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Abstract Much attention has been paid to RNA-RNA interaction involved in posttranscriptional regulation of gene ex-
pression. Although there have been a few studies on secondary structure prediction of interacting RNAs based on dynamic
programming (DP) algorithm, no grammar-based approach has been proposed. This paper provides a new modeling for
RNA-RNA interaction based on multiple context-free grammar (MCFG). We present a polynomial time parsing algorithm
for finding the most likely derivation tree for the stochastic version of MCFG, which is applicable to joint secondary struc-
ture prediction including kissing hairpin loops. Also, tests on prediction using the proposed method have shown that our
approach is comparable to an existing work based on DP.

1 Introduction

In recent years, there has been much interest in antisense RNA regulation as well as RNA interference (RNAi)
[4]. Antisense RNAs, which form specific structure, act via base complementarity on their target mRNAs
that encode proteins of important functions, so that the translation is inhibited at the posttranscriptional level.
Most of the naturally occurring RNA-RNA interactions have been found in bacteria, including CopA-CopT
(antisense-target, resp.) interaction in E. coli [12]. These antisense RNAs are not fully complementary to
their targets where intermolecular bonds alternate with intramolecular bonds. In particular, many loop-loop
interactions have been observed, which are called kissing hairpin loops (see Figure 1 (a)). In this paper, we
focus on this kind of joint structure formed by two interacting RNA molecules.

There have so far been a few studies that apply dynamic programming (DP) techniques to the joint sec-
ondary structure prediction problem based on free-energy models. Andronescu et al. [3] provide a prediction
tool for interacting RNAs called PairFold, which uses Mfold [22] for pseudoknot-free structure prediction and
thus cannot predict any kissing hairpin loop. Pervouchine [15] presents an extended algorithm of the Nussinov
algorithm [13] to handle two interacting RNA sequences with kissing hairpins, and Alkan et al. [2] perform
interaction prediction using several energy models based on the Pervouchine algorithm and its extentions.

Prediction algorithms for RNA secondary structure can be divided into two types: namely, DP algorithms
based on free-energy models and DP algorithms based on parsing algorithms for formal grammars. As for the
grammar-based approach, context-free grammars (CFGs) have been widely used for analyzing pseudoknot-free
structure [7, 8, 17]. However, it is mathematically proved that the expressive power of CFGs is not sufficient
for describing pseudoknotted structure, and several grammars whose expressive power is greater than that of
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Figure 1: A joint secondary structure

CFGs have been proposed [10, 16, 19] (also see [1]). The relationship between the expressive power of each of
these grammars has been compared [6, 10].

This paper proposes a new method for RNA-RNA interaction prediction based on multiple context-free
grammars (MCFGs), which are natural extensions of CFGs. The expressive power of MCFGs is known to be
greater than that of CFGs. MCFGs have already been used for modeling single RNA secondary structure with
pseudoknots [10, 11]. To the best of the authors’ knowledge, this paper provides the first result on a formal
grammar-based prediction method for interacting RNA structure prediction. The main idea of the proposed
method is similar to that of the Pai:Fold algorithm. We align given two interacting RNA sequences both in
5’-3' directions. This pair of sequences may contain crossing pairs caused by intermolecular (external) bonds
located between intramolecular (infernal) bonds (see Figure 1 (b)). Then, the sequence is analyzed by a parsing
algorithm of MCFG, which can recognize those crossing pairs.

The rest of this paper is organized as follows. In the next section, we formally define RNA-RNA interaction
prediction problem. In sections 3 and 4, we introduce MCFGs and their subclass for modeling interacting RNAs
called RNA-RNA interaction grammar (RIG) respectively. Then, we present a prediction method based on the
stochastic version of RIG in the section 5. The results on some prediction tests are shown in section 6.

2 RNA-RNA Interaction Prediction Problem

We will use standard notions and notations on sequences (or strings), formal grammars and languages in this
paper. Let € denote the empty sequence. Let X be a finite alphabet. For a sequence w € ¥*, let |w| denote the
number of symbols appearing in w, which is called the length of w. First, we define joint secondary structure
between two interacting RNA sequences. Let ¥ = {A, C, G, U}.

