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Abstract Recently, related to the open problem whether deterministic and nondeterministic space
(especially low-level) complexity classes are separated, inkdot Turing machine was introduced. A inkdot
machine is a conventional Turing machine capable to drop a inkdot on the given input tape for a
landmark.

In this paper, we introduce finite state version of inkdot machine as a weakest recognizer of the in-
herent properties of digital pictures, rather than Turing machine supplied with a one-dimensional work-
ing tape. We firstly investigate the sufficient spaces of thee-way Turing machines to simulate two-
dimensional inkdot finite automaton, as preliminary results. Next, we investigate the basic properties
of two-dimensinal inkdot automaton, i.e., the relationship of two-dimensional inkdot automata to marker
or other two-dimensional automata and the hierarchy based on the number of inkdots. Finally, we inves-
tigate the recognizability of connected pictures of two-dimensional inkdot finite machines.
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1. Introduction

Recently, related to the historical open
problem whether deterministic and nondeterministic
space (especially low-level) complexity classes
are separated, inkdot Turing machine was intro-
duced in [1]. A inkdot machine is a conventional
Turing machine capable to drop a inkdot on the
given input tape for a landmark. Against the ear-
lier expectation, it is proved [2,3] that non-
deterministic inkdot machines are more powerful
than nondeterministic ordinary Turing machines for
sublogarithmic space bound.

As the well-known result,
dimensional input tapes, there is a set of square
tapes accepted by nondeterministic finite
automaton but not by deterministic Turing machines
with sublogarithmic space bound. Thus, it makes
no sense to ask the same question for two-
dimensional Turing machines.

On the other hand, there is another important
aspect for inkdot mechanism:
dimensional inkdot finite automaton as a weakest

in case of two-

we can see two-

recognizer of the inherent properties of digital
pictures. From this reason, we. introduce finite
state version of inkdot machine, rather than
Turing machine supplied with a one-dimensional
working tape. The main problem here is '"what im-
provement of recognizability is brought about by
the addition of inkdot mechanism to ordinary two-
dimensional finite automaton.

We also emphasize the standpoint such that in-
kdot automaton is a restricted version of "marker
automaton.” In Section 2, we firstly give the
definition of two-dimensional marker automaton.
Then, the two-dimensional inkdot automaton aimed
at here is introduced. We also give several basic
definitions needed for our discussions.

In Section 3, we investigate the sufficient
spaces of thee-way Turing machines to simulate
two-dimensional inkdot finite automaton, as
preliminary results.

In Section 4, we investigate the relationship
of two-dimensional inkdot automata to marker or
other two-dimensional automata.

In Section 5, we investigate the exsitance of
the hierarchy based on the number of inkdots. It
is shown that no such hierarchy exists for deter-
ministic inkdot finite automata.

In Section 6, we investigate the recog-
nizability of connected pictures of two-
dimensional inkdot finite machines.

The final section give the several problems to
be solved in the future.

2. Definitions

Definition 2.1. Let ¥ be a finite set of sym-

bols. A two-dimensional tape over ¥ is a two-

dimensional rectangular array of elements of X .
The set of all two-dimensional Tapes over ¥ is

denoted by X 2+. Given a tape x€ ¥ 2+, 0, (x)
denotes the number of rows of x and 0., (x) denotes
the number of colums of x. If 1<i<@; (x) and 1<j<
Qs (x}, we let x(i,j) denote the symbol in x with
coordinates {i,j). Furthermore, we define
x[(1,3),(i",37)1,

when 1<i<i’<Q, (x) and 1<¢j<j’<Q,; (x), as the two-
dimensional tape z satisfying the following:

(1) 8y (z)=1’-1i+1 and Q; (2)=j'~j+1,

(ii) for each k,r [1<k<Q;(z) and 1<r<Q,{(z)1,

z(k,r)=x(k+i-1,r+j-1).

For x€ ¥ %z* with Q; (x)=zn, the ith row
x[(i,1),(i,n)] of x is simply denoted by x[i,x].

Definition 2.2. Let k be a non-negative integer.
A two-dimensional k-marker automaton (AMk) is a
septuple

M= (Q.,q0,U,F,%,{0,1},8)
where

(1) Q is a finite set of states,

(3) qo€ Q is the initial state,

(2) Us Q is the set of universal states,

(4) F € Q is a set of accepting states,

(5) £ is a finite input alphabet,

(6) {0,1} is the presence and absence signs of
markers,

(7} € ((@x{0,1})¥)Xx ((Z U {#})%x {0,1}k)) X
((QXx {0,1} X)X ((Z U {#})x {0,1}k)X A ) is
the next move relation satisfying the follow-
ing (where # € 3 is the boundary symbol and
A = {up,down,left,right,stationary} is the
directional set of input head):

For any q,9’€ Q, a,a’€ T, u=(ui,+ ,uk),
W= 1y 0 k), VvE(V, e Vi) VISV e,
v'k)e {0,1}k, and de A, if ((q',u’},

(a’,v’'}),d) € § ((q-“); (a,v)) , then
(i) a=za’ and (ii) for each i(1<i<k),
(ui,vi, ui,v’i)e {(1,0,1,0),(1,0,0,1),
(0,0,0,0),(0,1,0,1),(0,1,1,0)}.
A state q in Q-U is said to be existential. The
machine M has a read-only rectangular input tape
with boundary symbols "#"s. If the input head
falls off boundaries of the input tape, then the
machine M can make no further move.

