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Satoshi Taoka, Toshimasa, Watanabe and Kenji Onaga

Faculty of Engineering, Hiroshima University,
4-1, Kagamiyama 1 chome, Higashi-Hiroshima, 724 Japan.

The subject of the paper is to propose an O (|V|+|E|) algorithm for finding all 3-edge-components of a
given multigraph G=(V.E). This algorithm can be used in detecting whether G is 3-edge-connected or not in
O (JV|HE]) time, or can be modified into an O (IV|2+|E|) algorithm for determining all cutpairs of G. An 3-
edge-component of G is defined as a maximal set of vertices such that G has at least three edge-disjoint paths
between everypair of vertices in the set. The algorithm is based on the depth-first search (DFS) technique.
For any fixed DFS-tree T of G, cutpairs of G are partitioned into two types: a type 1 pair consists of an edge
of T and a back edge; a type 2 pair consists of two edges of T. All type 1 pairs can easily be determined in O
(IVI+E]) time. The point is that an edge set KE(T) in which any type 2 pair is included can be found in O
(IVI+{E}) time. All 3-edge-components of G appear as connected components if we delete from G all edges-
contained in type 1 pairs or in this edge set KE(T). '
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1. Introduction

The subject of the paper is to propose an O(iVI+IEl)
algorithm for finding all 3-edge-components of a
given multigraph G=(V,E). This algorithm can be used
in detecting whether G is 3-edge-connected or not in
O (IVI+IEl) time, or can be modified into an 0(IVI2+IEI)
algorithm for determining all cutpairs of G. This
algorithm and the result in [11,12] make an O(IVI+IEl)
algorithm for the 3-edge-connectivity augmentation
problem. An 3-edge-component of G is defined as a
maximal set of vertices such that G has at least three
edge-disjoint paths between every pair of vertices in
the set. A cutpair is a pair of edges whose deletion
from G result-in a graph with more components than
G and such that deleting only one edge of the pair
does not have such a property.

Generally, for m21, an m-edge-components of a
multigraph G (an m-vertex-component of a simple
graph G, respectively) is defined as a maximal set of
vertices such that, for any pair of vertices in the set,
G has at least m edge-disjoint (m internally-disjoint)
paths between them [8,9,10]. It is known that if ms<2
then alt m-edge-components and m-vertex-
components can be found in O (IVI+IEl) time by using
DFS (see [1,2]). [5] proposed an O (IVI+IEl) algorithm
for dividing a graph G into triconnected components,

and it is useful in computing all 3-vertex-
components. [9] showed an O (IVI(IVI+IED)) algorithm
for finding all 3-edge-components. It is known that
finding all m-edge-components (m-vertex-

components, respectively) can be done by repeating a
maximum flow algorithm O (IVl) times [6] (0(IVI2)
times; see [2]). Recently [7] has shown that, for any
given k21, all m-edge-components with msk can be
computed in O (IEI+k2IVI2) time. )

2. Preliminaries

Some definitions are explained with examples.
Technical terms not specified here can be identified
in [1,4,7,]. An undirected multigraph G=(V,E) consists
of a vertex set V and an edge set E; they may be
written as V(G) or E(G). Since any 3-edge-component
is a subset of a 2-edge-component, we can assume
without loss of generality that G is 2-edge-connected
throughout the paper unless otherwise stated. If G is
directed then the edge set is denoted as A(G). A
directed edge from u to v is denoted by <u,v>; an
undirected edge is written as (u,v). A directed path
from u to v of G is called a <u,v>-path and is denoted as
Pg<u,v>; Pg(u,v) is used for an undirected path. The
subscript G is often omitted unless any confusion
arises. For PcV(G) and QcE(G), the graph defined by
their deletion is denoted by G-(PuQ). If PUQ={s} then
we denote as G-s. An m-component means an m-
edge-component unless otherwise stated. The edge-
connectivity of G is denoted by ec(G). A bridge is an
edge e whose deletion increases the number of
components.

Suppose that ec(G)z2. Choose any vertex_r and
execute DFS starting from r. A directed graph G=(V.,E)
is defined from G by this DFS, and directed edges in E
are partitioned into two sets A(T) and BA(T): A(T)
defines a directed spanning tree T=(V,A(T)), called a
DFS-tree; BF(T) does a graph BF(T)=(V,BA(T)), called
the back forest. Edges of T (of BF(T), respectively)
are called tree edges (back edges). T is fixed in the
following. T<v> denotes the subtree of T having v as
the root. 'Let dfn(v) denoted the order of visit to v by
this DFS, and, for simplicity, v is identified with dfs(v)

unless otherwise stated. If G is a multigraph of Fig. 1
then an example of T and BF(T) are shown_in Fig. 2,
where each number denotes dfn(v). G and G are used
interchangeably for notational simplicity: although
any cutpair {(v,w),(x,y)} is a subset of E(G), we often
consider the pair as ([<v,w>,<x,y>)gE and say that
{<v,w>,<x,y>} is a cutpair of G or of G. Graphs G and G
are given as a set of edge lists LG(v), ve V. The
DFS_tree T and the back forest BF(T) are represented
as sets of edge lists LT(v) and LB(v), ve V, respectively.
Each of LG(v), LB(v) and LT(v) consists lists of edges
incident upon v. An edge <v,w> is often denoted as
(v,w).

