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‘The Hungarian method gives an efficient algorithm for finding a minimal cost perfect
matching. This paper describes an eflicient algorithm for finding all minimal cost perfect
matchings. The computational effort required to generate each additional perfect matching
is O(n®). And it requires O(n?) memory storage. Here we will show that the enumeration
of all minimal cost perfect matchings can be reduced to the enumeration of all perfect
matchings in some bipartite graph. Therefore our algorithm can be seen as an algorithm

for enumerating all perfect matchings in a given bipartite graph.
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1 Introduction

Let us consider a complete bipartite graph B, = (U,V, E) with row vertex set U,
column vertex set V, satisfying that |[U| = |V| = n, and edgeset E=UxV . A
malching M is a subset of edges no two of which are incident with a common vertex. A
matching M is perfect if each vertex is incident with exactly one member of M. Given
a cost function w: E +— @Q, where Q denotes the set of rational numbers, we define the
assignment problem (AP) as /the problem of finding an optimal matching, i.e., a perfect
matching M which minimizes the total cost > w(e).

Recently many algorithms for finding an :f;%imal matching of assignment problems
are developed. Perhaps the best known algorithm is the Hungarian method [2]. In this
paper we introduce an algorithm for finding all optimal matchings of the assignment prob-
lem. This problem can be solved by the algorithm for finding the Kth-best solution of
assignment problems developed by Murty [3]. However Murty’s algorithm requires O(n*)
computational effort to generate each additional perfect matching and O(Kn?) memory
storage. In the worst case, the number K becomes to n!. Our algorithm requires O(n®)
computational effort to generate each additional perfect matching, and it saves the mem-
ory storage to O(n?) By using the notion of lexicographic ordering. It will become clear
below that the problem finding all optimal matchings can be reduced to the problem of
finding all perfect matchings in a given bipartite graph. It implies that our algorithm can

be seen, as an algorithm for enumerating all perfect matchings in a given bipartite graph.

2 Foundmental Properties

In this section we describe a good characterization of optimal matchings.

For any finite set 5, we identify the function f : S +— R with the corresponding
vector in R®. For s € S, we abbreviate {s} by s. Forany v€ UUV, §(v) denotes
the set of edges incident to the vertex wv. ‘ |

AP may be stated as an integer linear program in the following way.
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(2.1) AP: minimize Y w(e) z(e)

e€EE

(2.2) subject to Y z(e) =1, YueU,
e€8(u)

(2.3) o : 3 z(e)=1, Ywev,
e€6(v)

(2.4) z(e) > 0, Ye€ E,

(2.5) z(e) is integer, Ye € E,

where 2 is a real-valued vector in RE.

It is well-known that the integrality constraints (2.5) are superfluous to AP. The convex
hull of all characteristic vectors (in RF ) of the perfect matchings is determined by the
inequalities (2.2), (2.3), and (2.4). Hence any feasible extreme point solution of the linear
program (2.1), (2.2), (2.3), and (2.4) is a feasible integer solution of AP.

The dual of this linear program is

D: maximize Y y(u)+ Y y(v)
u€lU veVY

subject to y(u) + y(v) < w(e), Ye = (u,v) € B,

where y is a real valued vector in RUYY,

The reduced cost of an edge e = (u,v) is defined by
ﬁj(e) = w(e) — y(u) - y(v)i €= (u) ’U) €kb.

Given a dual solution y € RY%Y (not necessarily feasible), the admissible set is a sub-
set of edges E(y) ={e € E:w(e) =0}, and the admissible graph is a bipartite graph
B.(y) = (U, V, E(y))-

Lemma 1 Let y* € RV be an optimal solution of the dual linear program D. Then

a perfect malching M of B, is optimal to AP, if and only if M C E(y).

Proof. Let 2™ € R be the characteristic vector of a perfect matching M. If M is

optimal to AP, then
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S y(w) + 3 pv) = 3 wle) zM(e)

uelU vEV : e€l

0= > w(e)a™(e)= 3 ="(e) (y(u) +y(v))

e€E e=(u,v)EE

0= 3 aM(e) (wle) —y(u) —y(v))

e=(u,v)EE

0= Y w(e)zM(e).

e€E
From the feasibility of y, @(e) > 0 for any edge e in E. It implies that M C E(y*).

We can easily verify the converse implication. O

From the above lemma, it is obvious that the problem to find all optimal matchings is
equivalent to the problem to find all perfect matchings in the admissible graph B,(y*),
induced from a dual optimal solution y*. A dual optimal solution y* can be obtained
easily by the Hungarian method. In the next section, we describe an algorithm for finding

all perfect matchings in a bipartite graph.

3 Main Framework for the Algorithm

Here we describe the main framework of our algorithm from the point of view of Kth-
best solution.

Let y* be an optimal solution of D, and let E* be the admissible set - E(y*). We fix
an ordering of the edges in the admissible set as E™ = {e1, e3, - - €,}. Given a sufficiently

small positive number €, the perturbed problem PP can be defined as follows.

(3.1)  PP: minimize — Y. € z(e:)
eEE*
(3.2) subject to Y. a(e) =1, YweU,
e€6(v)NE*
(3.3) > oz(e)=1, YueV,
e€S(u)NE*
(3.4) z(e) > 0, Ve € E*,
(3.5) z(e) is integer, Ve € E*,

where z is a real-valued vector in R”".
Any extreme point solution of the linear program (3.1), (3.2), (3.3), and (3.4) is an
integer solution of PP. The basic idea of our algorithm is to find the best, 2nd-best,

" 3rd-best, -- -, and Kth-best matchings of the perturbed problem PP consequently.