Definition 1. (Joint secondary structure)

For two RNA sequences a = a1 +--a, € £* (Ja| = n) in 5’-3' direction and b = by - - - b, € T* (|b] = m)
in 3/-5 direction, let R,, (a € {a,b}) denote a set of position pairs (4, j) in each sequence that satisfies the
following conditions:

e 1<i<i+l<j<]|a
o Y(i,5),(#,j)) € Ra; i =14 < j =]
Also, let R, denote a set of position pairs (£, ) between a and b that satisfies the following conditions:
e (Ji; (i,k) € Ry or (k,i) € Ry) and (37; (4,1) € Ry or (I, 7) € Rp) => (k,1) ¢ Rap,
o V(k,1),(K',l') E Rop; k=K —=1=1.
Then, R = (Rg, Ry, Rap) is called a joint secondary structure between a and b.

Actually, R represents a set of hydrogen-bonded base pairs such as Watson-Crick pairs (A-U and G-C
pairs) and a wobble pair (G-U pair). Each pair in R, (o € {a,b}) is said to be internally bonded, while each
pair in Ry is called externally bonded. RNAs are likely to fold into structure with the lowest free energy, and
thus the structure prediction problem is often translated into an energy minimization problem. For simplicity
of description, we assume that the score function is the number of base pairs, which is to be maximized!, and
the base pairs consist of only Watson-Crick pairs. Note that this assumption does not change the essence of the
algorithm presented in this paper. Then, RNA-RNA interaction prediction problem is defined as follows:

! The maximization problem is equivalent to the minimization problem where the signs of scores s are inverted.



Definition 2. (RNA-RNA interaction prediction problem)
Input: two RNA sequencesa =a; ---ap and b= by --- by,

Output: a joint secondary structure R = (R, Rp, Rqp) between a and b that maximizes the following score:

E s{a;,a;) + Z s(bi, b;) + Z s{ag, by).

(4,3)€Rq (4,5)ERy (kD) ERay

The score function s is defined as follows:

s(€1,6) = { 1 ({&,&)={A,U}or {C,G}),

—oo  (otherwise).

To make the problem simple, we impose two constraints on a joint secondary structure R. It is known that
these constraints are satisfied by many example RNA-RNA complexes that have been observed.

Condition 1. (Pseudoknot free)

1. R includes no internal pseudoknots. Thatis, V(3,7), (#',7) € Ry (1 <i,a € {a,b}); i <i' <j<j
does not hold.

2. Rincludes no external pseudoknots. That is, V(k, 1), (k',1") € Rap (k < k'); I’ < I does not hold.

In this paper, we propose an appropriate class of grammars that can describe joint secondary structure
satisfying Condition 1. This class of grammars is a subclass of multiple context-free grammars, which are
introduced in the next section.

3 Multiple Context-Free Grammar

A multiple context-free grammar (MCFG) [9, 18] is a S-tuple G = (N, T, F, P, S), where N is a finite set of
nonterminals, 7" is a finite set of terminals, F' is a finite set of mcf-functions defined below, P is a finite set of
(production) rules defined below and S € NV is the start symbol. For each A € IV, a positive integer denoted as
dim(A) is given and A derives dim(A)-tuples of terminal sequences. For the start symbol S, dim(S) = 1. We
say that f is an mcf-function if a nonnegative integer & and positive integers d; (0 < ¢ < k) are given and f isa
total function from ()% x - - - x (T*)% to (T"*)%, where each component of the function value of f is defined
as a concatenation of components of arguments of f and symbols in 7. Each component of each argument of f
can be used at most once to define the function value of f (see [9, 18] for details). Each rule in P has the form of
Ag — flA1, ..., Ax) where A; € N (0 <4 < k)and f : (T*)4m(A0) x ... x (T%)dim(Ax)  (7*)dim(4o) ¢
F. If k > 1, the rule is called a nonterminating rule, and if k£ = 0, it is called a terminating rule. A terminating
rule Ag — f[] with f"I{] = B, (1 < h < dim(Ay)) is simply written as Ay — (1, . .., Baim(4q))-
We recursively define the relation = by the following (L1) and (L2):

(L1) IfA > @e P (aec (T*)4™A), we write A = @.

(L2) IfA — flA1,...,Ay) € Pand A; = @ (1 < i < k), we write A = f[a, ..., a5

Let G = (N,T,F, P,S) be an MCFG. For A € N, the set generated from A in G is defined as L4(G) =
{w € (T*)4™(4) | A S w} and the language generated by G is defined as L(G) = Lg(G).