Cutpairs of G are partitioned into two type: a type 1
pair consists of a tree edge and a back edge; a fype 2
pair consists of two tree edges. For each ve V(G), let

lowptG(v)=min{bl T has a <v,a>-path and there is a
back edge <a,b>},

LE(v)=(a,b), where b=lowptG(v) and the back edge

" <a,b> is the one by which b is

set to lowptg(v),

mediumg(v)=lowptg(v), where G'=G-LE(v).
It may happen that lowptg(v)=mediumg(v). The value
lowptg (v) is known as the "lowpoint" number (see
[1]). The subscript G is often omitted for simplicity
unless any confusion arises. If v=5 in Fig. 2 then
lowpt(v)=1, LE(v)=(1,8) and medium(v)=2. We partition
V(G) into sets Q],...,Qp, where each Q; is a maximal set
such that lowptg(u)=lowptg(u') for any pair u, u' in
the set. Let F; denote the subgraph of T such that the
edge set is [<u,u>e A(T) u'e Qj}, I<i<p. Generally F;
consists of some directed trees. For G of Fig. 2, we have
V(F1)=(1,...,8) with lowpt(u)=1, V(F2)={5,9,10,11} with
lowpt(u)=5, V(F3)={9,12,13} with lowpt(u)=9 and
V(F4)={4,14} with lowpt(u)=4. We partition each Fj into
one or more edge-disjoint paths. For simplicity we
explain how to partition Fjin the case where Fj itself
is a tree. First choose a directed path Pj; from the root
of F; (from a source vertex of Fj in general) to a leaf,
and Fj« Fj-A(Pj)). IF A(Fj)#¢ then find a maximal
directed path Pj; containing an edge <v',w'>e A(Fj)
with v'=min{v"e V(Pj)l <v",w">e A(Fj}. Fj«Fj-A(Pi2)
and repeat the same procedure until A(Fj)=¢. Let
{PBy,...,PBL} be the set of all such paths finally
obtained, where the starting or ending vertex of PB;
is denoted as sj or tj, respectively. Note that
A(PB{)nA(PBj)=¢, if i#j. This set of paths are called a
path-partition of T. It will be shown in Section 5 that
a path-partition of T can be obtained in O (IVI+IEl)
time. A path-partition (PBj,...,PB4} is given in Fig. 3,
where V(PB{)=V(F;) and PB; is denoted by bold
directed lines, 1<i<4. It will be shown in Section 6 that
any type 2 pair is included in some PB;j.

The following definitions are given with respect to
each PB;. For any vertex ue V(PBj), let T'=T-V,,, where

Vo= V(T<v>) if <u,v>e A(PBj),

¢ if u=tj.

A path Pg<u,u> is called a back-path of u (with
respect to PBj) if the following (1)-(3) hold:

(1) u'e V(P<r,u>),

(2) any inner vertex of Pg<u,u’> is not contained in
V(PBj), .

(3) the last edge<u”,u> of Pg<u,u’> is a back edge and
any other edge is in A(T').
There may be more than one back-path of u. For PB;
of Fig. 3, there are two back-paths of the vertex 4
shown in Fig. 2, where both of their vertex sets are
{4,14,3}). For each vertex ue V(PBj), define

Bi(u)=(u'lthere is a back-path Pg<u, u> of u with
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respect to PBjju{u},
local_minj(u)=|"i if minBj(u)<s;,
minBj(u) otherwise,
local_high;j(u)=max{{u'e V(Pt<u,t;>)l there is a back-
path PG<u',u> of u' with respect to
PBjjufu}}.
In PBj of Fig. 3, local_minj(4)=3, local_minj(5)=5,
local_high(3)=4 and local_highj(7)=8.

3. Type 1 pairs

First we find all type 1 pairs of G in this section.

Lemma 1. Let {(v,w),(x,y)} be a pair of edges such

that <v,w>e A(T) and <x,y>e BA(T). {(v,w),(x,y)) is a type
I pair if and -only if lowpt(w)<w, LE(w)=(x.y) and
medium(w)=w.
Proof. Suppose that lowptg(w)<w and mediumg(w)=w.
Then G'=G-LE(w) has lowptg(w)=mediumg (w),
meaning that both v and w are cutpoints of G'. That is,
{(v,w), LE(w)} is a type 1 pair.

Conversely suppose that {(v,w), (x,y)) is a type 1
pair. Since G is 2-edge_connected, LE(W)(=(x,y))
always exists and (x,y) is a bridge of G-(v,w). Hence
lowpt(w)<w. We have medium(w)sw by the definition.
If suffices to show that medium(w)=w. Assume that
medium(w)<w. Then, by the definition of medium(w),
F=G-{<v,w>, <x,y>} has a directed path beginning from
w, passing through edges of T intermediately and the
edge <a,b>e BA(T) with b=medium(w) finally where b is
on the <r,x>-path. This means that {(v,w), (x,y)} is not
a cutpair, a contradiction. Thus medium(w)=w.0

All type 1 pairs of G can be found by means of
procedure type_I(v) in O(IVI+IEl) time. First execute
the following initialization:

ie1;

