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We propose a new heuristic method, called a speculative contraction method, for minimum cost flows
based on the Plotkin and Tardos algorithm, a variant of Orlin’s algorithm. In a A scaling phase, the Plotkin
and Tardos algorithm contracts arcs of flow value more than 5nA. Howe\}er, the speculative contraction
method contracts arcs of flow value much smaller than 5nA, and corrects the possible primal infeasibility
caused by inappropriate contractions at the end. Qur experiments show that the new method significantly
reduces the running time of the original algorithm. In particular, for sparse graphs, it shows a speed up of 3.1.
Moreover, it runs faster than our implementation of the Primal-Dual method. We hope our experimental

results on speculative contractions invoke further research toward theoretically and practically faster scaling
algorithms.
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1 Introduction

The minimum cost flow problem is an important network flow problem and has been widely studied
for the last four decades. (See surveys in [2, 10].) In particular, there have been emerging theoretical
developments since Tardos invented the first strongly polynomial time algorithm for this problem [18].

Many of recent algorithms are based on the scaling methods on cost or capacity. For example, the
cost scaling algorithms include Tardos [18], Galil and Tardos [9], and Goldberg and Tarjan [11], while
the capacity (excess) scaling algorithms include Orlin {15], Fujishige [7], Orlin [16], and Plotkin and Tar-
dos [17]. Ahuja, Goldberg, Orlin, and Tarjan devised the currently fastest polynomial time algorithm,
O(nmloglog U log(nC)) time, based on a double scaling method [1]. Among strongly polynomial algo-
rithms Orlin’s O(m logn(m + nlogn)) time algorithm [16] is the fastest known algorithm. Here, n (resp.
m) denotes the number of nodes (resp. arcs), and U (resp. C) is the maximum capacity (resp. cost) in an
input network. : . o

Despite recent theoretical developments, very little has been known about the practical efficiency of recent
scaling algorithms. DIMACS, the Center for Discrete Mathematics and Theoretical Computer Science, thus,
organized the competition of implementing recent ‘network flow algorithms [4]. .

In the above context, we propose a new heuristic method based on Orlin’s algorithm, and perform
experiments on its practical efficiency. Plotkin and Tardos’ variant [17] of Orlin’s algorithm is simple, does
not assume the strong connectivity of an input graph, and runs in the same complexity as Orlin’s algorithm
does. Therefore, in this paper we discuss Plotkin and Tardos’ variant (hereafter, we call it PT) instead of
Orlin’s original algorithm.

An excess scaling algorithm PT consists of A phases starting from A = U to 0, and it reduces A by
at least a half at the end of each phase. During a' A phase the algorithm contracts an arc which carries
flow exceeding 5nA. In contrast, we propose a speculative contraction, which contracts an arc of flow value
much less than 5nA. Since it may contract an arc inappropriately, it may result in a negative flow value on
some arc. Thus, we adjust these negative flow values by using the Primal-Dual algorithm.

According to our experimental results, a speculative contraction method significantly reduces the original
running time (we observe a factor of about 3.1 speed up for sparse graphs). Moreover, it runs faster than our
implementation of the Primal-Dual method. We hope that our proposal of speculative contractions invoke
further research toward scaling algorithms that are faster in theory and practice.

2 Preliminaries

We basically follow Plotkin and Tardos’ notations in [17]. Let G = (V,A) be a directed graph with
|V| = n nodes and |A| = m arcs. For the sake of simplicity, we assume there is no parallel or opposite arcs.
We define two real-valued functions: one is an arc cost function v : A — R, while the other is a node demand
function d : V — R such that 3,cy d(v) = 0. For v,w € V with (v,w) € A4, we define y(w,v) = —7y(v,w).
We also define a real-valued arc capacity function c¢: A — R. Wecall a tuple N = (G,~, d, ¢) a network.
In particular, when every arc capacity is unconstrained, that is, c(a) = oo for each a € A4, we call N a
transshipment network. A non-negative real-valued function f on A is called a pseudoflow. For a pseudoflow
f, we define the excess of each node v by ez (v) = ¥y ) F(0, V) = Z(y,w)ea f(v,w) —d(v). A pseudoflow
f is called a transshipment if the excess of every node with respect to f is 0; that is, a flow conservation
rule is satisfied at each node. The cost of a pseudoflow f is ¥(f) = 3°,c4 7(a)f(a).

