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We study the complexity of computing optimal solutions for NP optimization problems
whose solution costs are bounded above by a polynomial in the length of their instances (we
call such an NP optimization problem an NPCOP). We first show that for any NPCOP
I1, there exists a po]ynomial-time bounded randomized algorithm which, given an instance of
I, uses one free evaluation of parallel queries to an NP oracle set and outputs some optimal
solution with very high probability. We then show that for several natural NPCOP’s, any
function giving those optimal solutions is at least as hard as all functions in PFLF.
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1 Preliminaries

We assume that the reader is familiar with the basic concepts from the theories of optimization
problems and computational complexity. We use £ = {0,1} as our alphabet. By a language
or a set, we mean a subset of £*. We denote by |z| the length of a string z. The empty
string is denoted by A. For any finite set A, ||A|| denotes the number of elements of A and x4
denotes the characteristic function of A. Let AS™ and A=" denote the sets {x € A : |z| < n}
and {z € A : |z| = n}, respectively. For any sets A and B, A® B denotes the marked union
of A and B; that is, A@ B= {0z : z € A}U{ly : y € B}. The symbol @& is also used to
denote the exclusive-or operation of Boolean values. We write N for the set of non-negative
integers. Let bin(n) be a standard binary representation of non-negative integer n over ¥, and
write log(n) to mean the base 2 logarithm of n for n > 0. We assume a standard one-to-one
pairing function from X* x £* to £* that is polynomial-time computable and polynomial-time
invertible. For strings = and y, we denote the output of the pairing function by (z,y); this
notation is extended to denote any k-tuples for & > 2 in a usual manner.
An optimization problem I is a quintuple (op, D, S, R, c), where

(1) op € {maz,min} is the underlying operation (i.e., maximization or minimization),

(2) D is the set of instances,

(3) S is the set of feasible solutions ,

(4) RC D x S is the instance-solution relation, and

(5) ¢: D xS —N is the solution cost function (for simplicity, we consider only

the case that all costs are non-negative integers).

We call II a mazimization problem if op = maz and call it a minimization problem otherwise.
To each instance z € D, we associate a finite subset S(z) = {y € S : R(z,y) holds true },
and call it the solution space of x. The optimal cost function ¢* : D —N of Il is defined by

c(z) = op{c‘(m,y) Y€ S(a:)}

and the set of optlmal solutlons for an instance z € D, optsoln(m), is defined by

optsoly(2) = {y € S(x) : e(x,y) = (@)}-

The objective in solving a given optimization problem II is to compute an optimal solution for
any instance of II. We particularly note that examining the complexity of computing optimal
solutions but not just giving optimal costs is the essence of this paper.

A combinatorial optimization problem is an optimization problem = (op, D, S, R, c) for
which there exists a polynomial p such that for all z € D and all y € S(z), ¢(z,y) <
p(|z]). We call a combinatorial optimization problem II' = (op, D, S, R, ¢) an NP combinatorial
optimization problem (N PCOP for short) if it satisfies the followmg additional conditions:

(1) D, S, and R are polynomial-time decidable,

(2) c¢is polynomial-time computable, and ‘

(3) for some polynomial p, all z € D, and all y € S, y € S(z) implies |y} < p(|z]).
When II is a maximization (resp., minimization) problem, we see from these conditions that
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the problem of deciding whether, given an instance z € D and a natural number k, the optimal
cost ¢*(z) is at least (resp., at most) k is decidable in NP. This is the reason why II is called
an NP combinatorial optimization problem. Throughout this paper, we will deal with only
NP combinatorial optimization problems.

When discussing the upper bound of the complexity of computing optimal solutions for
a given NPCOP II, we may only require an algorithm solving II to compute some optimal
solution for any given instance of II. In particular, when we consider a randomized algorithm
solving the NPCOP, the algorithm may produce some different optimal solutions depending
on random bits used; we will never require the algorithm to compute a single optimal solution
independent of random bits used. Only a requirement to randomized algorithms is that for
each instance, they must compute some optimal solution with very high probability.

On the other hand, when discussing the lower bound of the complexity of computing optimal
solutions for a given NPCOP, we will examine the relative complexity between solving the
NPCOP and the other classes of problems, as in the theory of NP-completeness. Intuitively
speaking, we want to show that solving the NPCOP is at least as hard as a problem whose
computational complexity appears to be settled. As mentioned in the introduction, we regard
the problem of solving an NPCOP as a class of functions giving an optimal solution for
any given instance of the NPCOP, and the opponents compared with those functions are
functions in the class PF*. Thus, with each NPCOP II = (op, D, S, R, ¢), we associate a
class OPTSOLp of functions defined by

OPTSOLp = {F:D — S : (Vz € D)[F(z) € optsoly(z)] }

Then, the reducibility notion below will capture the above purpose.

