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A graph G is said to be universal for a family F of graphs if G contains every graph in
F as a subgraph. The minimum universal graph for F is a universal graph for F with the
minimum number of edges. This paper considers the minimum universal graph for the family
.7:'}:, of graphs on n vertices with path-width at most k. We first show that the number of edges
in a universal graphs for F¥ is at least {knlog -’,:—) Next, we construct a universal graph for
FE with O (knlog %) edges, and show that the number of edges in the minimum universal graph
Fk is © (knlog 2).



1 Introduction

Given a family F of graphs, a graph G is said to be universal for F if G contains every graph
in F as a subgraph. The minimum universal graph for F is a universal graph for 7 with the
minimum number of edges. We denote the number of edges in a minimum universal graph
for F by f(F). Determining f(F) has been known to have applications to the circuit design,
data representation, and parallel computing [2, 3, 10, 12, 14]. Bhatt, Chung, Leighton, and
Rosenberg showed a general upper bound for f(F) for a family F of bounded-degree graphs
by means of the size of separators [3]. For general families of (unbounded-degree) graphs, the
{following three results have been known:

(1) If F is the family of all planar graphs on n vertices, f(F) is Q(nlogn) and O(n/n) [1].
(2) If F is the family of all trees on n vertices, f(F) is ©(nlogn) [6].

(3) If F is the family of graphs on n vertices with proper-path-width at most 2, f(F) is

O(nlogn) [13].

Notice that a graph with proper-path-width at most 2 is a special kind of outerplanar graph.
Notice also that f(F)is O(n?) for any family F of graphs on n vertices, since K, is trivially
a universal graph for F. This paper generalizes (3) to the family of graphs on n vertices with
bounded path-width.

We consider finite undirected graphs without loops or multiple edges. We denote the vertex
set and edge set of a graph G by V(@) and E(G), respectively.

Let X = (Xi1,Xa,...,X;) be a sequence of subsets of V(G). The width of X is
maxi<i<r [Xi| —1. A is called a path-decomposition of G if the following conditions are satisfied:
(i) For any distinct i and j, X; € Xj; (i) Uy<ic, Xi = V(G); (iii) For any edge (u,v) € E(G),
there exists an 4 such that u,v € X;; (iv) For alla,b,and cwith1<a <b<c<r, X,NX: C Xp.
The path-width of G, denoted by pw(G), is the minimum width over all path-decompositions of
G [11]. We denote the family of graphs on n vertices with path-width at most & (k > 0) by Fk.

The purpose of this paper is to prove the following:

Theorem 1 For any integer k (k> 1) and n (n > 3k), f(F¥) is © (knlog 2).

We will prove this theorem by showing that f(F%)is Q (knlog %) in Section 3, and f(F%) is
O (knlog %) in Section 4. Many related results can be found in the literature [1, 2, 3, 4, 5, 6, 7,
8,9, 10, 12, 13, 14].

2 Preliminaries

k-clique of a graph G is a complete subgraph of G on k vertices. For a positive integer k, k-trees
are defined recursively as follows: (1) The complete graph on k vertices is a k-tree; (2) Given
a k-tree Q on n vertices (n > k), a graph obtained from @ by adding a new vertex adjacent
to the vertices of a k-clique of Q is a k-tree on n + 1 vertices. A k-tree Q@ is called a k-path if
IV(Q)| < k+1 or @ has exactly two vertices of degree k. k-separator S of a k-tree G is a k-clique
of G such that G\'S has at least two connected components where G\S is the graph obtained
from G by deleting S. For a positive integer k, k-intercats (interior k-caterpillars) are defined
as follows: (1) A k-path is a k-intercat; (2) Given a k-intercat @ on n vertices (n > k +2), a
graph obtained from @ by adding a new vertex adjacent to the vertices of a k-separator of @ is
also a k-intercat on n + 1 vertices.

A 1-path, l-intercat, and 1-tree are an ordinary path, caterpillar, and tree, respectively. A
subgraph of a k-path, k-intercat, and k-tree is called a partial k-path, partial k-intercat, and
partial k-tree, respectively. '
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k-intercat can also be defined recursively as follows: (1) The complete graph on k vertices
is a k-intercat; (2) Given a k-intercat @ on n vertices (n > k), a graph obtained from @ by
adding a new vertex adjacent to the vertices of a k-clique C of @ such that Q\C has at most
one nontrivial connected component is also a k-intercat.