LT(v)«¢, LB(v)«¢ , LE(v)e~dummy for all ve V;

choose a vertex r as a starting vertex,
and then the following procedure
repeated. ’

type_l(v) is

procedure
begin
dfn(v)«i; lowpt(v)ei; medium(v)ei; i—i+1;
for every edge (v,w) of LG(v) do begin
[G is represented by a set of lists LG(v) of edges
incident ve V(G).}
if w is unvisited then
LT(v)&LT(v)u{(v,w)};
[LT(v) is a list of incident edges upon v]
type_l(w);
if lowpt(w)<lowpt(v) then begin
medium(v)« min{lowpt(v),medium(w)};
lowpt(v)«<lowpt(w); LE(v)eLE(w) end
else .
medium(v)«—min{medium(v),lowpt(w));
if (lowpt(w)<w) and (medium(w)=w) then
mark edges (v,w) and LE(w) "type 1" end

type_1(v);

begin

else
if (<v,w>g A(T)) and
(dfn(v)>dfn(w))
LB(v)<LB(v)u{(v,w));
[LB(v) is a list of incident edges]
if dfn(w)<lowpt(v) then begin
medium(v)« lowpt(v);
lowpt(v)edfn(w); LE(v)e<v,w> end
else
medium(v)e min{medium(v),dfn(w))

then begin

end
end
end;

Lemma 2. All type 1 pairs of G can be found in

O(IVI+IEl) time by using procedure type_1i(v).
Proof. For any fixed vertex ve V, we can prove the
following proposition by induction on the number
that  procedure type_1(v) moves (forward or
backward), from v to other vertices:

Proposition 1. Let A(v) denote the set of all back
edges that have been visited by the procedure until it
moves from v to any other vertex. Then the current
values of lowpt(v) and medium(v) satisfy the
following (i) through (iii): :

(i) lowpt(v)=min{bl<a,b>e A(v)} if A(v)=¢.

(ii) LE(v)=(a,b) if LE(v)#dummy, where <a,b> is the

edge which sets b=lowpt(v).

(iii) medium(v)=min{wi<v,w>e A(v)-{LE(V)) if A(v)-
{LE(v)}#6¢, where LE(v) denotes the back edge
corresponding LE(v).

Hence it is shown that
correctly compute lowpt(v), medium(v) and LE(v)
when the procedure moves backward .from v. This
also shows that, by Lemma I, if any type 1 pair {(v,w),
(x,y)} exists then it will surely be found by the
procedure (lines 13 and 14) when it moves backward
from v. Clearly the procedure has O (IVI+IEl) time
complexity. ¢

procedure type_1(v)

4. Path-partition, local_min and local_high
It is shown that a path-partition of T can be found

in O (IVI+IEl) time by using procedure path_
partition(v) and that computing two values
locai_min(u), local_high(u) for all ue V can be done

in O (1VI+IEl)
comp_local(v).

time by means of procedure

A path-partition of T can be obtained in O (IVI+IEl)
time by repeating procedure path_partition(v). First
execute the following initialization:

the starting vertex re1; ie—1;

path_number(1)«1; path_head(1)e1;

path_tail(1)«the tail of LE(1);

path_number(v)« 0 for all ve V-(1}
and then the following procedure
is repeated.

path_partition(v)

procedure path_partition(v);
begin .
for every edge (v,w) of LT(v)
with path-number(w)=0 do
if LE(v)=LE(w) then
path_number(w)« path_number(v);
else begin
i<-i+i; path_head(i)ev ; ne i
path_tail(i)« the tail of LE(w);
path_number(w)«i end;
path_partition(w) end

begin

end;
Repeating procedure path_partition(v) for T
assigns each ve V a value path_number(v)z1, for

which the following (1) and (2) hold.

(1) Suppose that v<w and LE(v)=LE(w) for v,we V.
Then, by the definition of lowpt(w) and LE(w), any
inner vertex ue V(PT<v,w>)-{v,w} has LE(u)=LE(v).
Hence all vertices of V(PT<v,w>) have the same
path_numbers.

(2) Any w' with LE(w)#LE(v) has path_number(w')
#path_number(v).

Therefore V is partitioned into n sets V(1) . v(n)
where V(i)=(vlpa!h_number(v):i), viDAVG)=¢ (i#j).
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Let P;' denote the subgraph induced by v of T, P;' is
a path. Define a path P; as follows: P; =P;' if

path_head(i)e V(1) (that is, i=1) ; P; be the subgraph

induced by V(DU (path_head(i)} if path_head(i)e V(1)
A(T) is partitioned into n sets A(P),...,A(P;), where
A(Pi)nA(Pj)=¢ (i=j). Clearly (Pl"" JPLl is a path-
partition of T.

If should be mentioned that each Pj is actually
represented by means of V() and path_head(i).
Therefore path_number(path_head(i)) is not defined
if i>1.

Clearly it is shown that a path-partition of T can be
obtained in O (IVI+El) time. We denote

path_head(i)=sj, path_tail(i)=t; (1<i<n)
in the following.

