2007—MPS—65
200776725

BN LS SRS 10)

IPSJ SIG Technical Report

Optimization of Molecular Dynamics Simulation on Cell Processor

Manami Sasaki* Masakazu Sekijimal Masami Takata* Kazuki Joe*
manami41@ics.nara-wu.ac.jp
* Graduate School of Humanities and Sciences Nara Women’s University
t Computational Biology Research Center
National Institute of Advanced Industrial Science and Technology

Abstract

Molecular dynamics simulations to analyze biological molecular functions are expected to
clarify the principle of fluctuation of a protein that participates in a disease, and to discover
peptides that are bound to the protein. Such simulations require large-scale and complicated
calculation as typical scientific simulations. Furthermore, the molecular dynamic simulation
is based on the calculation precision by femto second. In this paper, we report that a molec-
ular dynamic simulator is implemented on the Cell Broadband Engine in PLAYSTATION3
to reduce the calculation time.

Cell 7uz o ~DHFENNFEY I 2 L— 3 O

e FE+ BIE Bt B OMEE W FiE
* RERTFRERFR  ABSULHTIER
P BRI A TR BRI 2N T 4 —

"=

SRS F ORI SN FENE Y Iab—ra vil, RRKEST3 Y0
OROEOFEHEEFALNIL, TOXURIBEREETHNTF V2R T L 2HFX
NTWL. ZDESrIab—ra i, #ERRREYIa2L—Ya Dl CKEET
BHLRERVNELT D, S5, DFHIEVIaL—va i, T b MPBELTOER
REAFCESWTWS. KRICTHE, FEMMEZERET 201, SFBh%EYIar—vs
% PLAYSTATION3 @ Cell Broadband Engine = TEITL, #H&4 5.

Gene/L or Earth Simulator. It is, however, very
difficult for researchers except some research orga-
nizations to establish, occupy, and use such a huge
computer system. Recently, Cell Broadband Engine
(Cell processor) was developed by IBM, SONY, and

1 Introduction

In the bioinformatics research field, many simula-
tion programs have been developed to analyze bio-
molecular functions. One of them is molecular dy-

namics (MD). MD simulation carries out the simu-
lation of the motion of molecules. In an MD pro-
gram, interactions are calculated by integral New-
ton’s equations of motion of atoms. It is thought
that this simulation will be able to clarify the princi-
ple of fluctuation of proteins that participate in dis-
ease and to discover peptide which is bound to the
proteins. MD programs treat large-scale complex sys-
tems like biomolecules (e.g., proteins) surrounded by
solvent water molecules. In addition, it is required
that MD programs perform calculation precisely by
femto seconds. Therefore, it must perform an enor-
mous calculation. MD programs sometimes require
huge computer resource comparable to a supercom-
puter with TFLOPS computational power like Blue

TOSHIBA. The Cell processor combines a general-
purpose Power Architecture core and several vector
processing cores. Theoretical performance of the Cell
processor in single-precision floating-point operations
is over 200GFLOPS. In this paper, we implement an
MD program on the Cell processor and evaluate its
performance. PLAYSTATIONS is used to execute
the optimized MD program.

In section 2, we briefly describe MD. We explain
about Cell Broadband Engine in section 3. In section
4, the implementation method of an MD program
to the Cell processor is explained. We describe the
result of experiments in section 5.



B0 (440 P 1080}
i Peitivn) (Y
6 ptares: 2.5

Earth Stwiiatar

og
ety
e G ks
@ ;‘lr‘f‘»‘ﬁ: 51108, 3 Pap. wcties
S et St
210k St i e HAES o
a8 igston by M S 2008

W
minbar of prozessors

1: Comparison of the AMBER execution time

2 Molecular dynamics

MD simulations are widely used for simulating the
motion of molecules in order to gain deeper under-
standing of chemical reactions, fluid flow, phase tran-
sitions, and other physical phenomena due to molecu-
lar interactions. In such simulations, continuous pro-
cess is broken down into discrete small time-steps,
which repeat iterative two operations: force calcula-
tion (calculating the forces from the evaluated confor-
mational energies) and atom update (calculating new
coordinates of the molecules) [1]. Needless to say, the
computation time is higly affected by the time-step
size At.

Fig.1 shows the comparison of execution times of
four high performance computer systems. This eval-
uation is measured by an MD program called the
sander of AMBER package on dimeric human prion
protein consisted of 216 amino acid residues and 9,374
water molecules (31,562 atoms in total). We mea-
sured the performance by Blue Gene/L, magi (Pen-
tium III 933 MHz cluster), ASC (Opteron 2GHz clus-
ter) and ES (Earth Simulator) [2].

We describe the MD program flow implemented in
this study.