Given a pseudoflow f, we define a residual network with respect to f by Ny = (G¢ = (V, Ag), v, d, cf)
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such that cs(v,w) = oo for all (v,w) € A. cp{v,w) = flw,v) for (v,w) € V x V where (w,v) € A.
cf(v,w) = 0 otherwise. Let Af = {(v,w) | ¢f(v,w) > 0,v,w € V}. -

Here, we can define the transshipment problem as the problem of finding a minimum cost transshipment
when given a transshipment network. The following theorem on the optimality of a transshipment is well
known. Before introducing the theorem, we need a few more definitions. A node price function (or potential
function) p is a real-valued function defined on V. The reduced cost function -y, with respect to a price
function p is defined by v,(v,w) = v(v,w) + p(v) — p(w).

Theorem 2.1 [6] A transshipment is optimal if and only if there exists a price function p which satisfies
(1) the dual feasibility constraints: for each arc a € A, cp(a) > 0 and (2) the complementary slackness
constraints: for each arc a € A, if cp(a) > 0, then f(a) = 0. o

We can now introduce Plotkin and Tardos’ algorithm (PT) as shown in Figures 1 and 2. Algorithm PT
takes a transshipment network A as an input. Notice that we define S§(A) = {v € V| eﬁ:f(v) > A} and
Tr(A) = {v e V| exs(v) < —A}. Algorithm PT consists of excess scaling phases starting from the maximum
absolute value of node demands and ending at 0. In the A-phase, the algorithm repeats augmentations until
Sp(2LA) U Tf(21A) = §, it contracts arcs of flow value more than 5nA by CONTRACT(5nA), and
finally it resets A by at least a half. The procedure AUGMENT(S,T, A) first finds a shortest path tree
starting from nodes in .5 with respect to a reduced cost 7, and then augments flow from nodes in S to nodes
in T along with the disjoint minimum cost paths in the tree. At the end of algorithm PT, the procedure
UNFOLD reverses the contraction process to unfold the network and compute the resulting arc flows. Since
every node is involved in augmentations at most O(logn) times before being contracted, there are at most
O(nlogn) phases. Therefore, the algorithm PT attains a strongly polynomial time, O(n log n(m +nlogn)).
See the detailed discussion in [17].

3 Speculative Contractions

In this section we introduce our heuristic method called a speculative contraction, and brleﬂy discuss
our implementation.

As observed in [16] and [17], once an arc carries a flow of more than 5nA at a A phase, a flow on the
arc will never vanish in the succeeding scaling phases. Therefore, algorithm PT contracts such an arc, and
reduces the size of a graph. In [17], 5nA is determined by the maximum possible flow value to a single arc.
That is, at each phase there are at most 2n augmentations of value A, whose summation over the succeeding
phases is 4nA, and at the end of the algorithm there is at most nA flow coming from the contracted node.
However, it is unlikely that flow of the estimated 5nA units gathers to a single node. Therefore, we propose
a speculative contraction, which contracts an arc of flow value much less than 5nA, and we may expect this
heuristic method to work well for some value SA (e.g. 24,4A,8A,...). _

One drawback of speculative contractions is that they may result in an infeasible flow f: that is, for some
arc @, f(a) may be negative. In order to resolve the infeasibility, we use the implementation shown in Figure
3. First, we run algorithm PT with a contraction threshold value BA. Let f be the obtained flow function.
Notice that there may exist negative arc flow values. We denote them by the set A;_ = {a € A| f(a) < 0}.
We now define a new network Ny = {Gy,7,dy, ¢, } where a flow g is defined as g(a) = f(a) for a ¢ Ay and
0fora€ Af., and a new demand function dg is defined as dy(v) = 2(ww)ea; (v, w) = Zwwyea,_ f(v,w)
for each v € V. Lastly, we solve new minimum cost flow problem Ay by the Primal-Dual method.
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Notice that there is a temptation to regard a network A, as a residual graph which appears in the middle
of execution of PT, and resume the execution of PT for Ay with an increased contraction threshold value to
find an optimal flow. However, this method may not work due to the following facts. In order to resume an
execution of PT from a A-phase, it is required that every residual capacity should be an integral multiple
of A. This condition may not be sustained by A. Let A be the maximum absolute value of excesses in N, 9
and let ¢;in be the minimum non-zero absolute value of residual capacities. Then ¢, may be too small to
be an integral multiple of A. Therefore, we find an optimal solution by regarding N, as a new instance of
the capacitated minimum cost flow problem. Thus, we use the Primal-Dual method for solving N. In fact,
Step (2.2) of SPECULATIVE can be replaced with other minimum cost flow algorithms like the network
simplex method.

