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Controlling Dominance Area of Solutions in
Multiobjective Evolutionary Algorithms and
Performance Analysis on Multiobjective 0/1 Knapsack Problems

Hiroyuki Sato, Hernén Aguirre and Kiyoshi Tanaka?

This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of
solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial
optimization problems. The proposed method can control the degree of expansion or contraction of the dominance
area of solutions using a user-defined parameter.S. We use 0/1 multiobjective knapsack problems to analyze the
effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on
the search performance of a MOEA when the number of objectives, the size of the search space, and the feasibility

of the problems vary.

1. Introduction

Multiobjective evolutionary algorithms (MOEAs) [1,
2] are being increasingly investigated for solving mul-
tiobjective optimization problems. Some important
features of the latest generation MOEASs are that se-
lection incorporates elitism and it is biased by Pareto
dominance and a diversity preserving sirategy in ob-
jective space. Pareto dominance based selection is
thought to be effective for problems with convex and
non-convex fronts and has been successfully applied,
especially in two and three objective problems. How-
ever, some current research reveals that ranking by
Pareto dominance on problems with an increased num-
ber of objectives might not longer be effective [3] be-
cause the fronts become substantially denser. In this
case, most sampled solutions at a given time turn to
be non-dominated and Pareto selection weakens since
it has to discriminate mostly based on diversity of so-
lutions. Another factor that affects the density of the

YEM KT ¥
2Shinshu University, Faculty of Engineering

fronts is the complexity (ruggedness and number of
local optima) of the individual single objective land-
scapes, which also affects the behavior and effective-
ness of conventional Pareto selection.

In this work, we propose a method to control the
dominance area of solutions in order to induce appro-
priate ranking of solutions for the problem at hand,
enhance selection, and improve the performance of
MOEASs on combinatorial optimization problems. The
proposed method can control the degree of expansion
or contraction of the dominance area of solutions us-
ing a user-defined parameter S. Modifying the dom-
inance area of solutions changes their dominance re-
lation inducing a ranking of solutions that is differ-
ent to conventional dominance. Related works on re-
laxed forms of Pareto dominance are e-dominance [4]
and o-domination [5]. Contrary to e-dominance and
a-domination, the proposed method can strengthen or
weaken selection by expanding or contracting the area
of dominance and conceptually can be considered as a
generalization of Pareto dominance.

In this work we analyze the effects on solutions
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ranking caused by contracting and expanding the dom-
inance area of solutions and its impact on the search
performance of a multi-objective optimizer when the
number of objectives, the size of the search space,
and the complexity of the problems vary. We chose
NSGA-II as a representative elitist algorithm that uses
dominance [1] and compare its performance with
NSGA-II enhanced by the proposed method. We con-
duct our study on 0/1 multiobjective knapsack prob-
lems with m = {2,3,4,5} objectives varying the
number of items 7 (size of search space is given by
2™) and the feasibility ratio ¢ of the search space.

2. Proposed Method

2.1 Contraction and Expansion of Dominance
Area

In this work, we try to control the covered area
of dominance. Normally, the dominance area is
uniquely determined with a fitness vector f(x) =
(filz), fox), -+, fm(zx)) in the objective space
when a solution « is given. To contract and expand the
dominance area of solutions, we modify fitness value
for each objective function by changing the user de-
fined parameter .5; in the following equation
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where ¢; = S; - m. This equation is derived from the
Sine theorem. We illustrate the fitness modification in
Figure 1 (a), where r is the norm of f (), fi(z) is the
fitness value in the i-th objective, and w; is the declina-
tion angle between f(x) and f;(x). In this example,
the i-th fitness value f;(z) is projected (increased) to
fi(x) > fi(x) by using ¢; < 7/2 (S; < 0.5). In
case of ; = /2 (S; = 0.5), f;(x) does not change
and f{(x) = fi(z). Thus, this case is equivalent to the
conventional dominance. On the other hand, in case of
i > /2 (S; > 0.5), fi(x) is projected (decreased)
to fi(x) < fi(z).

