classification of each group, including a large number
of case subjects and few control subjects by
restricting the number of risk factors to a minimum.

3.2 Selection of risk factors from RFCs and
classification of blinded data into personal
optimum development patterns

Our proposed method—CDPG—was compared
with AdaBoost and majority voting as described in
the Methods using MI model as well as a simulation
study. The shift of 4c, Se, and Sp defined in the
Methods is shown in Figure 2. A total of 30 risk
factors were selected from the RFCs. We decided the
number of risk factors when the Ac¢ in modeling data
averaged in 10-fold cross-validation reached the
maximum value in the CDPG, AdaBoost, and
majority voting (Table 1). In the CDPG model, the
accuracy and sensitivity with both modeling and
blinded data were high in males and females (Figure
2 and Table 1). In particular, sensitivity was high,
indicating that the diagnosis of case subjects by using
this model was more accurate than that with
AdaBoost and majority voting. However, the
specificity of our method was low as compared with
that of AdaBoost and majority voting, indicating that
the percentage of control subjects with a minimum of
1 risk factor was at least 40%. By using AdaBoost
and majority voting, Ac, Se, and Sp hardly changed
with risk factor selection in males and females.

Table 1. Accuracy, sensitivity, and specificity averaged in
10-fold cross-validation using risk factors selected by
CDPG, AdaBoost, and majority voting.

(a)Males  modeling CDPG __AdaBoost majority voting
risk factors 28 3 3
accuracy  0.678 0.567 0.554
sensitivity ~ 0.747 0.490 0.551
specificity  0.566 0.693 0.558
blinded CDPG __ AdaBoost majority voting
accuracy  0.619 0.554 0.540
sensitivity  0.709 0.477 0.546
specificity  0.473 0.680 0.530
(b) Females _modeling CDPG __AdaBoost majority voting
risk factors 24 1 1
accuracy  0.736 0.631 0.631
sensitivity ~ 0.824 0.430 0.430
specificity  0.638 0.856 0.856
blinded CDPG __ AdaBoost majority voting
accuracy  0.645 0.631 0.631
sensitivity  0.751 0.429 0.429
specificity  0.527 0.857 0.857
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Figure 2. A shift in accuracy, sensitivity, and specificity
in the procedure of selecting 30 risk factors with CDPG,
AdaBoost, and majority voting in Males. Their values are

averaged in 10-fold cross-validation.

3.3 Investigation of the extent of risk for each
subject due to the interaction among risk factors
In CDPG analysis, by selecting a greater number
of risk factors, the number of control subjects with a
minimum of 1 risk factor and predicted to be case
subjects increased (low specificity in CDPG). In case

of multifactorial disease, the extent of risk for
development appears to differ among the subjects.
Although the specificity in CDPG was low, the extent
of risk of control subjects might be lower than that of
case subjects. Thus, in order to investigate the extent
of risk for each subject, we paid attention to the
interaction among the risk factors and examined it as
follows.

By the CDPG method, 52.9% (572/1082) and
47.2% (288/610) of the male and female control
subjects, respectively, of the blinded data have been
assigned to the personal group through the 10-fold
cross-validation by using the selected risk factors.
Since it is believed that risk of development of a
disease increases based on the interaction among the
risk factors, we examined the relationship between
the number of subjects and the number of risk factors
(NRF) (Figure 3). The risk rate was defined as
follows (equation 8).

Noase, nrF >R
Risk Rate= = )

case, NRF 2R T Neontrol, NRF = R
R represents the cutoff value of NRF. N e nrrsor
and Neonmornrror represent the number of case and
control subjects who had more than R risk factors
from the risk factors selected by the CDPG. The shift
of risk rate in males is shown in Figure 3. It was

observed that the risk rate was higher with increasing
R in both of the modeling and blinded data. The same
result was obtained in females, thereby satisfying the
conditions R > 3 and R > 4 in males and females,
respectively. The number of male and female subjects
who had more than 4 and 5 risk factors, respectively,
was less when compared with the total number of
subjects in the modeling data (the number of case
subjects was less than 20% of all the case subjects).
When the cutoff value was defined as 3 and 4 in
males and females, respectively, the respective risk
rates were 76.1% and 76.8%. In the blinded data, the
value was higher than the Ac (61.9% and 64.5% in
males and females, respectively) which was defined
as follows: if the subject has more than 1 risk factor
among M selected risk factors, the prediction is case.
Thus, it was observed that the interaction among risk
factors selected by the CDPG had increased the risk
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of developing MI.
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Figure 3. The number of risk factors that the case or control
subjects have among 28 risk factors in males selected using
CDPG and the number of subjects in 10 blinded data sets.
Risk rate represents the rate of case subjects who have

more than given number of risk factors.

In the present study, subjects with CC genotype at
TGF-p1 (T896C), CC or CT genotype at ApoCIII
(C1100T) and positive of hypercholesterolemia were
selected as one of the personal groups by CDPG and
estimated to be at high risk for pathogenesis of MI in
males (Figure 4). It has been assumed that subjects in
this rule might be able to avoid development of MI
by reducing cholesterol level.

(a) ()

IGF B 17T869C (LeulOPro TGF f1T1869C (LeulOPro;
TT + TC CcC TT +TC CcC
: :
B ]
5| | 383 /288 | 159 /101 5| |8 42/44 | 1908
=|o[Ele Q o
g|° g 2| 296 /146 g[8 —g HIEE
5| |28 L E
SINEIB EINEE
H é 8| 221167 | 70/52 3 Eﬁé 24/16
NEE EI=H
: B
2| 16498 | 60736 i v 9n
g

Figure 4. Polymorphisms and environmental factor
combination between TGF-BI (T896C) and ApoCIII
(C1100T) may be associated with MI (gray rule) in males.
(a) modeling data and (b) blinded data in one of the data
sets.

In conclusion, we were able to classify the case

and control subjects into personally optimum
development patterns for multifactorial diseases such

as MI with a high accuracy. For this, we used risk

factor combinations that were selected by the
binomial test and the random permutation test, which
between
factors, and

analyzes  exhaustive  combinations
polymorphisms and environmental
CDPG, our proposed method, which is defined in the
present study. Therefore, the CDPG method can be an
effective and useful tool in preventive medicine and
its use can provide high quality of life and reduce

medical costs.

References

[1] Yamada, Y., et al, Prediction of the risk of
myocardial infarction from polymorphisms in
candidate genes, N. Engl. J. Med., 347:1916-1923
(2002).

[2] Tomita, Y. et al., Classification method for
predicting the development of myocardial infarction
by using the interaction between genetic and
IPSJ  Transactions on

environmental factors.,

Bioinformatics, in press (2006).

— 200 —