1. Load initial coordinates and velocities from an
input file.

2. Judge whether the i-th molecule interact with
the j-th one.

3. If it interacts, calculate their intermolecular
forces. Otherwise, add 1 to j and go to step
2.

4. Get acceleration of the i-th molecule.

5. Calculate new coordinates and velocities of -th
molecule, add 1 to ¢ and go to step 2.

6. Update the coordinates.

7. Increase a time step and go to step 2.

. The 2-7 steps are iteratively performed for given
times.

We use a recurrence formula obtained by solving
an equation of motion using the Verlet method for
the calculation of intermolecular forces.

‘We use the Lennard-Jones’s potential for function
©(r;;) that describes intermolecular potential.

P(re) = %:46 { (%) - (%)6}

We use a periodic boundary condition where cer-
tain fundamental space is provided. Since the bound-
ary is not a physical wall, molecules can move over
the boundary. Reduction of the number of molecules
and burning off energy do not occur by calculating
the whole system because of the fundamental space
continuity.

3 Cell Broadband Engine™™

Cell Broadband Engine is the next-generation mi-
croprocessor developed by three companies, 1IBM,
Sony, and Toshiba, and is a heterogeneous multi-core
processor which has two kinds of cores. One is a
general-purpose processor core called ” Power Proces-
sor Element” (PPE) based on the 64bit Power Archi-
tecture. The other is a 128bit SIMD type RISC pro-
cessor called ”Synergistic Processor Element” (SPE).
The Cell processor is equipped with cores of one PPE
and eight SPEs. The theoretical performance of a sin-
gle precision floating-point arithmetic operation on
an SPE is 192GFLOPS in 3.0GHz [3].

4 Implementation method

On a Cell Processor, when a program is simply
compiled to be executed, the program is executed
only on a PPE which is a main processor core. In
other words, we can not take advantage of the com-
putational ability by several SPEs. In order to elicit
high performance computing ability of the Cell pro-
cessor, parallelization for SPEs is indispensable. A
user must create an SPE program to make use of SPE
cores by hand, since any compiler does not gener-
ate parallelized programs automatically, so far. Con-
sequently, it is necessary to divide an existing pro-
gram into a PPE program and an SPE program. The
program flow and initialization of variables are per-
formed in a PPE program. All parts of parallelizable
processes in an MD program should be performed in
SPE programs.



PPE program
Input of initial data
Initialization of varighle
Open the SPE program
Create SPE thread, and start

SPE program

>Transfer coordinate data
for §

. i Judgment of teraction

for { Caleulate power related to molecules
Wait to end 1sfep Caleulste new coordinate snd velocity
Update the coordinate

Transfer caleulation result

— - Convey the end of Istep

Qutput of coordinate data
Send signal nodificafion

¥
Wait the end of SPE theoad

Destroy the SPE throad

- Receive signal notification
+ Transfer new coordinate data

} ;};/
i+ DMA transfer
-~ : signal notification

[ 2: The flow of Cell program

A library called libspe is used in order to handle
SPE cores in'the Cell programming. There are series
libspel and libspe2 in libspe. In this paper, we use
libspel. The basic flow using SPEs with libspel is
described below.

1. spe_open_image()
2. spe_create_thread|()
3. spe_wait()

4. spe_close_image()

An SPE thread created from spe_create_thread al-
ways leads to creation of a PPE thread (pthread).
Therefore, the creation API of an SPE thread
(spe-create_thread) finishes immediately and the
PPE thread can perform other computation contin-
uously. Consequently, if spe_create_thread is called
multiple times, the same number of SPEs can be used
s).

Fig.2 shows the program flow of an MD for the Cell
processors. These operations are iterated through the
simulation. Atomic data must be divided so that the
capacity of LS may not be exceeded. In order to re-
duce the number of DMA transfer as few as possible,
the notice of a signal to SPE from PPE is used for
transmission of the synchronization flag [6].

5 Experiment

An MD program is executed by NEV ensemble only
on a PPE to measure the execution time for the par-
allelization on SPEs. Measurement is performed us-
ing the times routine in the standard library. Gener-
ally, biomolecular simulation is performed on a sys-
tem with 1,000 to 100,000 atoms. In this paper, the
data set to be used is given as the initial coordinates

and velocities of 27 atoms because of the capacity
limit of LS.

The measuring result of 20,000 time steps is 46.45
seconds. This is the execution time of the whole
program on a PPE. Calculation of step 2-3 in the
MD program occupies 38.89 seconds among this mea-
surement time. That is, 83.7% of the whole time is
spent on the judgment of the existence of interac-
tions, and the calculation of forces which work be-
tween molecules. In addition to the occupation of a
great portion of the whole execution time, step 2-3
can be executed in parallel. For this reason, par-
allelizing step 2-3 is the optimal method for SPEs.
Moreover, execution time of step 4-7 is 2.46 seconds.
It accounts for just a rate of 5.2 % of the whole time.
These steps can be also executed in parallel. There-
fore, most program sources can be parallelized for
SPEs.