Example 1. Let G; = (N1, Ty, Fi, P1, S) be an MCFG, where Ny = {S,A}, T\ = {a,b} and P, =
{§ — J[A], A4 — falA] | /4] | (e,€)} where dim(S) = 1, dim(4) = 2, J{(z1,22)] = z1z2 and
fal(@1, z2)] = (az1,azs) with o = a,b. By (L1), A = (e,¢) since A — (e,€) € Py. Since f,[(¢,€)] =
(a,a) and fy[(a,a)] = (ba,ba), we have A = (a,a) and A = (ba,ba) by (L2). Also by S — J[4],
S = J[(ba,ba)] = baba. In fact, L4(G1) = {(w,w) | w € {a,b}*} and L(G1) = {ww | w € {a,b}*}.



Table 1: Production rules of SRIG

Rule set Function Transition prob.  Emission prob.

Ay — (E,E) 1 1

Ay — J[A]* J{(z1,22)] = 2172 ty (y) 1

Ay — SBjilAy]  SBji[(z1,22)] = (031, 72) t(y) ev(as)
A, — SBE[A)] 8B il(z1,22)] = (2105, 22) tu(y) ev(ay)
Ay — SBR[A)] 8B [(w1,22)] = (21, brz2) to (y) e (br)
Ay — SBYp[A,)]  SBRL[(m1,32)] = (z1,72b1) o (y) e (br)
Ay — IB[Ay] 1By Y [(21,72)] = (07105, 2) to(y) ev(as, a;)
Ay = IBF[Ay]  IB3*"[(21,2)] = (21, bewaby) to(y) ev(br, br)
Ay — EB*™[A,]  EB*"[(z1,x2)] = (a1, 22b1) to(y) ev(ai, br)
Ay = WAy, Al W(z11, 212), (21, T22)] = (211221, T22212) tu(y, 2) 1

* Actually, this rule is excluded for the parsing algorithm.

A stochastic MCFG (SMCFG) G = (N, T, F, P,S) is a probabilistic extension of MCFG. Each rule in
P of an SMCFG has the form of 4q > flAz1, ..., Ag] where p is a real number with 0 < p < 1 called the
probability of this rule. The summation of the probabilities of the rules with the same left-hand side should be
one. We define derivation trees for SMCFG as follows:

S IfA B @ c P (a e (T*)4™(A), then the tree with a single node labeled A : @ is a derivation tree for &
with probability p.

S2) If A 2 flA1,..., Ag] € P and ¢1,...,t, with the roots labeled A;,..., Ay are derivation trees for
ag, - . -, 0 with probabilities p;, . . ., p, respectively, then the ordered tree with the root labeled A : f
that has ti, ..., tx as (immediate) subtrees from left to right is a derivation tree for f[ag, ..., o] with

probability p - [[%_, p:.

ForA e N,a e (T*)4™ (4D and g (0 < g < 1), we write A = @ with probability ¢ if ¢ is the summation of
the probabilities of derivation trees for @ with the root labeled A. The language generated by an SMCFG G is
defined as L(G) = {w € T* | § = w with probability greater than 0}.

4 RNA-RNA Interaction Grammar

We introduce a subclass of MCFGs for modeling RNA-RNA interaction, which we call RNA-RNA interaction
grammars (RIGs). The rules and functions of an RIG are shown in Table 1. The functions have mnemonic
names, where SB, I B, EB and W stand for single base, internal bond, external bond and wrapping respec-
tively. Note that a subscript of SB such as 1L indicates the position where a terminal symbol is concatenated.
For example, SBYi denote that a; is concatenated on the left end of the first component of the argument. An
RIG has M different nonterminals denoted by Ay, ..., Ay, each of which uses the only one type of func-
tion. Let type(v) denote the name of a function that A, uses. For example, we write type(v) = SByy if
A, — SB11[A,] is arule. Exceptionally, we write type(v) = F if A, — (g, ¢) is arule.

Forw = wy - -w, € L%, let w' denote the reverse of w, that is, W™V = w, ---w;. We will use a
particular RIG G such that R = (R,, Rs, Rap) is a joint secondary structure if and only if 4, =¢ (a,b™)
for a specific nonterminal symbol A, in G. That is, if a pair of sequences (a, b) constitutes a joint secondary
structure R, G derives a pair of sequences (a, b'V) where both of the components a and 5™V are arranged in
5/-3' direction, and vice versa.