Such fitness modification changes the dominance
area of solutions. We show an example in Figure 1
(b)-(d), where three solutions a, b and ¢ are distributed
in 2-dimensional objective space. In Figure 1 (b), a
dominates ¢, but @ and b, and b and ¢ do not dominate
each other. However, if we modify fitness values for
each solution by using Eq.(1), the location of each so-
lution moves in the objective space, and consequently
the dominance relationship among solutions changes.
For example, if we use S; = Sz < 0.5 as shown in
Figure 1 (c), the dominance area of solutions a’, b’
and ¢’ is expanded from the original one of a, b and
c. This causes that a’ dominates b’ and ¢/, and b’
dominates ¢’. That is, expansion of dominance area
by smaller S;(< 0.5) works to produce a more fine
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Figure 1: Fitness modification to change the covered
area of dominance (a), conventional dominance (b)
and examples of expanding (c) and contracting (d) the
dominance area of solutions

grained ranking of solutions and would strengthen se-
lection. On the other hand, if we use S; = S, > 0.5 as
shown in Figure 1 (d), the dominance area of solutions
a’, b’ and ¢ is contracted from the original one of a,
b and c. This causes that a’, b’ and ¢’ do not dominate
each other. That is, contracting the area of dominance
by larger S;(> 0.5) works to produce a coarser rank-
ing of solutions and would weaken selection.

2.2 Effects of Controlling Dominance Area

In this section we verify and illustrate the effect of
expanding or contracting the dominance area on the
distribution of the fronts changing the parameter S; in
Eq.(1). Here, we randomly generate 100 solutions in
the 2-dimensional objective space of [0, 1]?, calculate
dominance among them after recalculating fitness with
Eq.(1), and perform a non-domination sorting to ob-
tain the fronts. We repeat the above steps a 1000 times
and calculate the average number of fronts and solu-
tions per front, for each value of S;. In this work, we
use a common parameter S = S;(¢ = 1,2,--- ,m)
for all objective functions, because we assume that all
objective functions are normalized. Figure 2 shows
the fraction of number of solutions per front varying S
in the range [0.25,0.75] in intervals of 0.1 along with
results for conventional dominance (S = 0.5).

From this figure, note that if we gradually expand
the area of dominance by decreasing .S below 0.5, the
number of fronts increases and the ranking of solutions
by non-dominance can be fine grained. Note that for
maximum expansion of the dominance area S = 0.25
there is one solution per front. On the other hand, if
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Figure 2: Solutions per front varying the parameter S
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Figure 3: Hypervolume as we increase the number of
objectives m for problems with n = 500 items and
¢ = 0.5 feasibility ratio

we gradually contract the area of dominance by in-
creasing S above 0.5, the number of fronts decreases
and ranking of solutions by non-dominance becomes
coarser. Note that for maximum contraction of the
dominance area S = 0.75 there is only one front that
contains all solutions. Since different rankings can be
produced, we can expect that the optimum parameter
S5* that yields maximum search performance exists for
a given kind of problem.

3. Experimental Results and Discussion

3.1 Benchmark Problems and Parameters

In this paper we use multiobjective 0/1 knapsack prob-
lems [6] with m = {2,3,4,5} objectives, n =
{100,250, 500, 750} items and feasibility ratio of the
search space ¢ = {0.75,0.5,0.25}. We use a con-
stant .S for all objectives because the scale of each ob-
jective function is similar. In our study we compare
the performance of a conventional NSGA-II [1] with
NSGA-II enhanced by the proposed method. We adopt
two-point crossover with a crossover rate p. = 1.0 for
recombination, and apply bit-flipping mutation with a
mutation rate p,,, = 1/n. We show the average perfor-
mance with 30 runs, each of which spent 2,000 gener-
ations. Population size is set to | P| = 200 and the par-
ent and offspring population sizes |Q| and | R| are set
to half the population size |P|, i.e. |@Q| = |R| = 100.