Suppose that a path-partition ({PBj,... ,PBp} is
obtained. We assume that PBj has path-number(i):
these have been determined in finding a path-
partition of T. The following procedure comp_local
for computing these two values uses a one-
dimensional array joint, where joint(i) maintains
the vertex of V(PBj )nV(PB) for each PBJ with
V(PB; )r\V(PBJ)¢¢ (see Fig. 6) This is done by the
assignment joint(i)e- v whenever the procedure

moves forward from ve V(PB;) to we V(PBJ), j=i, such
that <v,w>e A(T). The array joint is used in computing
local_highy,. Suppose that DFS, starting from r=1,
reaches ue V(PBj) by way of some paths
PB1,...,PB{,PBy,...,PB; as shown in Fig. 6. If there is a
back edge .<u,u’> with u'e V(PBj) then a back-path of
the vertex a (with respect to PB;) is discovered, where
i=path_number(u') and the case with a=u’ may
happen. The point is that the vertex a is kept in
joint(i). That is, the starting vertex a of any back-
path whose ending vertex is u' can be identified as
joint(i), and this makes computing local_highm (u)
efficient.

First the following initialization is done:

tocal_minp(v)ev and local_highy (v)«v,

for every vertex veV,
where m=path_number(v).
comp_local(v) for veV.

Then we repeat procedure

procedure comp_local(v);
begin {During DFS for T, execute (1) and (2).]
[(1) if computing local_minpy(v) when DFS moves
forward from v to a son w of v in T]
for every edge (v,w)e LT(v) do begin
i path_number(v); je path_number(w);

if i#j then [y=path_head(j)] begin
joint(i)e-v;
if lowpt(w)<path_head(i) then

local_minj(v)« path_head(i) end
else
local_mini(v)(—min(local_mini(v),lowpt(w)};
comp_iocal(w);
[(2)computing local_highpy (v)]
for every back edge <w,x>
incident upon w do begin
g« path_number(x);
if j=q then
if local_highq(x)<jaint(q) then
local,highq(x)&joinl(q)
else [j=q]
if local_highq(x)<w then local_highq(x)«—w
end end
end;

Let <v,w>e A(T), v<w, i=path_number(v),
number(w), i<j, v=path_head(j). Then, clearly,

local_minj(path_head(j)):path_head(j), 1<j<n.
Hence computing them is not incorporated in
procedure comp_local(v). We will show that, for

j=path_

vepath_head(i), the procedure correctly computes
local_minj(v). If Bj(v)={v]) then local_minj(v)=v
(=minBj(v)) and this is set in the initialization.

Therefore local_minj(v) is correctly computed for
any v with Bj(v)={v}. For any v with IBj(v)I22, we can
prove the following proposition by induction on the
number k(21) of executions of Step (1) in procedure
comp_local(v).
Proposition 2. Let Im(k-1) denote the value of
focal_minj(v) just- before the k-th execution. Let
Bi{(K)(v)=[v}u([vithere is a back-path P<v,v'> of v
with respect to PB;j such that P<v,v'>
begins with a visited edge <v,w>e A(PBj)}.
Then we can prove that

lm(k'l)= Aj if minB&k ])(u)<si,
mmB(k )(u) otherwise.

(The proof is omilted.) Thus it is shown that
local_minj(v) is correctly computed for all ve V and
all PB;.

Next, we consider local_highpy,. Clearly

focal hlghj(path head(j))=path_tail(j), 1<i<n.
Hence computing them is not incorporated in the
procedure. Let qg=path_number(x). We will show that
local_highg(x) is correctly computed for any

x#path_head(q). Let
C(x)={vi<v,w>e BA(T)}.
If C(x)=¢ then Iocal_highq(x)=x: this is set in the
initialization and is kept unchanged. Suppose that
C(x)#¢ in the following. We will prove the proposition
by induction on the number k(21) of edges in C(x)
that are visited by the procedure.
Proposition 3. Let (k-1 denote the value of
local _high (x) just before the k-th visit. Let C(
(x)gC(x) 3enme the set of the first visited edge,...,up
to the Sk 1)-th visited edge, and
(x)={x}ulue V(Pp<x, tq>)llhere is a back-path
PG<u,x> of u with respect to PBq such that
the last edge of Pg<u,x> is <u .x>sC (x)
Then
lh(k'”=maxD(k'1)(x).
(The proof is omitted.) Thus local_highq(x) for ail x
and all PBq are correctly computed by repeating
comp_local(v).
The discussion so far proves the following lemma.

Lemma 3. A path-partition can be obtained in
O (IVI+IEl) time by using path_partition(v).
Computing local_minj(u) and local_highj(u) for all

ue V and all PB; can be done in O (IVI+IEl)
means of comp_local(u).Q

time by ~

5. Type 2 pairs
Let ((v,w)(x,y)] be any pair of edges such that
<v,w>,<x,y>e A(T) and v<ws<x<y. This pair is fixed in this
section. First we define an out-edge and an in-edge. A
back edge <u,u™> is called an out-edge or an in-edge
of G (with respect to <v,w> and <x,y>) if it satisfies (1)

or (2), respectively:
(MHu'e V(Pp<r,v>)  if ue V(T<w>)-V(T<y>),
(2Qu'e V(Pp<w,x>)  if ue V(T<y>).

Since {<v,w>,<x,y>} is fixed, we omit "with respect to
<v,w> and <x,y>" unless any confusion arises. Detecting
type 2 pairs is based on the following lemma.
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Lemma 4. {(v,w),(x,y)} is a type 2 pair if and only
if BA(T) contains neither an out-edge nor an in-edge
of G. (See Fig. 7.0

Let {PBy,..,PB,} be any fixed path-partition.
Detection of type 2 pairs can be restricted to edges of
each member PB; by the following lemma.

