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Abstract The size of the Binary Decision Diagram which represents a Boolean function
depends on the ordering of input variables. We discuss the expressible power of Binary
Decision Diagrams considering the ordering of input variables. For this purpose, we define a
on-line Turing machine with an input ordering machine and clarify the relation between
Binary Decision Diagrams. We also define a circuit which consists only of selectors and discuss
the relation between Binary Decision Diagrams. Furthermore, the relation between Binary
Decision Diagrams and planar circuits is discussed.
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1 Introduction

A binary decision diagram (BDD) [1] is one of representation forms of Boolean functions. It can represent many
practical Boolean functions by feasible space and there exist a unique canonical form of BDD for each Boolean
function. Therefore, it is widely used for manipulating Boolean functions on computers.

However, there exist Boolean functions which can not be expressed by BDD’s of feasible size, whereas can be
expressed by other representation forms of feasible size. An example of this is the Boolean function which represents
the n-th bit of the output of a n-bit binary multiplier. This Boolean function can not be expressed by the BDD of
polynomial size, whereas can be expressed by the combinational circuit of O(logn)-depth and polynomial size [2].

The reason for this is that each input variable of a Boolean function which a BDD expresses is tested at most once
in some ordering. There exist other models of computation having such a limitation. For example, an on-line Turing
machine can move the head of the input tape only in one direction. In order to clarify the computational power of a
BDD, it is important to discuss the relations between BDD’s and other models of computation having this limitation.
Several studies have been made on this topic. Ishiura [3] showed that the class of languages which are accepted by
uniform families of BDD’s of polynomial size is equivalent to the class of languages which are accepted by logarithm
space bounded on-line Turing machine. Tkekawa [4] showed that the class of languages which are accepted by uniform
families of planar circuits of O(S(n))-depth ( S(r) > logn ) is includes by the class of languages which are accepted
by O(5(n))-space bounded on-line Turing machine.

In the above two results, the ordering of input variables was not considered. In this paper, we consider the
ordering of input variables and discuss the relations between these models. In the practical use of BDD’s, we can
order the input variables such that the sizes of representation are reduced. For example, let us discuss about a
language L = {ww|w € {0,1}*}. A Boolean function corresponds to a language L N {0,1}" can not be expressed
by a BDD of polynomial size in the variable ordering 1,22, -, Zn-1, 2, whereas can be expressed in the variable
ordering 1, Tn/a41s " s Tnj2, Tn-

In order to relate BDD's which can order the input variables to on-line Turing machines, we define a IT on-line
Turing machine which has the ability to read the contents of the input tape at most once in any ordering. We discuss
the relations between BDD’s and II on-line Turing machines. We also define a disjoint selector circuit which consists
only of data selectors, and discuss the relations between BDD’s. Furthermore, the relation between BDD’s and planar
circuits is discussed.

This paper is organized as follows. In section 2, we define a BDD, an II on-line Turing machine, a disjoint selector
circuit and a planar circuit. In section 3, we define the complexity classes of the above models and discuss the relations
between these classes. In section 4, we conclude our discussion.

2 Models of Computation

2.1 Binary Decision Diagram (BDD)

A binary decision diagram (BDD) (Figure 1) [1] which represents a Boolean function of n variables f(zy,--- ,Ty) s
a 6-tuple (Ny, Ng,init, edge, level, ), where

Ny is a set of variable nodes,

Ng = {co, 1} is a set of constant nodes,

init € Ny is a initial node,

edge : Ny x {0,1} — (Ny U Ng) is a set of edges,

level : (Ny UNG) — {1,---,n -+ 1} is a mapping from a set of nodes to a set of levels such that

level(init) =1,

1 < level(n) < n, level(v) < level(edge(v,b)) (b€ {0,1} ) if v € Ny,

level(v) =n+1if v € Ng,

{1,--+.,n} — {1,---,n} is a bijection from a set of lcvels of variable nodes to a set of indexes of
variables.

Each node v of a BDD expresses a Boolean function f, defined as

fep = 0 (inconsistency),
fey =1 (tautology),
fo = Talievetio)) * fedge(v0) + Tr(tevei(v)) * fedge(w) i v € Ny

A BDD (Ny, Ne, init, edge, level, 7) expresses a Boolean function Sinit-
For 1 <1< n, we define that the value
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Figure 2: a II on-line Turing machine

[ {vilevellv) =1,v€ Ny } | +
| { edge(b,v) | level(v) < I < level(edge(b,v)), b€ {0,1}, v € Ny Hl

is the width of a level I. Also we define that the value
mazi<i<n{ the width of a level I }

is a maximal width of a BDD.