A path-decomposition with width % is called a k-path-decomposition. A k-path-
decomposition (X1, X2,..., X, ) is said to be fullif [ X;|=k+1(1<i<r)and {X;NX;11| =k
(1<j<r-1).

Lemma 1 For any graph G with pw(G) =k, there ezists a full k-path-decomposition of G.

Proof: Let & = (X3, Xy,...,X;) be a k-path-decomposition of G such that 3, (| X;| — k) is
maximaum. We shall show that X is a full k-path-decomposition of G.

Assume that |X;] < k for some i (2 < i < 7). Let v € X;_1 — X;. The sequence X’ =
(X1, X2,..., Xie1, XsU{v}, Xiy1, ..., X+) satisfies conditions (ii), (iii), and (iv) in the definition
of path-decomposition. Assume that X; C X; U {v} for some j( i). Since v ¢ Uir1<p<r Xp)
J <t Thus j =1~ 1since X; = X; n(X; U {v}) C X,_1. Therefore, (X1, Xa,...,Xi—2, X; U
{v}, Xix1,...,X;) is a k-path-decomposition of G. But this is contradicting to the choice of
A since |X;_3] < k. Thus X' is a k-path-decomposition of G. But again this is contradicting
to the choice of . Thus |X;| = k + 1 for any ¢ (2 < ¢ < 7). Since (X,,...,X;1) is also a
path-decomposition of G, |X;| =k +1forany i (1 <i<r).

Assume next that |[X; N X;1| <k —1forsome: (1 <i<r—1). Let v € X; — X;41 and
u € Xiy1 — X;. Since v ¢ Uisr1<j<r X5 and u ¢ Ui<j<i Xj, the sequence (Xi,..., X;, (Xig1 U
{v}) = {u}, Xit1,..., X;) is a k-path-decomposition of G contradicting the choice of X. Thus
|X;NXip1|=kforanyi (1<i<r—1).

Thus, X is a full k-path-decomposition of G. O

Theorem 2 For any graph G and an integer k (k > 1), pw(G) < k ¢f and only if G is a partial
k-intercat.

Proof: Suppose that pw(G) = h < k. There exists a full A-path-decomposition X' = (X7,
X3,...,Xr) of G by Lemma 1. If 7 = 1 then G is a subgraph of a complete graph on h + 1
vertices, and so we conclude that G is a partial A-intercat. Thus we assume that r > 2. We
construct a h-intercat H from X as follows:
(i) Let v1 be a vertex in X3 N X3. Define that Q is the complete graph on X; — {v1}.
(ii) Define that Q5 is the A-intercat obtained from Q; by adding v, and the edges connecting
v; and the vertices in X; — {v }.
(iii) Given Q; and the vertex v; € X; — X;_, (2 <1< 1), define that Q;4; is the h-intercat
obtained from @; by adding v; and the edges connecting v; and the vertices in X; — {vi}.
(iv) Define H = Q,41.
From the definition of full k-path-decomposition, v; (2 < 7 < 7) in (iii) is uniquely determined.
It is easy to see that H is a h-intercat. Furthermore, we have V(H) = V(G) and E(H) D E(G)
from the definitions of path-decomposition and Q;. Thus G is a partial h-intercat, and so a
partial k-intercat.
Conversely, suppose, without loss of generality, that G is a partial A-intercat (h < k) with
n (n > h) vertices and H is a h-intercat such that V(H) = V(G) and E(H) 2 E(G). It is
well-known that H can be obtained as follows:
(i) Define that @1 = Ry is the complete graph with A vertices.
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(ii) Given Q;, R;, and a new vertex v; (1 < ¢ < n — h), define that Q;11 is the h-intercat
obtained from @; by adding v; and the edges connecting v; and the vertices of R;, and
R;41 is a h-clique of Q;41 such that R;4; contains v; or Q;+1\Ri41 has v; as a connected
component.

(iii) Define H = @Qpn—p+1-

We define X; = V(R)U{u} (1 <i<n—-h)and ¥ = (X1, X2,...,Xn-p). Itis easy to see

that |X;| = A 41 for any i, Uy<icn—n Xi = V(H), and each vertex appears in consecutive Xy’s.