Lemma 5. If {(v,w),(x,y)) is a type 2 pair then
{<v,w><x,y>} is included in some member PB;.0

Based on the above path-partition, we can define
directed subgraphs Gy,...,Gp with V(G))=V(PB)), 1<i<n,
such that {(v,w),(x,y)} is a type 2 pair of G if and only
if the pair is a type 2 pair of some Gj. For each back-
path P<u,u> of ue V(PBj), let u"e V(PB;) be defined by

) ]u' if u'e Vi,

u =

s§ otherwise.

Each edge <u,u"> is called the shortcut of P<u,u'>. Each
Gi=(Vi,Aj), I<i<n, is defined by Vi=V(PBj) and
Aj=A{'UA;{", where

A{'=A(PB;) and

Aj"={<u,u">l <u,u"> is the shortcut of

a back-path P<u,u’> of ue Vj}.

Let Ej, Ei' and E;" devote the set undirected edges
corresponding  Aj, A;' and A;", respectively. For
{(v,w), (x,y)}cE{", an out-edge_or an in-edge of Gj is
similarly defined by replacing G by G;.
We can prove the following lemma.

Lemma 6. {(v,w),(x,y)} is a type 2 pair of G if and
only if there exists some G; such that {<v,w><x,y>]cAj'
and A" contains neither an out-edge nor an in-edge
of Gj.0

It is easy to see that .
local_minj(u)= min{(u'l<u,u'>e Aj"}u{a}} if uss;j,

s otherwise,

i
local_highj(u)= max { {u'lcu’,u>e Aj"Julu}} if ussq,

tj otherwise.
for each ue V(Pp<w,x>), where <v,w>,<x,y>e Aj. Hence we
can use local_minj(u) and local_highj(u) in finding
type 2 pairs, instead of actually constructing Gj.

We formally define a desired edge set KE(T) which
is going to be found: KE(T) is a minimal set in which
any type 2 pair is included. First we define an edge set
GENj for each i, I<i<n. For each <x,y>e Aj' with x<y,
define an edge set Eyy,cE; by

{x o {v,w)l {(v,w).(x,y)} is a type 2 pair
of G and vew<x<y}
if a type 2 pair {(v,w),(x,y)} exists,
Exy=
[} otherwise.

Delete all empty sets among IA(T)I sets Exy, <x,y>e A(T).
If there is no nonempty “set left then GENje¢. If there
is at least one nonempty set then let E(D, .. Ek()) pe
the set of all maximal sets (with respect to set
inclusion) among them. Let (xj.yj)e EW) with xXj<yj be
the edge such that yj=max{vl(u.v)e EU) and <u,v>e [{i'].
The edge (Xj,yj) is called the generator of EU), and let
GENF[(’,‘quj)' 1<j<k(i) ).
Let
KPW=(((v.w), 0y} (vw)e EWD-{(x}yp1),

KAD={{(v,w),(v/,w)]I(v,w),(v',w)e EQD),
(v,w)z(v',w")}
for each E(j), and define
KEi=E(My .. .VE&®D), Kpi=KP(Dy.. UKP&kD),
KAaj=KAMu.  uKAKGD),
KE(T)=KEju...UKE;, KP(T)=KPju...UKP,
KA(M)=KAju...UKA,,.
Remark 1. In each Gj, 1<i<n, we have E(s)nE(t)=¢,
P<s<t<k(i).0

The following procedure type_2(v) find KP(T) in
O(IVI+IEl) time. A pair {<x,y>, [p.q]) with p<q denotes
an element, called a candidate, to be added into a
stack (STACK) or existing on the top of STACK. It
means that if there is any edge <v,w> such that
{(v.w)(x,y)} is a type 2 pair then psv<w<q. <x,y> and
[p,q] are called a candidate-edge and a candidate-
path (denoted by P<p,q>), respectively. The vertex p
(q, respectively) is called the starting (ending) vertex
of P<p,g>.

First the following initialization is done:

STACK  {<r,r>,[r,r]}, where r is the starting vertex.

Then the following procedure is repeated.