In order to relate BDD's to on-line Turing machines, we define a family of BDD’s and its aniformity [5].

A family {B,} of BDD’s is a sequence By, B;,---, where B, is a BDD representing a Boolean function of n
variables. A family {B,} of BDD’s is said to accept a language L C {0,1}* if and only if

Vo, by by, € L& fu(by,--,b,) =1, where f, is the Boolean function which B, represents.

A family {B,} of BDD's is S(n)-uniform if the function n — B, is computable with an O(S(n))-space bounded
deterministic Turing machine, where B, is an encoding over {0,1} of B,.

2.2 II On-line Turing Machine

We define a IT on-line Turing machine (Figure 2). It consists of an input ordering machine and an on-line Turing
machine [6]. An input ordering machine is a Turing machine with a two-way read-only input tape and a two-way
work tape and a one-way output tape. An on-line Turing machine is a Turing machine with a one-way read-only
input tape and a two-way work tape. The output tape of the input ordering machine and the input tape of the on-line
Turing machine are assumed to be identical.

Let a input string of the II on-line Turing machine be by ---b, (by,--,b, € {0,1}). The computation of the
IT Turing machine is proceeds as follows. First, the input ordering machine start its computation with by ---b, on
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the input tape and outputs 1"#b.(1) - - - br(n), where # is a special alphabet and 7 : {1,---,n} — {1,---,n} is a
bijection. Then, the on-line Turing machine start its computation with 1"#by(1) - br(n) on the input tape. The II
on-line Turing machine accepts a language L if and only if the on-line Turing machine halts in an accepting state or
in a rejecting state according as by ---b, € Lor b, ---b, ¢ L.

This definition about the input tapes of an input ordering machine and an on-line Turing machine is slightly
different from the ordinary one. We should define it like this because we discuss the relations between an II on-line
Turing machine , a family of BDD’s, a family of disjoint selector circuits and a family of planar circuits. Note that
the Turing machines defined above are deterministic one.

2.3 Disjoint Selector Circuit

We define a disjoint selector circuit (Figure 3) which represents a Boolean function of n variables f(z1,---,2,) as
an 8-tuple (s, Gsgr, Gpr, po, edge, data, level, 1), where

s is a number of bit of the output of gates,

Gsgr is a set of selector gates,

Gpy is a set of primary input gates,

po € Gsgr U Gpy is a primary output gate,

edge : Gsgr, x {0,---,2° —1,2°} — (Gsgpr, U Gpy) represents the connections of gates,

data : Gpy x {1,--+,8} — {T, F,thru,not} represents the output of primary input gates,

level : GsprUGpp — 217"} is a mapping from a set of gates to the power set of a set of levels such that

llevel(g)| =1 if g € Gpy,

level(g) = Uo<j<ae level(edge(g, 7)) if g € Gspr,

Vi € level(edge(g,2°)) and VI, € level(edge(g,7)) (0 < j <2°=1),1 < <l <nif
9 € Gsgr,

7 {1,---,n} = {1,---,n} is a bijection from a set of levels to a set of indexes of variables.
A selector gate has 2° 4 1 s-bits inputs and one s-bits output. For g € Gggr and 0 < j < 2°, edge(g, 7) represents
a gate whose output connects to the j-th s-bits input of g. g selects one of the values of edge(g,j) (0 < j<2°—1)

according to the value of edge(g,2°). When the value of edge(g,2°) is the binary representation of k, the value of g
is the value of edge(g, k).
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A primary input gate has one 1-bit input and one s-bits output. For g € Gpy, the input of ¢ is a variable Tr(level(g)
and for 1 < j < s, j-th bit of the output is defined as follows

O(inconsistency) if data(g,j) = F,
1(tautology) if data(g,j) =T,
Tr(level(g)) If data(g, j) = thru,
Tr(level(g)) if data(g,j) = not.

The first bit of the output of the primary output gate represents the value of the disjoint selector circuit.