An element of Q X {0,1}% is called an extended
state. An element of X X (0,1}k is called an ex-
tended input symbol (the set ¥ X {0,1}% itself is
called the extended input alphabet). An extended
state [q,u] represents the situation that M is in
state q and M holds or does not hold the ith
marker in the finite control, according to the
value of u; which is equal to 1 when it holds the
marker. An extended input symbol [a,v] represents
the situation that the input symbol on the current
cell is a and the ith marker exists in the same
place, according to the value of v; which is equal
to 1 when the marker exists.

Therefore, the condition (ii) of & implies the
following: () When holding the marker, M can
either continue to hold it or put it down on the
current cell. 2 When not holding the marker, and
(a) if there does not exist the marker on the cur-



rent cell, M cannot create a new marker, but (b)
if there exists the marker on the current cell, M
can either leave it alone or pick it up.

Definition 2.3. Let M= (Q,qo,U,F,X ,{0,1},8)
be an AMk. An extended input tape ¥ of M is a
two-dimensional tape obtained from the original
input x such that (1) e (¥ x {0,1}%)2+, (2) O,
(£)=0, (x) & 8, ()=, (x), and (3) for each 1, (1<
Q (R),1<5<8, (%)), Rti,jr= (x{1,3),v), where ve
{0,1}%k, That is, ¥ is a two-dimensional tape over
the extended input alphabet each cell of which is
a pair of the same symbol as in the given input
and a 0-1 of length k to indicate the
presence or absence of the k markers.

The initial input tape x® of M is an extended
input tape % such that for each i,j{1<i<Q, (¥),1¢j<
€2 (X)), X(i,j)={x(i,j),0), where 0={0,0,...,0).

vector

Definition 2.4.
be an AMk,
ment of

Let M= (Q,q0,U,F ,2,{0,11,8)
A configuration of M on x is an ele-

{(Z X {0,1}E)2+Xx (Q X {0.1}K)x N 2,
where N is the set of all natural numbers. The
first component of configuration c= (%,[q,ul,
(i,j)) is an extended input tape of M. The second
component of ¢ is an extended state of M. The
third component of ¢ is the input head position of
M, If q is the state associated with configura-
tion ¢, then ¢ is said to be universal (existen—
tial, accepting) configuration if q is a universal
(existential, accepting) state. The initial con—
figuration of M on x is
Tuix)= (x°,{qo,1],(1,1)),

where 1=(1,1,...,1}.

Definition 2.5.
), we write

Given M=(Q ,qe,U,F , 3 ,{0,1},6

cku e’
and say ¢’ is a successor of c¢ if configuration o’
follows from configuration ¢ in one step of M, ac-
cording to the transition rules & . ¥ u denotes
the reflexive transitive closure of . A com~
putation path of M on x is a sequence
Co kFucCy Euoecn (n21),

A computation tree of M is a nonempty labeled tree
with the properties,

(1) each node # of the tree is labeled with a

configuration 0 (x ),
(2) if z is an internal node (a nonleaf) of the

e

tree, Q(x ) is universal and
{fcl Q(zm)+wucl={ci,~,ck},
then z has exactlv k children P 1y, Pk

such that © (p j)=ci,

(3) if 7 is an internal node of the tree and {
() is existential, then z has exactly one
child p such that

Qi I Ful(p).
An accepting computation tree of M on x is a
finite computation tree whose root is labeled with
Iu(x) and whose leaves are all labeled with ac-
cepting configurations. We say that M accepts x

if there is an accepting computation tree of M on
input x. Define
T(M)= {x€ £ 2+ | M accepts x},

By DMk (NMk,UMk) we denote a deterministic two-
dimensional k-marker automaton (a nondeterministic
two-dimensional k-marker automaton, an alternating
two-dimensional k-marker automaton with only
universal states).

The class of sets accepted by aMks is defined as
follows.

L [AMk]= {T | T=T(M) for some AMk M}.
£ [DMk], etc. are defined similarly.

Now, we introduce two~dimensional multi-inkdot
automaton as follows.