The data dependency is investigated for the paral-
lelization for SPEs. The existence of an interaction is
judged for every pair of atoms. Therefore, each SPE
is required to keep the newest coordinates data of all
atoms. When calculating the new coordinates and
the velocities of atoms, the present and last times
steps of them are required. Therefore, it is neces-
sary to keep the coordinate data of three time steps
simultaneously. For the above reason, in order to
parallelize them for SPEs, atoms data are required
to be divided into each SPE as equally as possible.
Furthermore, for every completion of a time step, it
must communicate and share the newest coordinate
data in each SPE.

Based on the above thing, the existing MD pro-
gram is ported and parallelized for the Cell processor.
The times routine is used for measurement of execu-
tion time of the PPE program. Moreover, a counter
register called SPU Decrementer is used on the SPE
program. Each SPU contains dedicated 32bit decre-
menters, and the decrement of the value is carried out
for every CPU clock. The value of SPU Decrementer
is read before and after the execution that the user
wants to measure. It is possible to measure execution
time from the difference of two read values (7).

First, the execution time of the whole program
when performing on a PPE or an SPE is measured
using the times routine on the PPE program. A mea-
suring result is shown in Tab.1.

In Tab.1, both of PPE and one SPE execution are
sequential processing. The theoretical performance
in the single precision floating point arithmetic oper-
ations of PPE is lower than one SPE. It is about 20
GFLOPS. However the execution time on one SPE is
about 3 times slower than on PPE. Unlike execution
on PPE, the execution on one SPE requires to cre-



#* 1: Comparison of the execution time in a PPE

program
user time (sec) | system time (sec)
PPE 46.45 0.24
1 SPE 117.84 0.47
140
120
2100 \
‘: 80
I
54 \\\
20

1SPE 2SPE 3SPE 4SPE SSPE 6SPE
cores

3: Comparison of the execution time in a SPE
program

ate a SPE thread, transmission to LS of the program
and data, etc. Namely, the result contains consider-
able overhead.

Next, the parallel execution time is measured on
the SPE program. The measuring result is shown in
Fig.3. Execution time on two or more SPEs shows
the average of execution time in each SPE.

In Fig.3, the execution time on three SPEs is about
40 seconds. From this result, it is thought that the
difference of the execution time in Tab.1 is removable
by dividing into three or more data. In Fig.4, the par-
allelization efficiency on three SPEs is the maximum.
This is because each load to SPEs gets balanced since
the number of atomic data used in this experiment is
27 pieces.

6 Conclusions

In this paper, we accelerated execution time of an
MD program for the Cell processor. When the execu-
tion times of the sequential execution on PPE and one
SPE were compared, the execution time on one SPE
which requires SPE thread generation etc. is about
three times of the execution time on PPE. And, every
parallelization efficiency in comparison with the ex-
ecution time on one SPE brought a result exceeding
0.8.

The data set used for the experiment was very
small (27 atoms). Therefore, SIMD commands did
not work in high efficiency. However, when treating

e
o
&

N

e
e

e
®
Y

.

5SPE

Parallelization efficiency

e
@

2SPE  3SPE  4SPE

cores

6SPE

4: Parallelization efficiency

larger-scale data sets, such as a biomolecular simula-
tion, the SIMD commands will be effective and ex-
pect great reduction of execution time. Moreover, it
is thought possible to further accelerate execution by
using general optimization techniques, such as con-
cealment of the memory access latency by DMA dou-
ble buffering and loop unrolling.

S HR

[1] M. Sekijima, et al.: ”Automatic Improvement of
Scheduling Policies in Parsley Parallel Program-
ming Environment”, 14th TASTED PDCS2002,
pp.380-385 (2002).

[2] ‘M.Sekijima: www.cbre.jp/ sekijima/

[3] Cell Broadband Engine (CBE) Processor Tu-
torial: www.cs.unc.edu/ geom/EDGE/SLIDES/
perrone.ppt#256,1,Cell

4

SPE Runtime Management Library: www-306.
ibm.com/chips/techlib/techlib.nsf/techdocs/
7T7T1EC60D862C5857872571A8006A206B/$file/
libspe_v1.2.pdf

[5

Cell Broadband Engine Programming Tutorial:
www-306.ibm.com/chips/techlib/techlib.nsf/
stechdocs/FC857AE550F 7TEB83872571A80061F
788/$file/ CBE_Tutorial v2.1.1March2007.pdf

[6

C/Cs++ Language Extensions for Cell Broad-
band Engine Architecture: cell.scei.co.jp/pdf/
Language_Extensions_for CBEA v23.pdf

[7

Cell Broadband Engine Programming Handbook:
www-306.ibm.com/chips/techlib/techlib.nsf/

techdocs/9F820A5FFASECESC8725716A0062585F /

$file/ CBE_Handbook_v1.1_24APR2007_pub.pdf