procedure type_2(v)
[During DFS for T, execute (1) and (2).]
begin

for every unvisited son w of v do
[(1)when DFS moves forward from v to a son w of v -
in T]
if path_number(v)#path_number(w)
STACK & {<v,v>,[v,v]);
[Addition of an element into STACK. {<v,v>,[v,v]}
(including the case with v=r) is called a dummy
candidate, and v is equal to the starting vertex s;
of PBj such that we V(PBj)]
type_2(w);
[(2)When DFS moves backward from w to v,
do the following [<x,y>,[p,q]} is the top of STACK.]
i path_number(w);
(2.1)while (top of STACK is not a dummy candidate)
and (yslocal_highj(w)) do
STACK«STACK-{<x,y>,[p,ql};
[Deletion of the top of STACK: the edge
(local_highj(w),w) is an in-edge of Gj with
respect to (v',w')e E(P<p,g>) and (x,y), where
{<v',w'><x,y>)cA(T).]
(2.2)while p>local_minj(w) do
STACK«STACK-{<x,y>,[p.al};
[The edge (w,local_minj(w)) is an out-edge of Gj
with respect to (v',w)e E(P<p,q>) and (x,y).]
(2.3)if g>local_minj(w) then
if p<local_minj(w) then
change top of STACK from {<x,y>, [p.ql}
to {<x,y>[p.local_minj(w)]};
[The edge (w,local_minj(w)) is an out-edge of
G; with respect to (v',w')e E(P<local_minj(w),
g>) and (x,y).]
else STACK«STACK-{<x,y>,[p,ql};
[There is no (v',w') such that {(v',w'),(x,y)} is
a type 2 pair.]
(2.4)if w=q then )
[a type 2 pair {(v,w),(x,y)} is found] begin
output  ({(v,w),(x,y)},path_number(w));
if p<v then
change top of STACK from {<x,y>,[p.ql]
to {<x.y>,[p.,vl};
. else STACK«STACK-{<x,y>,[p.q]} end;
(2,5)if (local_minj(v)>q)
and (vepath_head(i)) then
STACK  {<v,w>,[q,local_minj(v)]};
(2,6)if v=path_head(i) then begin
while (<x,y>.[p,ql}#{{<v,v>, [v,v]] do
STACK«STACK-{<x,y>.[p.ql};
[Searching PB; which contains w as an inner
vertex is finished.] '
STACK«STACK-{<v,v>,[v,v]] end

then

end;

(5)



Remark 2.

. (1)p<q always holds in procedure type_2(v).

(2)g<local_minj(w) always holds at Step (2.5) of

procedure type_2(v).¢

The following Lemmas 7 through 11 show that
procedure type_2 correctly finds KP(T) in O (IVI+IEl)
time. The next lemma is useful in proving the other
lemmas.

Lemma 7. Suppose that procedure type_2(a) moves
on an edge <a,b>e A’ backward from b to a, and
consider the stage just before Step (2.5) of procedure
type_2(a). If top of STACK is {<c,d>,ip.q]} at this stage
then the following (1)-(6) hold.

(1) azq.

(2) (i) If a>q then there is <f,g>e A" with f2b.

(ii) If a=q then (a,b)e GENj.

(3) p is not less than the ending vertex of any
candidate path currently existing under top
of STACK.

(4) There is <g,p>e A" with g2d.

(5) If {<c,d>,[p,q]} is not a dummy candidate then
p<gs<c.

(6) If {<c,d>,[p,q]} is not a dummy candidate then
there exists no edge <z,z>e A" satisfying (i)
or (ii).

(i) b<z<c and z'<p; (ii) d<z and bsz'<sc.
(The proof is given in Appendices.)

The following Lemmas 8 and 9 assure that any type
2 pair {(v,w),(x,y)} with (x,y)e GENj and (v,w)eExy
will be kept in STACK.

Lemma 8. Let {(x,y),(v,w)} be any type 2 pair such
that (x,y)e GEN; and (v,w)e {Exy-{(x,y)}]. Then there
are vertices p,qe Vi, p<q, such ti;at the subpath P<p,q>
of PB; contains <v,w> and a candidate {<x,y>[p.,q]} is
added to STACK during the execution of procedure
type_2(x).¢

Let {<x,y>([p.,q]} be the candidate as in Lemma 8.
Then the following lemma holds.

Lemma 9. Suppose that procedure type_2(v) moves
on an edge <v,w>e A’ backward from w to v. Then top
of STACK is equal to {<x,y>[p,w]} at the stage just
before Step (2.4) of the procedure. )

(The proof is given in Appendices.)

The following two lemmas are wuseful in
determining ail 3-components in Section 7.
Lemma 10. Any pair {(v,w),(x,y)} output by

procedure type_2(v) is a type 2 pair.0
Lemma 11. procedure type_2(r)
KP(T) in O(IVI+IE!) time.0

correctly finds

6. 3-edge-components

All type 1 pairs of G can be found in O (IVI+El) time
by Lemma 2. KE(T) can be obtained in O(IVI+IEl) time
by Lemma 11 and by the definitions of KP(T) and
KE(T). The set KE(T) has the following property.

Lemma 12. If {(a,b),(c,d)}cKA(T) then {(a,b),(c.d))}
cKE(T).0

Let Ecut(G) be the set of edges contained in type 1
pairs or in KE(T). Since KP(T) determines KE(T),
Lemmas 2 and 12 show that Ecut(G) can be obtained in
O (IVIHIEl) time. Let 3_com denote the class of all
connected components of G-Ecut(G), and let R(G) be
the class of all 3-components of G. Then we can prove
the following lemma.

Lemma 13. R(G)=3_com.0
Thus our main theorem follows for Lemma 2, 11 and
13. .

Theorem 1. Al

3-components of a given

multigraph G=(V,E) can be obtained in O(IVI+IEI)
time.0

Corollary 1. We can determine whether or not G
is 3-edge-connected in O(IVI+IEl) time.0

Let KA'(T) be the set of all type 1 pairs of G. Then
KA(T)UKA'(T) consists of all cutpairs of G.