Definition 2.6. Let k be a non-negative integer.
A two—dimensional alternating k-inkdot automaton
(Alk) is an AMk M= (Q ,U ,qe,F ,3 ,{1,0},6 )
whose mext move relation & < ((Q X 10,1} k)X ((Z
U {#)X {0,11k%)) x ((Q X {0,11¥)X ({3 U {#})x

{0,11¥)x A) satisfies the following:
For any q,q’€ Q . a,a’€ 3, uz(u;,- ,ux),
wElu e U k), vE(v e Vi), VISV e v ) €
{0,1}%, and de A, if ((q',u’),(a’,v'),d) €

4 ((q,u),(a,v)) , then (i) a=a’ and (ii) for
each i(1<ick), (ui,vi,u’i,v’i)e {(1,0,1,0),
(1,0,0,1),(0,0,0,0),(0,1,0,1)}.
That is, an Alk M is an AMk which cannot pick up
the marker any more, once it has been put down on
the tape.

By "DIk" ("NIk","UIk"} we denote a determinis-
tic two-dimensional k-inkdot automaton (a non-
deterministic two-dimensional k-inkdot automaton,
an alternating two-dimensional k-inkdot automaton
with only universal states). & [AIk], etc. are
defined similar to 2 [AMk].

In this paper, we will use many other kinds of
two-dimensional automata but omit their defini-
tions. If necessary,
mentioned in the text.

see appropriate references

At end of this section, we give some useful
notations concerning to two-dimensional automata

study. For a two-dimensional tape T, the compli-
ment of T is denoted by T". Define co-g= {T"| 7T
€£}. For a two-dimensional tape x with Q4 (x)=m

& Q, (x)=n, the row reflection of x, denoted by
xRF, is the two-dimensional tape with the same
size as x and for each i,j(1<i<m,1<j<n),
xRF(i,j)=x(m-1,j). Define TRF= {xRF| xe T} and
Ref-s£2 = {TRF | Te £}. Let P(n) be a predicate in-
cluding integer variable n. We denote "3 !P(n)"
if the statement P(n) holds for one and only one
integer n.

3. Simulation by Three-Way Machines (Preliminary
Results).



In this section, we investigate the sufficient
space of three-way Turing machines to simulate in-
kdot automata. We considered here three-way
deterministic Turing machine (3DT), three-way non-
deterministic Turing machine (3NT), three-way al-
ternating Turing machine with only universal
states (3UT), and three-way alternating Turing
machine (3AT) [4]. .

Proposition 3.1. For any fully space construc-
tible function L(n)>log n, 3DT(L{n)) 3NT(L{(n)),
3UT(L(n)), and 3AT{(L(n)) can be converted to those
machines which always halt, any computation
of which has no loop for any input.

Proof. Omitted here.[d

i.e.,

Lemma 3.1. For any fully space constructible
function Li(n)>log n,

(1) 2[3DT(L(n))]= co-L [3DT(L(n))],

(2) 2[3UT(L(n))]= co-& [3NT(L(n))],

(3} E[3AT(L(n))]= co-£ [3AT(L(n))].
Proof. Omitted here.[]
Lemma 3.2. For any fully space constructible func-
tion L(n)>log n,

Ref-£ [3AT(L(n)}] € y)oa:e[smm-zcu"’n

Proof. Omitted here.d
Lemma 3.3. (1) co-L£[DMl]ls 2 (3NT(n log n)],
(2) co~Z [NM1lE £ [3NT(n?)].
Proof. (1): It is shown in Lemma of [5] that ¥

[DM1]1€ £ [3NT(n log n)].
accepting T(M) was constructed,

In its proof, a 3NT M’
where M is the

given DM1. By careful reading of the context, it
is easily seen that the machine M’ satisfies the
property: For any input, only one machine Md

among the machines existentially branched from the
original can enter an accepting state q: when M’
accepts the input. On the other hand, from
Proposition 3.1, we can assume that, when M’ does
not accept. the input, the decision machine Md en-
ters an rejecting state q: and all the other
branching machines enter some halting states which
are neither equal to state gqr nor qr. From these
facts, we convert M’ to a desired machine M" by
exchanging the accepting state qf to the rejecting
state qr, and vice versa.

(2): From Lemma in [5] and with the same tech-
nique as part (1), we can get the desired result.
O

From Lemma 3.2 and Lemma 3.3, we get the follow-
ing.

Theorem 3.1. (1) £ {DM1]lc 2 [3UT(n log n)l,
(2) L [NM1]g 2 [3UT(n2)].

Theorem 3.2. (1) & [UMl]E £ [3NT(n2}],
(2) £IAMI]IS U c& [3NT(2¢n)].

Proof. The proof is omitted here. See (6]1.00
The next proposition will be used not only in

this section but also in some places afterward.