Procedure Plotkin-Tardos

(1) A — maxyev |d(v)];
(2) while A # 0 do begin
(2.1) while S;(21A) U Ty(221A) # 0 do begin
(2.2) if Sp(2=LA) #0
(2.3) then AUGMENT(Ss(2221A),Tf(1A),);
(2.4) else AUGMENT(S§(LA), Tf(21A), A);
end
(3) CONTRACT(5nA);
if f is zero on all uncontracted arcs
4) then A « max, i |exf(v)|, where V denotes the set of contracted nodes;
(5) else A «— A/2;
end
(6) f—UNFOLD;

Figure 1: Algorithm Plotkin-Tardos [17].

Procedure AUGMENT (S,T,A)

(1) m(s) « 0 for each s € S; Find a shortest path tree starting
from nodes in S with respect to a reduced cost v, in Gy. Let
7(v) be the obtained cost in the tree for each v € V.

(2) p(v) « p(v) + w(v) for each v € V.

(3) For each s € S, if a subtree of the shortest path tree containing s includes
anode t € T, move A units of flow from s to ¢ along with a tree path.

Figure 2: Algorithm AUGMENT.

Procedure SPECULATIVE

(1) ‘Run Plotkin-Tardos with a contaction threshold BA. _
Let f be the obtained flow, and Ay_ = {a € A | f(a) < 0}.
2) if Ay_ # 0 then begin
(2.1) Create a netwrok Ny;
(2.2) Run Primal-Dual for N;
end

Figure 3: Algorithm SPECULATIVE
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Hereafter, we denote SPECULATIVE (resp. Plotkin-Tardos) with a contraction threshold A by
SPECULATIVE(BA) (resp. PT(BA)). Notice that the Primal-Dual method, which we denote by PD,
can be regarded as SPECULATIVE(0).

We wish to investigate the following issues on the speculative contraction method: (1) How practical and
effective is this new method? (2) How can we determine an appropriate contraction threshold? (3) What
are the theoretical issues regarding this method? We consider theses questions in the next section.

4 Experimental Results and Observations

4.1 Specifications

Instance generators: We employ an instance generator, netgen {14] for creating transportation networks
and transshipment networks based on random seeds.

Types of networks: We prepare the following families of networks:

The density/size family: We use netgen to produce a family of (n,m) transshipment networks
where n (resp. m) is the number of nodes (resp. arcs). We pick n = 200,400, 800,1600, arnd
m = 4n,nlog, n,n%/16,n?/4. . »

The total-supply family [4]: We use netgen to produce a family of (n,m, total) transportation net-
works where (n,m, total) = (nodes, arcs, totalsupply). We use m = 8n, total = 10%,105,107,10°
for n = 200, 400.

The supply/demand ratio family [4]: We use netgen to produce a family of (n,m,s,t) trans-

portation networks where (n,m,s,t) = (nodes, arcs, sources, sinks). We use m = 8n, and vary
(s,t) as described later for n = 200, 400.

Performance measurement: We use the following measurements: CPU times of the whole execution,
the execution of PT, and major subroutines. We use the -pg option of the C compiler in order to
obtain the CPU time of each subroutine call.

Data structure: We use a binary heap for implementing Dijkstra’s shortest path algorithm.

Contraction threshold: For each network, we run Primal-Dual, and also run SPECULATIVE for con-
traction thresholds of 5nA,16A,8A,4A, and 2A.

4.2 Experimental Results

The density/size family: Table 1 shows results of a test family generated by netgen for n = 800 and
m = 4n, nlogy n, n?/16. Each entry consists of the total CPU time without I/O in seconds, a percentage
of the CPU time spent for post-processing PD, and a speed up factor of SPECULATIVE(BA), (that is,
CPU-time(SPECULATIVE(SA))/CPU-time( PT(5nA))). Table 2 shows average speed up ratios obtained
from complete test families generated by netgen for n = 200,400,800, and 1600. Figure 4 illustrates the
CPU times for networks of size n = 400 for different contraction thresholds.