The following observations are important for designing the rules of RIG G:

e Each rule that uses a function SB (with appropriate super/subscripts) in Table 1 derives a single base.
Rules that use functions IB and EB derive an internal bond and an external bond respectively. Pre-
cisely, I By and I B, construct internal bonds in the first sequence and the second sequence (both in 5'-3’
direction) respectively.
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Figure 2: A joint secondary structure and its corresponding derivation tree

e Condition 1.1 states that there is no internal pseudoknot, which implies that functions SB and I B are
sufficient for deriving secondary structures within each one of two sequences.

o Condition 1.2 states that there is no external pseudoknot, which implies that function E B is sufficient for
deriving external bonds and function W is sufficient for concatenating two pairs of sequences (a1, blrev)
and (as, b2™), resulting (a1az, 62"V b1™) = (a1as, (b1b2)™").

Therefore, the rules in Table 1 are sufficient for deriving joint secondary structures that satisfy Condition 1.
Although a mathematical proof for this claim is not difficult, it is omitted here due to limitation of the space,
which will be given elsewhere.

Example 2. The pair of RNA sequences shown in Figure 2 (a) can be generated by RIG rules shown below:

Al el (6,8), A2 ad EBQC[Aﬂ, A3 and IBfu[AQ], A4 — IBSC[A3],
As — EB™[A4], Ag — 1B As), A — IBE°[Ag), Ag — W[Ag, A7].

Note that the wrapping function W is applied as follows: after Ay = (agu, gcc) and Ay = (cag, wua),

Ag = W((agu, gcc), (cag, uwua)] = (agucag, uuagee). The derivation tree (the tree defined by (S1) and (S2),
without probabilities) for the pair of sequences (agucag, uuagee) is shown in Figure 2 (b).

We extend RIG to a probabilistic model called stochastic RIG (SRIG) in order to predict RNA-RNA interac-
tion. For each rule r of an RIG, two real values called transition probability p; and emission probability p are
specified as shown in Table 1. The probability of 7 is simply defined as p; - p2. In application, p; = ¢,(y) and
p2 = ey(a;), etc. in Table 1 are parameters for the grammar, which are set by hand or by a training algorithm.

5 Prediction Algorithm

Let G = (N,T,F,P,S) be an SRIG and (a, b) be a pair of input RNA sequences where a = a1 - a,
(la| = n) in 5'-3' direction and b = by -+ by, (|b] = m) in 3'-5 direction. Let ¢ = bV for simplicity.
The basic idea for RNA-RNA interaction prediction based on G is that we calculate the most likely derivation
tree for (a,c). The most likely parse can be done by a CYK-style parsing algorithm described below. Let
(i, j; k, 1) be the maximum log probability of a derivation subtree rooted at a nonterminal A, for a pair of
terminal subsequences (a; - - aj, ¢ - - - ¢1). The variable , (4,7 — 1; k, k — 1) is defined as the maximum log
probability for a pair of e. We let C(v) = {y | A, — f[Ay] € P, f € F}. For notational convenience, let
AL, ALE AL and AR be the number of symbols generated to the left and right of the first component and to
the left and right of the second component by A, respectively (see Table 2). Also, we will use e, (a;, a;, ¢k, ¢1)
for all emission probabilities. The parsing algorithm uses a five dimensional DP matrix to calculate -y, which
leads to log P((a,c),# | ) where 7 is the most likely derivation tree and @ is an entire set of probability
parameters. The detailed description of the algorithm is shown in Figure 3. When the calculation terminates,
we obtain log P((a,c),# | ) = v,(1,n;1,m), where A, generates (a, ¢) with the highest probability. The
time and space complexities of the algorithm are O(M?n3m?3) and O(Mn?m?) respectively. Note that if M is
small or does not depend on input sequences, these complexities are O(n3m?) in time and O(n?m?) in space
respectively. The optimal derivation tree can be constructed by a simple traceback procedure.