Definition 1.1 Let F and H be two classes of functions, and let H be a function. Then,
H is uniformly polynomial-time 1-Turing reducible to F, in symbols H <yrm=FFp if there
exist polynomial-time computable functions f and g such that for every function F' €F and
every ¢ € X*, H(z) = g(z, F(f(z))). We call the pair (f, g) a <y™ferm=PF_reduction of H to F
(note that the reduction (f, g) of H to F must be the same for all functions chosen from F).
F is <umfom—PF_p,rd for H if every function in H is <yniform—PF_reducible to F.

If we can show that some OPTSOLp is S‘l“_‘i{?"“_PF-hard for PFNF| then we see that com-
puting optimal solutions for the NPCOP II is at least as computationally hard as computing
the hardest functions in PFNF. ,

We finally mention some complexity classes that we deal with in the present paper. Through-
out this paper, we mean by an NTM a nondeterministic Turing machine. Let NP be the class
of sets accepted by polynomial-time bounded NTM’s. A language A is NP-hard if for any
language B in NP, there exists a polynomial-time computable function f such that for every
z€X* z€ Aifandonly if f (z) € B. PFNP is the class of all functions F for which there exist
a set A in NP and two polynomial-time computable functions g, e such that for all strings :z:,A
F(z) = e(x,xa(y1), -y Xa(ym)), where g(z) = {y1,-+,ym). More intuitively, a function F
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is in PFNF if there exist a polynomial-time bounded deterministic oracle transducer (DOTM
for short) N and a set A €NP such that N4 computes F' and N on all inputs prepares all
query strings before asking them to the oracle set A. In Section 3, we will use this intuitive

definition of PF)Y, to describe an algorithm computing a function in PFN'.

2 An upper bound of computing optimal solutions

For any strings ¢ and y in {0,1}", let = - y denotes (z1 Ay1) ® --- ® (z. A y,), where z;
(resp., y;) denotes the i-th bit of z (resp., y) and @ denotes the exclusive-or. Let X be a
finite set of strings and @ be a predicate over strings. We denote by Prob{w;,---,w €
X : Q(ws,---,wk)} the probability that Q(wi,---,ws) holds for strings wy, -+, wy chosen
randomly from X under uniform distribution. Then, Valiant and Vazirani showed the following
result:

Theorem 2.1 [8] Let n be a positive integer. Then, for any subset S of {0,1}",
Prob{ wy, e, wy, € {0,131 ¢
@ 0<i<n)I{yes : (Vi1<i<jly-wi=0}|=1]} 2 &

Theorem 2.2 Let Il = (op, D, S, R, c) be an NPCOP and let e be any polynomial. Then,
there exist a function G €PFNF and a polynomial r such that for all z € D with |z| = n,

Prob{w € {0,1}™ : G(z,w) € optsoly(z)} > 1 — 27,

Proof We consider only the case that Il is a maximization problem. The other case is quite
similar. For simplicity, we assume that there exists a polynomial ¢ such that for all z € D
and all y € S, y € S(z) implies |y| = ¢(|z|). We lose no generality under this assumption.
Let p be a polynomial such that for all z € D and all y € S(z), ¢(z,y) < p(|z|). Then we first
define two sets A and B as follows:

A ={{z,i) : 1> 0, z has a solution with cost 7}
B={(z,i,j) : 2€D, 0<i <p(lal), 1 < < q(lel), and
there exists a y € S(z) with cost ¢ such that the j-th symbol of y is 1}
(i, 01, we) © € D,0<i<p(lel), 1< < qllel), 1 < k < qlla),
wy, « o, wi € {0,1}902D and there exists a y € S(m) with cost ¢ such
that the j-th symbolof yisl andy-w, =---=y- Cwg = 0}.

Obviously, A and B are in NP. Thus, we have A @ B €NP. We also define the polynomial
r by r(n) = 3. e(n) - q(n)2.

Below, we define a deterministic oracle transducer N which uses A @ B as an oracle set.
Given an instance = € D with |z| = n and a string w € {0,1}"™, N operates as follows:

Step 1. N computes the optimal cost ¢*(z). This is done by aéking the queries (z,0), (z,1),
-+ (z,p(n)) to the ora.cle set A and computing the largest integer k (= ¢*(z)) such that
(z,k) is in A.
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Step 2. Let wy, ws, -+, W3e(n) be the strings in {0,1}"("‘)2 such that wyw; -« wam) = w,
and for every I, 1 <1 < 3e(n), let wyy, -, wiqem) be the strings in {0,1}9™ such that
Wyt Wg(n) = wi. Then, by asking queries to the oracle set B, N computes strings s;1.m
as follows: for all 4, I, m such that 0 < i < p(n), 1 <1< 3e(n), and 0 < m < ¢(n),

(@) sizo = x5((z,4,1))x({2,%2)) - x8({2,4,4(n))) and
(b) Silm = XB((m, i7 17 Wiy awl,m)) e XB((*T, i) Q(n)’ Wiyt ’vwl,m)) for 1 <m S q(n)'

Step 3. Let &k = c*(:z:) If sgym € S(z) for some ! and m, then N outputs the string i im;
otherwise, N outputs nothing (in this case, the function computed here is supposed to
be "undefined” on z and w).