3.2 Performance Varying m

First, we observe the effect of varying .S on problems
with different number of objectives. Figure 3 shows
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(a) m = 2 objectives (b) m = 5 objectives
Figure 4: Hypervolume as we increase the number of
items n for problems with m = {2, 5} objectives and
¢ = 0.5 feasibility ratio
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(a) m = 2 objectives (b) m = 5 objectives
Figure 5: Hypervolume as we decrease feasibility ratio
for problems with m = {2, 5} objectives and n = 500
items

the values of the hypervolume achieved varying S in
the range [0.25, 0.75] in intervals of 0.05 on problems
with m = {2,3,4,5} objectives, n = 500 items, and
feasibility ratio ¢ = 0.50. Note that in the figure the
values of the hypervolume are normalized so that the
value achieved at S = 0.5 is always 1.0. From this fig-
ure important observations are as follow. First, there is
an optimum value S* for each number of objectives
that maximizes the hypervolume. Note however that
the maximum value of hypervolume is not achieved
by conventional dominance (S = 0.5) for any number
of objectives. Second, to achieve the maximum value
of hypervolume, the degree of expansion or contrac-
tion of dominance area of solutions should be adjusted
accordingly to the number of objectives. Note that
maximum values of the hypervolume are achieved for
two and three objectives by contracting the dominance
area of the solutions (S > 0.5), whereas for four and
five objectives the maximum hypervolume values are
achieved by expanding the dominance area of the solu-
tions (S < 0.5). Third, as a general trend in problems
with n = 500 items and feasibility ratio ¢ = 0.50,
we observe that the optimum value S* reduces as we
increase the number of objectives. That is, increasing
the number of objectives the area of dominance should
be expanded by using smaller values of S* to achieve
maximum hypervolume.
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Figure 6: Obtained solutions by conventional dominance S = 0.5, contracting dominance S* = 0.65, and expand-
ing dominance § = 0.4 for m = 2 objectives, n = 500 items, and ¢ = 0.5 feasibility ratio

3.3 Performance Varying n

Second, we observe the effects of varying S on prob-
lems with different number of items n. Note that the
size of the search space is given by 2". Figure 4
shows the hypervolume varying S on problems with
n = {100,250, 500, 750} items and feasibility ratio
¢ = 0.5 form = {2,5} objectives. From Figure 4 (a)
we can see that in the case of m = 2 objectives the op-
timum S* is similar for all n, around 0.65. However,
we observe that increasing the number of items n pro-
duces a clear shift of the optimum S* towards smaller
values (greater expansion of area of dominance), espe-
cially in the case of m = 4 and m = 5 objectives as
illustrated in Figure 4 (b).

3.4 Performance Varying ¢

Third, we observe the effects of varying S on prob-
lems with different feasibility ratio ¢. Figure 5 shows
the hypervolume varying S on problems with feasibil-
ity ratio ¢ = {0.75,0.5,0.25} and n = 500 items for
m = {2,5} objectives. From Figure 5 (a)-(b) note
that the effects on problems with different feasibility
ratio ¢ resemble those observed on problems with dif-
ferent number of items. That is, in m = 2 objectives
the optimum S™ is the same for all ¢. However, re-
ducing the feasibility ratio ¢ from 0.75 to 0.25, there
is a shift of the optimum S* towards smaller values,
which becomes more notorious form = 4and m = 5
objectives.

3.5 Obtained Solutions

Figure 6 illustrates the obtained solutions in the fi-
nal generation (¢ = 2000) for all 30 simulations by
conventional dominance S = 0.5, contracting domi-
nance S* = 0.65, and expanding dominance S = 0.4
for m = 2 objectives, n = 500 items, and ¢ = 0.5
feasibility ratio. Note that solutions obtained by con-
ventional dominance are close to the true Pareto front
but are clustered in a limited region of objective space.
By contracting dominance with the optimum param-
eter S* = (.65, we can spread the obtained solutions
showing the maximum hypervolume, although conver-

gence of some of them seems to deteriorate. On the
other hand, by expanding dominance with S = 0.4
showing worst spread, we can focus on convergence of
solutions within a narrower region of objective space.

4. Conclusions

We have proposed a method that can control domi-
nance area of solutions by a user defined parameter
S. We showed that contracting or expanding the dom-
inance area of solutions changes their dominance re-
lation, modifying the distribution of solutions in the
multiobjective landscape. Also, using 0/1 multiobjec-
tive knapsack problems we showed that the optimum
value of 5* depends strongly on number of objectives,
size of the search space, and feasibility ratio of the
search space. Moreover, we showed that either con-
vergence or diversity can be emphasized by contract-
ing or expanding the dominance area rather than by
using conventional dominance. As future works, we
would like to investigate the effect of varying S; for
each objective and combine the proposed method with
other selection methods to achieve higher convergence
while covering the whole true Pareto front.
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