As Figure 4 and Tables 1 and 2 show, our speculative contraction method outperforms both of the original
Plotkin-Tardos’ algorithm and the Primal-Dual method. The average speed up of SPECULATIVE(4A) to
the Plotkin-Tardos (resp. Primal-Dual) is about 3.1 (resp. 1.5) for sparse graphs and about 2.4 (resp. 1.9)
for dense graphs.
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Figure 4: The density family (n = 400)
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Surprisingly enough, this optimal contraction threshold value SA, which makes our speculative con-
traction method fastest, seems to be a constant between 4A and 8A regardless of network density, size,
supply/demand ratio, total supply, and network generators. We hope further theoretical research may
explain this phenomenon.

Notice that as CPU(PD)% in Table 1 shows the above speed up comes mainly {rom the speed up
of PT(BA), not from the post-processing of PD. In particular, for some small SA, PT(BA) can obtain
an optimal solution without involving a post-processing of PD. For example, PT(16A) can find optimal
-solutions for n = 800 with m = 3200, 5347. )

When we increase the network size from n = 200 to 1600 while keeping the density same as m = 4n, we
observe that the logarithm of CPU time grows almost linearly with respect to the logarithm of n (see Figure
5 in {8]). This means that the CPU time is proportional to some fixed power of n (say, CPU = enf(BA)).
By linear fitting, we find that f(8A) = 1.77, and it seems to be slightly smaller than f(5nA) = 1.97 and
f(PD) = 2.08. '

Table 1: The density family for n = 800

m Threshold 5nA | 16A 8A 4A 2A PD
3200 CPU(total) 33.45 | 11.07 9.94 | 10.06 | 17.84 16.77
CPU(PD)% 0% 3% 8% | 27% | 64% | 100%
Speed up 1.00 .33 .30 .30 .53 .50
5347 | CPU(total) 40.56 | 14.36 | 12.64 | 13.58 | 23.44 | 24.40
CPU(PD)% 0% 2% 8% | 28% | 61% | 100%
Speed up 1.00 .35 31 .33 .58 .60
40000 | CPU(total) | 157.82 | 65.49 | 58.00 | 61.42 | 93.64 | 125.87
CPU(PD)% 0% 1% 5% | 20% | 51% | 100%
Speed up 1.00 42 .37 .39 .59 .80

The total supply family: Figure 5 shows the growth rate of the total CPU time when we fix a network
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Table 2: Average speed up ratios for the density/size families

m 5nA | 16A | 8A | 4A | 2A | PD
4n 1.001 .37 ( .32 .32 | .51 | .49
nlog,n | 1.00 | .40 | .37 | .36 | .60 | .53
n?/16 1.00 | .52 | .47 | 42 | .55 | .80

Figure 5: The total supply family (n = 400)
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configuration (that is, n = 400, the supply/demand ratio is (n/2,n/2)) and change the total supply as 10%,
105, 108, 10°. As a result, CPU times of SPECULATIVE for 4A, 8A, and 16A grow much slower and
saturate earlier than those of PT'(5nA) and PD.

The supply/demand ratio family: We first choose (s,t) = (»n/8,n/8), (n/8,n/2), (n/2,n/8), (n/2,n/2).
The contraction thresholds 4A and 8A work well, whose speed up ratios range from 1.6 to 3.3 to the Plotkin-
Tardos and do not vary very much by changing supply/demand ratio. We also vary the number of sources
(resp. sinks) from 50, to 250 by 50 while keeping the number of sinks (resp. sources) the same as 150
for networks of n = 400. We observe that the CPU-time increases up to 1.9 times as the number of sinks
increases, while it remains roughly the same within 1.1 times when the number of sources increases. This
difference seems to be caused by the asymmetry of the implementation of our algorithm regarding to sources
and sinks.

5 Concluding Remarks

We have proposed a speculative contraction method for minimum cost flows based on the Plotkin-Tardos
algorithm, a variant of Orlin’s algorithm. According to our experiments, very small contraction thresholds
like 4A and 8A outperform the original Plotkin and Tardos’ algorithm with a 5nA contraction threshold
and the Primal-Dual method. We observed ‘an average speed up factor to the Plotkin-Tardos algorithm
(resp. the Primal-Dual method) of 3.1 (resp. 1.5) for sparse graphs and 2.4 (resp. 1.9) for dense graphs.
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One surprising thing is that this optimal contraction threshold seems to be invariant with respect to the
density, size, supply/demand ratio, total supply, and types of networks. We hope our experimental results
on speculative contractions will invoke further theoretical and practical research toward practical scaling
algorithms.
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