Thus X satisfies conditions (ij)‘a—nd (iv) in the definition of path-decomposition, and the width

of X is k. Since v; € X; — Xi—1, and ¢ # V(Ri—1) - V(&) C Xi—1 — X; or vi—1 = X;-1 — X,

X: € Xio1 and X;_; € X; for any 1. Thus X; € X; for any distinct ¢+ and j, for otherwise

X;=XinX; C Xiy1 1< j)or X; = X;nX; C Xi—1 (i > j). Hence X satisfies condition (i) in

the definition of path-decomposition. Since each edge of H connects v; and a vertex in V(R;)

for some i or connects vertices in V(R;), both ends of each edge of H is contained in some Xj.

Thus X satisfies condition (iii) in the definition of path-decomposition. Thus the sequence X

is a full A-path-decomposition of H. Therefore, we have that pw(G) < pw(H) < h <k O

3 Lower Bound

Let dg(v) be the degree of a vertex v in G. Let D(G) = (6§,6%, - . -,6%) be the degree sequence
for a graph G with n vertices, where 63 > 6% > --- > 6%. For graphs G and H with m and
n vertices, respectively, we define D(G) > D(H) if and only if m > n and 65 > 6y for any 1
1<i<n).

Lemma 2 If a graph G is a universal graph for a family F of graphs, D(G) > D(H) for any
graph H in F.

Proof: For otherwise, G can not contain H as a subgraph. O

Lemma 3 For any integer k (k> 1) and i (1 <i < lﬁ:’c—%’ij ), there ezists a k-intercat R(k,1)

on n vertices such that 5’;;(,:’0 > 1_1:;2—"_} +k.

Proof: Let r = I_E:z%J R(k,i) can be constructed as follows:
1. Define that Q(k,k + 1) is the complete graph on the vertices V(Q(k,k + 1)) =
{v1,v2, .-, Vks1}-
2. Given Q(k,j) (k+1 < j < 2k — 1), define that Q(k,j + 1) is the k-intercat obtained from
Q(k,7) by adding a vertex v;j41 and k edges (vj41,v—m) (0 < m < k —1).
3. Given Q(k,7) (2k < j < (i—1)r+2k—1), define that Q(k, 7 +1) is the k-intercat obtained

from Q(k,j) by adding a vertex v;41 and k edges vjﬂ,vvi"r_,_k_'_h where h = m if

m>j— {(l%%j +1>r+k}, h=r+4+m (1 <m < k) otherwise.
4. Given Q(k,7) ((z — 1)r + 2k < j < n—1), define that Q(k, j +1) is the k-intercat obtained
from Q(k,7) by adding a vertex vj+1 and k edges (vs41, Vic)r4ktm) (1 < m < k).
5. Define R(k,1) = Q(k,n).
It is easy to see that dpyi)(Verskam) = 74+ Kk (0 < 5 < i ~2,1 < m < k), and
ARk i) (Vi=1yr+kaem) = T+ k (1 <m < k). Thus we have 6'}'{(k y2r+k O
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Theorem 3 For any integer k (k > 1) and n (n > 3k), F(FEY is Q (knlog %).

Proof: Let G be a universal graph for %. By Lemmas 2, 3, and Theorem 2,

N G

ABG) = Y. do(v) 23 66> Y, o2k 3 &
=1

vEV(G) i=1 =1
oy n — 2k
TGS
> kL,iJ(n;2k+k—1)
=1
> k{(n—%)loge({n;%]+1)+(k—1) [n“kz’“”
> k{(n—zk)loge(n;2k>+(k_1)(n—k2k__1>}
n — 2k

k(n — 2k)log, ( ) + (k — 1)(n — 3k).

Thus |[E(G)|is Q (knlog }). O

4 Upper Bound

We show an upper bound by constructing the graph G with n vertices and O (knlog &) edges,
and proving that G¥ is a universal graph for FE
Let GE (k > 1,n > 1) be the graph obtained by the following construction procedure:

1. Let vy, vq,...,v, be the vertices of GF.

2. Let k* = 2M°8¥1 For any integer ¢ with 1 < i < n, let b; be the maximum integer such
that 2%i. For every ¢ (1 < ¢ < n), join v; by an edge to v; such that 1 < j < n and
1< |i—j] < 3k*2% + k — 1, if v; is not adjacent to v;.