Let G denote the function computed by N4®B, We can easily see that N is polynomial-time
bounded and each query string is prepared independently of the other query strings; hence,
the query strings made by N on input (z,w) can be realized as parallel queries to the oracle
set A@® B. Thus, G is in PFNF. To show that G satisfies the theorem, we first show the

following claim:

Claim Suppose that for some [ and m, ||{y € optsoly(z) : y-wy =y -wy =--- =
wym = 0}|| = 1. Then sgm is an optimal solution of z, where k = c*(z).

Proof of Claim. Let y be the unique optimal solution of z in the set {y € optsoln(z)
Y w, =+ =y W, = 0}. Then we see, from the definition of B, that for all 1 < j < ¢(|z|),
xa({z, k,j, W, Wim)) = 1 iff the j-th bit of y is 1. Thus, we have sz;,, = y. |

From this claim and Theorem 2.1, we have that for all z € D with |z| = n,
Prob{w € {0,1}'™ : G(z,w) € optsoly(z)}
= Prob{w € {0,1}'™ : (3l,m,1 <1< 3e(n),0 <m < q(n))[sce(z)1,m € optsoly(z)]}
> Prob{w € {0,1}™ : (3,m,1 <1< 3e(n),0 < m < q(n))

[I{y € optsoly(z) : y-wig ="+ =y-wm =0} =1]}
1 — [t Prob{w,s,-- -, wigm) € {0,1}9™ : (Vm,0 < m < ¢(n))
[ I{y € optsoly(z) : y-wy=---y-wm=0}|#1]}
1 — (%)33(11) = 1_ (g)e(n) > 1-— 9~¢(n)
Thus, we have this theorem. [ I

3 Hardness of computing optimal solutions

In this section, we first give a sufficient condition for showing that for a given NPCOP II,
OPTSOLy is <}®ifem-PF_hard for PFNP. We use the following notions in the general result.

Definition 3.1 Let II = (op, D, S, R, c) be an optimization problem. Then, we define the
decision problem Ly associated with II as follows:

Ly = {(z,k) : z € D, kis a non-negative integer, and c*(z) 6 k},
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where 6 is < (less than or equal to) if op = min, and 0 is > (greater than or equal to)
otherwise. II is said to be linearly paddable if there exist two polynomial-time computable
functions fy: Dx D — D and fo: D x D xS — S xS such that
(a) for all z4, 3 € D, |fi(z1, z2)| = O(|z1] + |22]), and
(b) for all x4, z3, z € D, and all H €OPTSOLy, if z = fi(z1,22) and fo(z1, 22, H(z))
= (y1,¥2), then y; €optsoln(z,) and y, Eoptsolp(z2).

Theorem 3.1 Let Il = (op, D, S, R, c) be a linearly paddable NPCOP whose associated
decision problem Ly is NP-hard. Then, OPTSOLy is <ptiform=PF_hLard for PFRNP
Proof We define a function @ as follows:

Qn((z1, k1), (z2,k2), 3 (Tmy km)) = XLn ({21, F1)) X210 ({Z25 K2)) - - - X2 ({Z 5 K ))-

Since Ly is NP-hard, we easily see that for all F €PFN\', there exist two polynomial-time
computable functions g; and g, such that for all z € £*, F(z) = g2(z,Qn(g:1(z))). Thus it
suffices to show that Qp is 5‘1“_‘i{?"“‘PF -reducible to OPTSOLy.

Let {zy,k1), -+, (Tm, km) be arbitrary arguments to Qn. For simplicity, we assumt that
m = 2! for some [ > 0; otherwise, we may add some dummy arguments to the original ones
so that the resulting number of arguments becomes a power of 2. Let f; and f, be two
polynomial-time computable functions witnessing that II is linearly paddable. That is,

(a) for all zy, z; € D, |fi(21,22)| = O(|z1| + |22]), and

(b) for all z;, x5, z € D and all H €OPTSOLp, if z = fi(z1, 22) and fo(z1, 22, H(z)) =

{y1,¥2), then y, Eoptsoln(z;) and y, Eoptsoln(zs).
Then we inductively define 2m — 1 instances I}j ) of I as follows:
(1) I = z; for all i satisfying 1 < i <m, and
(2) I(’) HUISD, IG7Y) for all § and i satisfying 1 < j <land 1 <i <29,
Furthermore, we define a function g as follows:

(21, k1), (@, ) = 1.