For g € GsgUGpy and for [ € level(g), 7(1) is a index of variable on which the value of the output of g depends.
We define the size of a disjoint selector circuit as [{g19€GsgrUGp} |

A family of disjoint selector circuits and its uniformity can be defined in the same manner as those of BDD’s.

2.4 Planar Circuit

A planar circuit [4] which represents a Boolean function of n variables f(z1,-+ -, 2.) is a T-tuple (Geomp, Gpr, po, edge,
type, level, 7), where

Geoomp is a set of gates computing a 2-variable Boolean function,

Gpris a set of primary input gates,

po € Geomp U Gpy is a primary output gate,

edge : Goonp x{L, R} — GoompUGpy represents the connections of gates satisfying the planar condition
described below,

type : Geomp — { f2 | f2: {0,1}2 = {0,1} } represents Boolean functions of gates,

level : Gpr — {1,---,n} is a mapping from a set of input gates to the set of levels,

7:{1,---,n} = {1,---,n} is a bijection from a set of levels of input gates to a set of indexes of variables.

A planar circuit is a combinational logic circuit whose underlying graph is a planar directed acyclic graph. A planar
circuit can be embedded on the finite region of the plane bounded by a simple closed curve v with no crossing edges.
Let pi; € Gp; be the input gate such that level(pi;) = I and po be the output gate. They assumed to be on the
boundary v and appear in the cyclic order (piy, - - *Pin, po). Note that pi; is an input gate of variable Z(1)-
The depth of a planar circuit is the maximum number of gates on the path from a input gate to the output gate.
A family of planar circuits and its uniformity can be defined in the same manner as those of BDD’s.

3 On the Relations between the Models

We define the classes of languages which are discussed in this paper.

Definition 1 Let U-BDDWIDTH(25™) be the class of languages which are accepted by S(n)-uniform families
{B,} of BDD’s whose maximal width are 20(5(n),

Let II-1-D.SPACE(S(n)) be the class of languages which are accepted by O(S(n))-space bounded II on-line Turing
machines.

Let U-SELBITSIZE(S(n),2%") be the class of languages which are accepted by S(n)-uni form families {C'S,}
of O(S(n))-bits disjoint selector circuits whose size are 20(5(%))

Let U-PLADEPTH(S(n)) be the class of languages which are accepted by S(n)-uniform families {CP,} of
O(S(n))-depth planar circuits. O

The main result in this paper is the relations between these classes.

Theorem 1 For S(n) > log, n,

U-PLADEPTH(S(n)) C

U-BDDWIDTH(2°") = U-SELBITSIZE(S(n),250) = [-1-DS P AC E(S(n)).

[proof] It is derived from the following lemmas. O

The lemma described below is an extended result of Ishiura’s [3].

Lemma 1 For $(n) > log,n, H-1-DSPACE(S(n)) C U-BDDWIDT H(250),
[proof] Let M; be an O(S(n))-space bounded ordering machine and M, be an O(S(n))-space bounded on-line Turing
machine. Let a II on-line Turing machine consist of M, and Ma, and it be assumed to accept a language L.

Let the bijection which M; computes be 7.
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Let a configuration of M, be a 4-tuple (q,1,u,j), where ¢ is a state of the finite controller, | (—n < [ < n)is
the position of the head of the input tape, the word u ( |u| = O(S(n)) ) is the content of the work tape, and j
(1 <7 <0(5(n))) is the position of the head of the work tape.

We design a BDD B, = (Ny, N¢,init,edge, level, 7) accepting L N {0,1}". The bijection 7 of B, is the in-
verse mapping 7'~! of n’. The nodes of B, correspond to the configurations of M. The initial node of B, is
(g0, —7, 095 1), where qq is the initial state of M,. Let a node v of B, correspond to a configuration (g,/,u, ;) of
M,. If ¢ is a rejecting state or an accepting state of My, v is constant node ¢, or ¢y, respectively, and level(v) = n+1.
Otherwise, v is a variable node and level(v) = [ and edge(v,b), b € {0,1} corresponds to (¢',',v’, ;') such that
8((q,Liu, 7),b) = (¢, I',u, 7') where § is a state transition function of M;. Finally, we delete all the node v such that
edge(v,0) and edge(v, 1) are identical. Then, B, is obtained.