Table 2: The number of symbols generated by nonterminals
Type SBlL SBlR SBZL SBzR IBl IBQ EB

AL 1 0 0 0 1 0 1
ALR 0 1 0 ] 1 0 0
AZL 0 0 1 0 0 1 0
AZE 0 0 0 1 0 1 1

Initialization: for:=1ton+1L;k=1tom +1;v=1to M:
voliyi— 1k k1) =4 O (opelv)=E),
—oo  (otherwise).

Recursion: fori=ndowntol;j=4¢—1ton;k=mdownto ;I =k —1tom;v=1te M:
(type(v) = E),
(type(v) = SBir,SBiRr; j=1— 1),
—oo  (type(v) = SBar,SBer; L=k —1),

(type(v) = IBy; j < i+1),
—oo (type(v) =IBy; I < k+1),
Yo (6, 55k, 0) = § —00  (type(v) = EB; j=i— 1,0l =k —1),

JDax max . max k_rxllgffg[vy(z,p; g+ 1,0 +v(p+ 1,5k, q) + log tu(y, 2)]

(type(v) = W),
?&X)['}’y(i + A= AR+ AZE - AZRY logty (y) + log ev(as, ag, ck, 1))
Yy v

(otherwise).
Figure 3: The parsing algorithm for SRIG

6 Experimental Results

We performed tests on RNA-RNA interaction prediction using the parsing algorithm for G g3. Pairs of RNA
sequences taken as inputs for prediction are Tar-Tar* [S], DIS-DIS [14] and CopA-CopT [12], which are known
to have kissing hairpin loop structures. In the experiments, we used a grammar model named “energy-based
model (EBM), where rules were determined by taking global structure of kissing hairpin loop into considera-
tion, and (transition) probabilities of rules for generating stacking base pairs were set by incorporating stacking
energies at 37°C [21]. Note that this model can be regarded as a “generic” model in terms of ability to generate
arbitrary kissing hairpin loop. We implemented the parsing algorithm in Java (version 1.6.0_02) on a machine
with Dual-Core Intel Xeon processor 5160 3.00 GHz and 5.00 GB RAM. Since the parsing algorithm requires
huge memory space due to the higher order DP matrix, we implemented the matrix as a hash table that stores
only finite values of the log probabilities.

To evaluate prediction accuracy, we measured the sensitivity and specificity, which are the ratio of the
number of correctly predicted base pairs to the total number of base pairs in the reference structure, and the
ratio of the number of correctly predicted base pairs to the total number of predicted base pairs respectively.
Prediction results are shown in Table 3 and Figure 4. In the figure, the upper parentheses denote internal bonds
and the lower square brackets denote external bonds, and underlined base pairs indicate that they agree with
correct base pairs.

In addition, we constructed another grammar model named “profile-based model (PBM). The rules of PBM
were determined by utilizing reference joint secondary structure, and the probabilities were estimated by the
Laplace’s rule. We compared the prediction accuracy of our models with that of three models named base pair
energy model (BPEM), stacked pair energy model (SPEM) and loop energy model (LEM) presented in [2] for
CopA-CopT complex (see Table 4). We calculated the F-measure F', which is the harmonic mean of sensitivity
x and specificity y defined by F' = iﬁ'l As Table 4 shows, EBM is at least comparable to these three models
in the same test set. Note that the number of sequences used for determining the consensus structure in PBM
is only one. The experiment on PBM was performed to show that PBM achieves very high performance when




Table 3: Prediction accuracy for joint secondary structures
RNA-RNA complex (Reference) n m  Sensitivity [%]  Specificity [%] CPU time [sec]

Tar-Tar* (Figuré 1 in [5]) 16 16 100.00 93.33 33.65
DIS-DIS (Figure 1 in [14]) 35 35 78.57 78.57 540.18
CopA-CopT (Figure 2in [20]) 56 57 90.91 80.00 1281.77
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Figure 4: Joint secondary structure of CopA-CopT

the perfect information on the consensus structure is available. In the real setting, the performance of PBM will
become lower but is expected to be still high.

7 Conclusion

We introduced a new modeling for RNA-RNA interaction based on multiple context-free grammar (MCFG).
We then designed a polynomial time parsing algorithm for the specific subclass of MCFGs. Furthermore,
we carried out some experiments on joint secondary structure prediction. Even if an RNA-RNA complex
with internal/external pseudoknots is found, the MCFG-based method can be applied to this kind of sequence
because of its expressive power, which deserves explicit emphasis.
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