Then, we easily see by induction on j that for some constant d > 0, all 7, and all ¢, |I;(j) | <
d’ - (Cre, |za]). Hence, we have that 11"} is bounded above by a polynomial in Y7, |z4l.
From this and the polynomial-time computability of f;, we see that g is polynomial-time
computable. Let H be an arbitrary function in OPTSOLy and.let H (I,m) = s(0. Next,
we show that from 2y, -+, 2, and s{¥), we can compute optimal solutions for the instances
Ty, Ty, -+ +, T in time polynomial in Y5, |zn|- By using the function fz, we can compute
optimal solutions s( 1 and s(l Y for I (=1 and I (- 1), respectively, from s, I} (I"l) and Ig_l).

Using f; again, we can further compute optimal solutions sgl 2)‘, g’ 2) (' 2), a,nd 3(1_2) for

I(l—z) I(:_z) I(l—z) and I('—Z), respectively, from 3('—2), (1—2) 1(1—2) . I(l 2) By using f

( ) . S,?) for the instances

repeatedly in this way, we can finally obtain optimal solutxons S3 ;
Zy, +*+, T, respectively. Since f; is polynomial-time computable and isused 2! =1 =m —1
times in the whole computations above, we see that the above computations can be done in

time polynomial in 37, |zx]. To get the value of Qu({z1, k1), -, (m, km)), we may compare
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each ¢(z;, s; )) with k;. Since ¢ is polynomial-time computable, all the comparisons can be
done in polynomial-time. This gives us a S“T“"“‘PF reduction of Qg to OPTSOLy. |

We next show that several well-known NPCOP’s are linearly paddable. For the graph-
theoretic problems below, we suppose that each graph is encoded by its adjacency matrix, an
n by n (0, 1)-matrix whose (¢, j)-component is 1 if and only if the i-th vertex is connected to
the j-th vertex in the graph, where n is the number of vertices in the graph and all vertices
are assumed to be indexed by 1 through n.

Theorem 3.2 The following NPCOP’s are linearly paddable:
¢ MAXIMUM TWO SATISFIABILITY (MAX2SAT for short):
Instance: A CNF Boolean formula ¢ such that each clause of ¢ contains at most
two literals.
Output: A truth assignment to the variables under which the maximum number of
clauses become true.
e MAXIMUM CLIQUE (MAXCLIQUE for short):
Instance: An undirected graph G.
Output: A maximum clique of G.
e MINIMUM COLORING (MINCOLOR for short):
Instance: An undirected graph G = (V, E).
Output: A partition (Uy, Us, - -+, Ui) of V such that k is the chromatic number of
G and no two vertices u, v of G belong to the same U; whenever {u,v} € E.
(Below, we simply call such a partition of V a k-coloring of G.)
e LONGEST PATH (LONGPATH for short):
Instance: An undirected graph G.
Output: A longest simple path in G. ,
¢ 0-1 INTEGER PROGRAMMING (01IP for short):
Instance: A 3-tuple (A, B,C) of a (0,1)-matrix and two (0,1)-vectors.
Output: A (0, 1)—vector X maximizing CTX subject to AX < B.
¢ 0-1 TRAVELING SALESPERSON (01TSP for short): '
Instance: An undirected complete graph G with weights 0 or 1 on the edges.
Output: A shortest traveling salesperson tour in G.
All decision problems associated with the NPCOP’s in Theorem 3.2 are well known to be
NP-complete [1, 2, 3, 5, 7] (see [2] for a comprehensive reference). Thus, we have the following
. corollary. '

Corollary 3.3 For any NPCOP 1I in Theorem 4.2, OPTSOLn is <yniform-PF _hard for
PFNP.
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4 Conclusion

Some interesting questions still remain open. A natural question closely related to this work
is whether PFNF-hardness of NPCOP’s as in this paper implies the linear paddability of the
NPCOP’s. A typical NPCOP for this question is LONGEST CYCLE, the problem of finding
a longest cycle of a given undirected graph. It is not so hard to show that LONGEST CYCLE
is PFNP_hard in the sense of this paper, but it seems slightly hard to show that the problem
is linearly paddable. A relaxed version of linear paddability can be considered. For instance,
we can consider polynomial paddability which is defined by removing the condition (a) in the
definition of linear paddability, In fact, it is not so hard to show that LONGEST CYCLE
is polynomially paddable. However, we have not been able to show that the polynomial
paddability of NPCOP’s implies PFN\F-hardness of the NPCOP’s, as in Theorem 4.1. As
mentioned by Krentel [6], there are some N PCOP’s which have not been classified yet. Some
typical NPCOP’s are BIN PACKING and EDGE-COLORING [4].
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