Since M, is O(S(n))-space bounded it has at most 20(5(*) different configurations. Therefore the maximum width
of B, is 20(5(),

Since 7’ is computable by the O(S(n))-space bounded Turing machine, the encoding of 7 = #'~! can be also
generated by an O(S(n))-space bounded Turing machine. Since the state transition functions of M; are computable
by the O(S(n))-space bounded Turing machine, the encoding of Ny, N¢,init,edge, level can be generated by an
O(S(n))-space bounded Turing machine. Therefore the family {B,} of BDD’s is S(n)-uniform. O

1

We define a reachability of nodes of a BDD [7] for the next lemma. For nodes vy € Ny and vy € (Ny U N¢) of a
BDD (Ny, Ng, init, edge, level, ) of n variables, vy —p v, means that v, is reachable from v; when an assignment
to the variables x1,---,2, is b = by -+ by, (b1, -+, b, € {0,1}). The formal definition of reachability is as follows

vy —p V2 if Edge(bw(leve((ul))vvl) = Vg,
vy —p v if Jv € Ny, v1 —p v, v —p v

Lemma 2 For §(n) > log,n, U-BDDWIDTH(25™) C U-SELBITSIZE(S(n),25™).
[proof] Let W(n) = 290 and w(r) = O(S(n)). For a BDD B, representing a Boolean function of n variable
whose maximal width is W(n), we design a disjoint selector circuits C'S, representing a same Boolean function.

We assume that B, is quasi-reduced [7], that is, for v € Ny and b € {0,1}, level(v) + 1 = level(edge(v, b))
are assumed to be satisfied. Note that the maximal width of B, is unchanged even if B, has converted to quasi-
reduced. Vi, 1, 1 <l < Iy < n+ 1, we define a reachability vector T}, ;, (Figure 4). It is a W(n) vector whose
k-th (0 < k < W(n) — 1) element is a binary number of w(n) bits. Let the nodes of level I; and level I, of B,
be {va, BRI vl‘;v(n)_l} and {vg, ce ’U;;V(n)~1}’ respectively. The k-th element tﬁh of T}, 1, is defined as follows, where
encode(j) is a binary representation of j of w(n) bits.

tf 1, (b) = encode(j) & vf —p vi,.
Note that when init = o0, ¢g = v2,, and ¢; = v}, the 0-th element of T} ,41 is
! ntl n+1 ’

encode(0) if f(b) =0,
encode(1) if f(b)=1.

Viy, 13, 1 <1y < 1y < Iy < n+1, Ty, can be computed from T}, 5, and 71, 4, as follows, where decode(encode(j)) =
j assumed to be satisfied.
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Yk, 0 <k < W(n)—1,
11, (B) = 12, (b), ky = decode(t}? , (b)).

11,03

Let us denote this computation by Ty, 1, = T}, 4, * Th, 4. Tintq can be computed as follows
Tl,n+1 = T1,2 w*Toz %o x Tn,n+1~

We can compute the above formulas with a w(n)-bits disjoint selector circuit CS, = (w(n),Gsgr, Gpr, po, edge,
data,level, 7). Since a primary input gate can compute a element tﬁh, W (n) x n primary input gates are enough for
computing T3 3, Ty3, -+, T}, 1. Since a selector gate can compute a formula tilylg(b) = tf;,,s(b), ky = decode(t;?’,z(b)),
W(n) x n selector gates are enough for computing Ty = T % Ty3 # - -« * Ty upr. Therefore, the size of CS, is
20(S(n)}

GsEL, po, edge, level of CS, are independent from the form of B, and the encoding of them can be computed with
an O(S(n))-space bounded Turing machine. Since the family {B,} of the BDD’s is S(n)-uniform, the encoding of
w(n), Gpr, data, 7 of CS, can be computed with an O(S(n))-space bounded Turing machine. Therefore the family
{CS,} of the disjoint selector circuits is S(n)-uniform. o

Lemma 8 For S(n) 2 logy n, U-SELBITSIZE(S(n),25") C II-1-DSPACE(S(n)).
[proof] Let w(n) = O(S(n)). We show the algorithm to compute the output of a w(n)-bits disjoint selector circuit
C'Sn = (w(n), Gser, Gpr, po, edge, data, level, w) whose size is 2005¢) with a O(S((n))-space bounded I on-line
Turing machine. Let M; be a O(S(n))-space bounded ordering machine and M, be a O(S(n))-space bounded on-line
Turing machine. Let the IT on-line Turing machine consist of M; and M,.