Corollary 2. All cutpairs of G can be found in
O(VI2+[El) time.0
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Appendices
Proof of Lemma 7. We prove the lemma by
induction on the number k of backward movements
of the procedure. If <a,b> is the first edge traced
backward then STACK contains only top of STACK
which is a dummy candidate (<sj,s;>.[s;.5;]} and q=s;.
Hence (1)-(5) of the lemma hold. Assume that the
lemma holds for those edges traced up to the (k-1)-th
backward movement, and let <a,b> be the k-th edge
traced backward. Let <b,b’> be the (k-1)-th edge traced
backward, and top of STACK be {<c'.d>,p'.q']} at the
stage just before Step (2.5) of procedure type_2(b).
Then, by inductive hypothesis, (1)'-(6)' hold.
(1) b2q'. .
(2) (i) If b>q' then there is <f,q>e A" with f2b". (ii)
If b=q' then (b,b)e GEN;.
(3)' p' is not less than the ending vertex of any
candidate path currently existing under top

(6)



of STACK.

(4)" There is <g'p>e A" with g'2d'.

(5) If (<c.d'>,[p',q']} is not a dummy candidate then

p'<q'sc’.

(6)" If {<c',d>,[p',q’]) is not a dummy candidate then

there exists no edge <u,u>e A" satisfying (i)
or (ii).
(i) b'<usc' and u'sp’; (ii) d'<u and b'Su'sc’.

We will consider the course of Steps (2.5), (2,6) of
procedure type_2(b) and Steps  (2.1)-(2.4) of
procedure type_2(a). For notational simplicity, let p*
and p" (q* and q", respectively) denote the value of P
(of q') before and after each of these steps. There are
two cases

(D a2q’; (ID)a<q'
for q' just before Step (2.1) of procedure type_2(a).
(Note that after a candidate {<c',d'>,[p',q]} is added to
STACK, q' may be changed: the current q may be
different from the original one.) Since b#s;, Step (2.6)
of procedure type_2(b) cannot be executed.

(I) a2q. If Step (2.5) is not executed then (1)-(5) of
the lemma clearly holds after (2.5). Suppose that Step
(2.5) is executed. Before the execution,
local_minj(b)<a (since if local_minj(b)=b then q"=b, a
contradiction) and q*<local_minj(b). After the
execution, p"=q*,q"=local_minj(b), a>q" and there
exists <b,q">e A;". Hence (1), (2)(i), (3), (4) and (5)
hold. 1f a=q" then there is no edge making a type 2
pair with (a,b). That is, (a,b)e GENj, and (2)(ii) hoids.
Next, consider Steps (2.1)-(2.4) of procedure
type_2(a). Let {<c",d">,[p".q"]} be top of STACK after
each of there steps. After (2.1), there is no edge
<z,z'>e Ai" with d"<z and b<z'sc". Consider (2.2) and
(2.3) together then, after (2.3), there is no edge
<z,z'>e Aj" with b<z'<c” and z'sp". Hence (6) holds just
before (2.4). If none of (2.1)-(2.3) is executed then
a2q” and Step (2.4) cannot be executed. Suppose that
any one of (2.1)-(2.3) is executed. Then a>q*>q", and
(1) holds. Use inductive hypothesis if (2.1) or 2.2) is
executed, or use the definition if (2.3) is executed.
Then (3), (4) and (5) hold, and there is <f,q">e A" with
f2b. Hence (2)(i) and (ii) hold. (2.4) is not executed
since a>q". Thus (6) holds and it is shown that lemma
holds for <a,b> if a>q'.

(I) a<q'. Then q'=b. For the value q* of q just
before Step (2.5) of procedure type_2(b), there are
three cases:

(i) a2q* and local_minj(b)=b,

(ii) a<g* and foca_minj(b)=b,

(iii) a<g* and local_minj(b)<b.

If (i) holds then (2.5) is executed, while if (ii) or (iii)
does then it is not. (2), (3), (4) and (5) of the lemma
hold after (2.5), where (1) also holds in (ii) and (iii);
(1) does not hold in (i).

First suppose that local_minj(b)=b. Note that if (2.1)
is executed then we have b=q*>q" and, therefore,
neither (2.2) nor (2.3) is executed. If (2.1) is not
executed then only (2.4) will be executed and we have
q"=a after (2.4). That is, (1), (3), (4) and (5) hold and
a=q’. ((a,b),(c'.d")} is a type 2 pair, where
{<c'.d'>.[p.q])=top of STACK. (a,b)e GENj, since c'zb.
Hence (2)(i) and (ii) hold. If (2.1) is executed then
q"<b (or q"<a) after (2.1),
executed. That is, (1), (3), (4) and (5) hold. If q"<a then
(2)(i) holds by inductive hypothesis, and if "=a then,
similarly to above, we can show that (a,b)e GENj.

Next suppose that local_minj(b)<b. Then Step (2.5)
is not executed, and (1)-(5) of the lemma hold just
before (2.1). If (2.1) or (2.2) is executed then we can
show that (1)-(5) hold by using inductive hypothesis.

and (2.4) cannot be

Suppose that (2.3) is executed. Then, after (2.3), we
have q"sa and there is <f,g">e A" with f2b. If a=q"
then no edge makes a type 2 pair with (ab), and
(a,b)e GEN;. That is, (1) and (2)(i), (ii) hold. (3)-(5)
clearly hold. Similarly to (I) it is shown that (6) holds
even after (2.4). Thus it is shown that the lemma holds
for <a,b> if a<q.