—128—




For any vector z,2' € RE", wesay =z is lezicographically greater than =’ , denoted

by = >, a', or &' <J,, =, if there exists 1 (1 <14 <gq) satisfying that:
lez : lex g

z(e;) =2'(e;), Ye;€B*,1<j<i,

m(e,—) > x'(e;).

If ¢ is a sufficiently small positive number, then it is obvious that for any z,z’ € {0, 1}E‘
> ez(e) < Y. e'r’(e) T & <ppa’.
e;EE* e;€E*
Now let 2 be the characteristic vector of the Kth-best ma.tching of PP, if exists.
Then it is clear that z(O >Ie‘z 2(E+1)_ For simplicity, we abbreviate z(e;) by =z(z) for

any z € RF". Let ig-K) be the index of the jth edge in the Kth-best matching. More
v precisely,
z(K)(igK)) = 1) V] € {12 2) T n},

1<l < < < il0 <.

Now we define the perturbed subproblem PPU) for » = 1,2,---,n to obtain the

(K + 1)st-best solution from the information of Kth-best solution.

PPU); minimize — Y e z(e;)
ei€E*
subject to (3.2), (3.3), (3.4), (3.5), and
2(e;) = 2%(es) 1<i<ild,
z2(e;) =0, i =0,

Then the following lemma yields the method for obtaining the (K + 1)st-best solution.
Lemma 2 Lel s be the smallest number satisfying:
m([()(igff)) — 1, m(1{+1)(i51()) — 0.

Then the following two statements hold.
(1) If s <t <mn, then the problem PPY) is infeasible.
(2) If 7 =35, then o+ is the unique optimal solution of PPUO,

—129—



Proof. (1) Let us assume that the problem PPUO is feasible. Then the boundedness
of the feasible region of PPY) implies that there exists an optimal solution z* of PP,

The assumption s < r < n implies that:

gE* ) (e)) = z*(e;) = 2 (e;), 1<i< i)
& (e) =0 and z*(e;) =¥ =1, i=il)

z*(e;) = 2%(es), () < i < i),
z*(e;) =0 and 2 =1, i = U0,

Then 2+ <0 2* <o o), and it is a contradiction.

(2) From the definition of PPU) it is clear that: (i) if « is a feasible solution of
PP, then z <, %) (i) ) is not feasible to PPY: and (iii) «&+V is feasible
to PPY). Tt follows that z¥+1) is optimal to PP From the form of the objective
function of PP, it is obvious that the objective values of all matchings feasible to PP are
different, and it implies the uniqueness of the optimal solution of PP(f( ), B

Now we describe our algorithm.

Algorithm
Step 0: [Initialization];
Solve the original assignment problem AP.
Let 2* and y* be the optimal solutions of AP and D.
Index the admissible set as:
E(y") = {e1, €2, -, eq},
so that: =z*(e;) =1, 1<i<mn, and

z*(e;) =0, n<i<q.
Set K :=1.

Set zUO) := g*,

Step 1: [Out put the Kth-best solution];
Out put 2U) as the Kth-best solution of PP.
Set K := K + 1.
Set r:=n-+1.
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Step 2: [Stopping Rule];
If r=1, then stop.

Else, set r:=r — 1.

Step 3: [Solve the perturbed subproble’m];
Solve the perturbed subproblem PP .
If PPYO s infeasible, then go to step2.

Else, set 29 be the unique optimal solution of PPUY and go to stepl.

4 Discussion of the Algorithm

In this section, we discuss about the computational bound of our algorithm.

The assignment problem AP in the step 0 and the perturbed subproblems PPUYO in the
step 3 can be solved by the Hungarian method in O(n®) computational bound [2]. Then
between the occurrences of the stepl, O(n*) computation are required. It implies that to
gener.ate each additional perfect matching, this algorithm requires O(n*) computational
effort. Here we describe the method to reduce the computational bound of the step 3. .

In the step 3, first we only need to know whether the perturbed subproblem PP(,K) is
feasible or not. Next if the perturbed subproblem PP is feasible, then we need to solve
the’problem PPYO. It implies that the step 3 can be replaced by the following one.
Step 3’: Step 3.1 Check the feasibility of the per'gurbed subproblem P‘P(,K) .

If PPY9 is infeasible, then go to step2.
Step 3.2 Solve the perturbed subproblem PP(rK) .

Set 26) be the unique optimal solution of PP*) and go to stepl.

Now we consider the computational bound of step3.1 . Let E; be the subset of
admissible set which correspond to the variables fixed to 1 in the perturbed subproblem
PPUO | And let E’ be the subset of admissible set which correspond to the variables
unfixed in the perturbed subproblem PP(,K) . If there exists a pérfect matching M in

the admissible graph satislying that £'U E; D M D E), then the characteristic vector
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of M is a feasible solution of the problem PPU). And the converse implication also
holds. Then the step 3.1 can be reduced to the maximum cardinality matching problem.
The maximum cardinality matching problem can be solved in O(n*®) computation [1].
However we can reduce the computational complexity of the step 3.1 even more. Let
ME) be the Kth-best perfect matching of PP. Then the edge subset M)\ {ego} is
a (n—1) cardinality matching, satisfying that E'U E; D MY\ {eqgo} 2 Ei. By using
this matching as an initial solution of the maximum cardinality matching algorithm, it can
be solved in O(n?) computation (see the chapter 10 of [4]). It implies that between the
occurrences of the step 3.2, O(n®) computation is required. In the stepé.Z, the perturbed
subproblem PP can be solved by Hungarian method in O(n®) computation. Therefor
the computational steps required between the occurrences of the stepl is O(n?).

In this algorithm, to find the (K + 1)st-best solution of PP, we only need to maintain
the admissible graph and the Kth-best solution. At this point, our algorithm differs from
Murty’s algorithm for finding K th-best solution. And it is clear that our algorithm requires

only O(n?) memory storage.
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