We use a simple recursive evaluation method like as [8] to compute the value of C'S, with M; and M,. We start
from the gate po and recursively evaluate its inputs.

We design M; to compute the reverse mapping 7= of the bijection 7 of C'S,. Since CS, is S(n)-uniform,
O(5(n))-space is sufficient for computing 7.

The algorithm of M, is as follows, where val is the values of w(n)-bits and decode is defined such that val is the
binary representation of decode(val).

function EVALUATE(!] € Gspr, U Gpj);
begin
if g € Gp; then begin
read the input tape to compute the w(n)-bits output val of g;
EVALUATE = val;
end else begin
val = EVALUATE(sel(g));
val = EVALUATE(data(g, decode(val)));
EVALUATE = val,;
end
end.

Note that since C'S, is a disjoint selector circuit, M can evaluate the output of C'S, reading the input string in
the order & ,-1(yy, - - y L=l ().

Since €Sy, is S{n)-uniform, O(S(n))-space is sufficient for generating the encoding of w(n), Gspr, Gpr, po, edge,
data, level.

M; has to memorize the gate number of ¢ and the value of the w(n)-bits output of g. Since the number of gates
of C35, assumed to be 2°5(") and the output of the gate of C'S,, is w{n)-bits, O(S(n))-space is sufficient. o

The lemma described below is an extended result of Ikekawa's [4].

Lemma 4 Tor S(n) > log, n, U-PLADEPTH(S(n)) C [l-1-DSP AC E(S(n)).
[sketch of proof] We show the algorithm to compute the output of an O(S(n))-depth planar circuit CP, =
(Geomp, Gpr, po, edge, type, level, 7} with an O(S(n))-space bounded II on-line Turing machine. Let M; be an
O(S(n))-space bounded ordering machine and M, be an O(S(n))-space bounded on-line Turing machine. Let the I
on-line Turing machine consist of M; and M,.

We design M, to compute the reverse mapping 7! of the bijection = of CP,. Since CP, is S(n)-uniform,
O(S(n))-space is sufficient for computing ==1.

A class of language accepted by a S(n)-uni form family of planar circuits is included by a class of language accepted
by a O(S(n))-space bounded on-line Turing machine [4]. We design M, as the above on-line Turing machine. m]

We show the relations between the classes (Figure 5), where poly(n) is a polynomial of n. NC* DL and NL are
the class of languages which are accepted by a uniform family of combinational logic circuits of O(log* n)-depth, a
O(log n)-space bounded deterministic Turing machine and O(log n)-space bounded nondeterministic Turing machine.
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Figure 5: relations between classes

4 Conclusion

We defined a II on-line Turing machine and a disjoint selector circuit, and we discussed the relations between BDD’s,
IT on-line Turing machines, disjoint selector circuits and planar circuits.
As future works, we want to find the concrete languages which can or can not be accepted by families of BDD’s

of O(S(n))-width (logyn < S(n)).

Acknowledgment

The authors would like to thank all the members of Yajima Lab. at Kyoto University for their valuable discussion
and suggestions.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput., C-35(8):677-691,
August 1986.

[2] R. E. Bryant. On the complexity of VLSI implementations and graph representations of boolean functions with
application to integer multiplication. IEEE Trans. Comput., 40(2):205-213, February 1991.

[3] N. Ishiura and S. Yajima. A class of logic functions expressible by a polynomial-size binary decision diagram. In
Proc. Synthesis and Simulation Meeling and Int. Interchange (SASIMI ’90), pages 48-54, October 1990.

[4] M. Ikekawa. On depth-bounded planar circuits. IEICE Trans. on Information and Systems, E75-D(1):110-115,.
January 1992.

[5] W.L.Ruzzo. On uniform circuit complexity. JCSS, 22:365-383, 1981.
[6] H.Machida and T.Kasai. Space complexity in on-line computation. JCSS, 24:362-372, 1982.

{7} N. Ishiura. Synthesis of multi-level logic circuits from binary decision diagrams. In Proc. Synthesis and Simulalion
Meeting and Int. Interchange (SASIMI ’92), pages T4-83, April 1992.

[8] Allan Borodin. On relating time and space to size and depth. SIAM Journal on Computing, 6(4):733-744,
December 1977.

—178—