Proof of Lemma 9.. Let <a,b> be any edge of A; with
x>a2v, and suppose that procedure type_2(a) traces
<a,b> backward. We consider the course of (2.1)-(2.4)
of the procedure. Let {<x'y>,[p'.q]} be top of STACK at
the stage just before (2.1). If this candidate is a
dummy one then none of (2.1)-(2.4) is executed.
Hence it suffices to consider the case where this
candidate is not a dummy one.

We first show that ‘a candidate of the form {<x,y>,
[p".q"]} exists in STACK even after the execution of
procedure type_2(a) with a2v, where p'sv<wsq”:
Suppose that {<x'y'>,[p',q'l} is deleted from STACK in
one of (2.1)-(2.4). Let <v',w> be an edge of A" with
p'sv<'w'sq. For (2.1) (for (2.2), respectively) there is
an in-edge <local_highj(b),b> (an out-edge <b,local_
minj(b)>) of G; with respect to <v',w'> and <x'y>. For
(2.3), we have p'=local_minj(b) before the execution,
and p'=q' after the execution of q'«—local_minj(b) in
(2.3). Hence A(P<p',q>) has no edge making a type 2
pair with (x',y")." Similarly for (2.4).

Suppose that ¢' in top of STACK is changed in Step
(2.3). Then local_minj(b)<b. We have local_minj(b)<
q'sb before the execution of (2.3), and this means that
there is an out-edge <b,local_minj(b)> of G; with
respect to (v',w') and (x'y"), where local_minj(b)<
vi<wsq'. After the execution, we have gq'=local_
minj(b) and, therefore, <v',w'>g A(P<p’, q'>).

Hence, for a type 2 pair [(v,w),(x,y)}, there is a
candidate of the form (<x,y>,[p",q"]} kept in STACK,
and p"<v<ws<q" after the execution of (2.1), (2.2), (2.3)
or deletion in (2.4) of procedure type_2(a) with x>a>v.
Furthermore we have p'<Sv<w<q' even if q' in top of

STACK is changed in (2.4) of procedure type_2(a)
wuth x>azw. Note that p" of candidates in STACK is
kept unchanged.

Next we consider the stage just before Step (2.4) of
procedure type_2(v). Clearly there is a candidate of
the form (<x,y>[p".q"]] in STACK, where p"sv<wsq".
Suppose that (<x'y>,[p'.q']} is top of STACK and
<X,yD>ECX,Y>.

Clearly y'sx. By Lemma 7 (3)-(6), q"<p'<q'sx'<ys<x
and there is <g,p>e A;" with y'sq<x. Hence {<x'y'>,
[p',q']} cannot exist in STACK after Step (2.1) of
procedure type_2(u) for u such that <u,p'’>e Aj". This is
a contradiction. . '

Thus it is shown that <x,y> is contained in top of
STACK. Clearly p=p". Let g* denote the ending vertex
of a candidate path in top of STACK for notational
simplicity. Just before the execution of Step (2.5) of
procedure type_2(w), we have w2q* by Lemma 7 (1).
Clearly w2q* even after the execution of (2.5).
Consider the execution of (2.1)-(2.3) of procedure
type_2(v). We have w>q* after executing any one of
them. This means that none of (2.1)-(2.3) is executed,
since we must have w=q* just before Step (2.4) of this
procedure. Hence w=q*, and the lemma follows.

(7)



type 1 pairs
((1,2), (1,8)}

cut pairs ((6,7), (1,8)}
(67, (15) P
(9.12), ©.13)) type[(zlp;;rzé )
((1,2), (6,7}

(23), (4.5)) (@3, 49
{(5,9), (9,10)} ((5,9), (9,10)}

Fig. 1. A multigraph G and all the cutpairs.

Fig. 2. A DFS-tree T and the back forest of G defined from G
shown in Fig. 1, where bold directed lines denote tree
edges and fine directed ones are back edges.

® 0]
3-egde components
© {1
N\ (2,6}
@ © (3.4,14)
@ 3

{5.10}
(7.8}
| ' EN i mm
Fig. 3. A path-partition (PBjl1<i<4) of T shown in Fig. 2 and @ ’
the graphs Gj defined from PBj, 1<i<4, where each. PBj is ®
denoted by bold directed lines. .
Fig. 4. All 3-components of G shown in Fig. 1.
®
6 P GEN,=(56).6.7) i=path_number(u)
(1) joint(i)=a
95) E2={(l,2), ©.N) . h=path_number(u") s =r
&Y EPL(23), @.5), 5.6) joint(h)=b
x E,=E"UE @ LE(w)
KP={{(12), (6.7},
©® 1(2.3). 5,6)},
((4,5), 5.6)}}
"17 KA =({(2.3), 4,5)} JUKP,
®

Fig. 5. Finding a desired set E; that includes all type 2
pairs of Gy.

Ql

Fig. 6. A schematic explanation of the array joint. This
also shows the reason why existence of of LE(w)
prevenls a pair of edges, one on PB; and the. other on
PBj (i#)), to be a type 2 pair.

Fig. 7. A schematic explanation of an out-edge e; and an in-edge ej.
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