Theorem 4 For any integer k (k> 1) and n (n > 1), |E(GE)| = O (knlog Z).

Proof: For any integer ¢ with 1 < i < n, let b; be the maximum integer such that 2b‘|i. Note
that [{ifb; = h,1 < i < n}| = || and [{ilbi > h,1 < i < n}| = [Zﬂﬁj for any h (h > 0).
Since 2 (3];;*2“’55% + k- l) > n, the total number of edges added in Step 2 is at most

[log 7+ R
*oh n-+2 n
:L:B 23k 2" + & 1)[ TS J +n [2U%62‘J+1J
llog 551 N
< $k*oh 4 k-1 (1 1) v
;?;;, ( =D (1) +
llog 55+
k-1 2
= 3 {(Sk*n-i-k—l)—!—(T)n—i—Bk*Zh}—i-n—
h=0 2 Bk*

IA

(Bk*n+k—1) (log 62* + 1) + (2k = 1)(n — 3k™) + 6k™n
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< (6kn+k—1) (log Lot 1) + (2k = 1)(n - 3k) + 12kn

= (6kn+k—1)log -6% +(20k — D)n — (6% — 4k + 1).

Thus [E(GE)| < (6kn +k — 1)log & + (20k ~ 1)n — (6k? — 4k + 1), and |E(GE)| = O (knlog %).
a

Theorem 5 For any integer k (k> 1) and n (n > 1), G¥ is o universal graph for F&.

Proof: It is sufficient to show that any k-intercat is a subgraph of GF by Theorem 2. Let R be
a k-intercat in FX. We shall show that R is a subgraph of GE. I n < 8k —1, Ris a subgraph
of G¥ since G is the complete graph on n vertices. Thus we assume that n > 8k.

First of all, we give labels to the vertices of R as follows:

1. Let R’ be a graph obtained from R by deleting all vertices of degree k in R, and w; €
V(R) — V(R') be a vertex adjacent to w in R such that dp/(w) = k. Let w2, ws, ..., Wk41
be the vertices adjacent to wy in R. Give labels 17,27, ... “k + 17 to wy, wy, ..., Wkt1,
respectively. Set 1 =k + 2.

2. Give the label “” to the unlabeled vertex of R such that: (i) adjacent to the &k labeled
vertices; (ii) the degree in R is as small as possible subject to (i).

3. I{ i = n, halt. Otherwise, set ¢ = ¢ + 1 and return to Step 2.

It should be noted that if the vertex given the label “/” in Step 2 is not uniquely determined,
then degrees of these vertices in R are k. We denote the vertex with label “4” by u,;. Define
I; = max{d|(ui, tira) € E(R) U (u;,u;)} for any 1 (1 < i < n). Let Ir = 208l if 1, > 1,
otherwise, I¥ = 1.

For the labeling above, we have the following three lemmas. Lemmas 4 and 5 are trivial, so
we omit the proof.

Lemma 4 If (us,u.) € E(R) then (us,uy) € E(R) for any distinct z,y, and z (1 <z <y <
z < n).

Lemma 5 For any verter u; (1 <1< n), [{u;|(u;,u;) € E(R),7 <1}| = min{k,1 - 1}.

Lemma 6 For any verter u; (1 < i< n—1), L =0 if and only if {uj|(uiv1,u;) € E(R),j <
i} =k.

Proof: For 1 <1 < k, I; > 0 since (ugq1,u;) € E(R), and |{u;|(uig1,u;) € E(R),j < i} =
t— 1 < k by Lemma 5. Thus assume that £+ 1 <7 < n — 1. Suppose that |[{u;|{(uis1,u;) €
E(R),j < 1} = k. By Lemma 5, (tit1,%;) ¢ E(R). Thus [; = 0 by Lemma 4. Conversely,
suppose that I; = 0 (k+1 <1 < n—1). By the definition of {;, (uit+1,%:) ¢ E(R). From
Lemma 5, u;11 has k edges connecting u; such that j <. O

Now we define mapping $:V(R) — V(G¥) as follows:

1. Let k* = 2Mlo8*1 7 = V(G*), and 1 = 1.

2. Let m} = [7%] Let s; be the minimum j such that v; € U and mZ|j. Define that
¢(u;) = vy, Let U =U — {v,,}.

3. I{ ¢ = n, halt. Otherwise, set 1 =7+ 1, and return Step 2.



Lemma 7 ¢ is a 1 — 1 mapping satisfying
I*
(¥) —k<Ls~-1< [-2‘—] -1
and
(x) si—i<lLi—k-1ifm!>2

for any i where ¢(u;) = v, (1 <1< n).
Proof: We show the lemma by induction on i. Notice that k£ < k* < 2k, and I; < IF <20 i
;> 1.

Suppose that ¢(u;) = v,; (1 <j <i—1,1 <1< n—k—1)are determined by the algorithm
in such a way that: conditions (*) and (%) hold for any j (1 < j <i—1), v, € U for any j
(1<j<i—h-1),and v, €U (0<h <k h<i).

First, assume that 0 < A < k — 1. We show that the conditions (%) and (*) hold for i. We
have

—h<si—i < —h+(h+1)m! —1<(h+1)<fl*] 1><(h";k1)z*_3‘*_{%].

I m; > 2 then

si—ig(h+1)(;];—1)5(h+1)(£‘—;—l—1)§(h+1)(li_k—])gli—k—1.

k

It should be noted that s; < ¢ + [ ] <i+hL<nifl; 21,8 <z+|- ] <141 < n otherwise.
Next, assume that h = k. We will show that m? =1 and s; — i = —k. Since v;4 € U, mj >2
for any vertex u; with s; > ¢ — k 4+ 1. Since s; — j < I; — k£ — 1 for such u; by the induction
hypothesis, (uj, %s,+k+1) € E(Q). Since s; +k+1>i+1> j, (uj,uiz1) € E(Q) by Lemma 4.
By the assumption that v, & U, there are k vertices with s; > i — k+ 1. Thus m} = 1 by
Lemma 6 and s; — ¢ = —k. In either case, induction hypothesis is satisfied.

Suppose that ¢(u;) = v,; (1 < j <i=n—k—1)are determined by the algorithm in such a
way that: conditions (%) and (%) hold for any j (1 < j<i),v; € Uforany j (1< j<i—h-1),
and v;—p, €U (0< h < k). Since l; <n—j< kforj>n—k, m; =1. We have —k <5, -7 <0.
forn—k<j<n.

Thus ¢ is 1 — 1 mapping satisfying (*) and (x) {for any 7. O

Lemma 8 If ¢(u;) = vy, then (vs;,v,;) € E(GE) for any v; such that 1 < j < n and 1 <
lsi—Jjl < [%Iﬂ +k -1
Proof: Since [211:,] iy (vs;,u;) € B(GE) for any v; such that 1 <

I i *
3k [k ] + k= 1. 1007 > 24" then 3k [3&] 4k —1= L 4 k1= [+ k-1 1m0 <2k
then 3k* [zz| + k- 1=3k"+k~1> [%] + k-1 O

j < noand|s; - j| <

Lemma 9 If (u;, u;) € E(R) then (¢(u:), d(u;)) € E(G).

Proof: Without loss of generality, we assume that i < j, ¢(w;) = v,,, and #(u;) = v,
Notice that 1 < j — ¢ < I, < IX. TFrom Lemma 7, we have —k < s; — i < P‘-l — 1 and

2
_kgsj—jg{—zt]—l. Thus —([] +k-2) <5, — s <1 +[ ]+k-—]
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I > 17 then |s;—si| < IF+ [g—] +k=1<+ [%-l +k-1= [%lﬂ +k—1. From Lemma 8§, we

hm@(mnv%)eEKGﬁ)IH;glfﬂwnbj—a|§lj+[%}+k—lglf+[%1+k—1=‘%E1+k~1
From Lemma 8, we have (v,,,v,;) € E(GE). O

By Lemma 9, we conclude that R is a subgraph of G%. This completes the proof of Theo-

rem 5. O

Theorem 1 follows from Theorems 2, 3, and 4.
Minimum universal graphs for k-trees (k > 2) are open.
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