Definition 3.1. Let M be an NIk and x be a input
tape for M. Suppose that M accepts x and uses all
of the k inks. Then, there exists an accepting
computation path Pu(x)= cokcib cf (£30),
where co is the initial configurations and c¢ is
an accepting configuration of M on x. From Pu(x),
we draw a sequence of k different extended input
tapes x0,x!,...,xK, where x® is the initial input
tape of M. We call x! the Ith plane of Pu(x)
(0<1<k).

The Proposition below is easily derived.

Proposition 3.2. Let M be an NIk and x be a input
tape for M. Suppose that M accepts x and uses all
of the k inks. For any accepting computation path
Pu(x) of M on x, any 1 (0<1<k) and any (i,j) (0<i<
Qu (x)+41,0<j<R, (x)+1), We can say that the number
of visits to the position (i,j) on x! of Pu(x) is
at most | Q! , where Q is the set of states of M.

Proof. Suppose that, on some plane x! of Pu(x)=
Co,C1,yer,Cey, M visits some position (i,j) more
than | Q| Then, there exists a con-
figuration ¢ in Pw(x) such that cobecClig e =
cf. By removing the subpath (a cycle) from ¢ to
¢, we get another valid accepting computation path
Co o which is shorter than the
original and has no repetition of c.[]"

times.

Ch v by

In the theorem below, we will show that two-
dimensional inkdot automata can be simulated by
two-dimensional on-line tessellation acceptors
(ota) [7}. To simplify our discussion, we adopt
"two-dimensional multipass on-line tessellation
acceptor (mpota)"” [8] in stead of ota itself. A
mpota is an extension of ota that outputs a ’run’
(a two-dimensional tape consisting of the result-
ing states after one transition of each finite
state machines on the cellular space) at each pass
regarding the previous run as its own input. The
mpota repeats such passes until its accepting cell
enters an accepting state.

It is known that mpota’'s whose passes are
restricted to some constant k, denoted by
mpota(k)s, accept the same set as ordinary ota’s:

Lemma 3.4.(8) g2fotal= U ;1.2 [mpota(k)].

Theorem 3.3. U ko2 [NIkIS 2 [ota].

Proof. Let M be a NIk and x be an input for M.
From Proposition, we can assume that for any
(i, j) of the 1th plane x! is a constant.

We construct a (k+1)-pass mpota M’ accepting



T(M) as follows:
M from the initial configuration to the configura-
tion in which M drops the first ink. In general,
at the Ith pass, M’ simulates M from the con-
figuration in which M drops the }1-lst ink to the
configuration in which M drops the JIth ink. At the
last k+lst pass, M' simulate M from the configura-
tion in which M drops the kth ink to an accepting
1f the process above

At the first pass, M’ simulates

configuration (if any).

succeeds, then M’ accepts x. It is clear that
T(M')=T(M). From this and Lemma 3.1, the theorem
follows.O

Corollary 3.1. For each k>1, the necessary and
sufficient space of 3NT to simulate NIk is n.
Proof. Omitted here.]

The following
properties of Ulk.

is a key lemma to derive the

Theorem 3.5. For each k>0, co-2[UTK]C 2 [NTk+1].

Proof.
that,
always enters a loop.

Without loss of generality,
when a ULk M rejects the given input x, it

we  assume

From this, we can say that
M does not accept x iff there exists a computation
path Ru(x)=cotcibeci=wict, where the cycle c
f-ee c represents a loop. NTk+l1 M’ uses k inks
for the trace of subpath cOr:«: +c and the last
ink for the detection of a loop. Note that, M’
never enters an accepting state, if any computa-
tion of M has no loop.Od

Corollary 3.2. co-2[UFl< £ ([NI1].

Corollary 3.3. For each k>1, the necessary and
sufficient space of 3UT to simulate UIk is n.

We describe a sub-procedure used in the proof
of Theorem 3.6 below.
Lemma 3.5. 2Z[NF]< £[3AT(log n)l.
Proof. Let M be a NF and » be a two-dimensional
tape. For two configuration ¢,d of M whose input
heads are located in the same row of x, let denote
"ct= A" when (i) the relation «#d holds and (ii)
for any configuration between ¢ and d, the input
head of M never goes up beyond the row of ¢,d.
For simplicity, we assume that. it enters an ac-
cepting state in leftmost and uppermost position
of x, if M accepts x. Then, the acceptance of M
is equivalent to the validity of cok=c¢, where co
and ¢ are the initial configuration and an ac-—
cepling configuration of M on =,
3AT(log n) M' can verify the relation ck d as fol-
lows [9]. Suppose that two configuration ¢ and d
of M locate now the ith row of x At first, M’
guesses some other configuration e of M which lo-
Next, M’
branches into two machines M, M,.

respect ively. A

cates on the ith row. universally

The machine M:

recursively verifies the relation el d. The
existentially branches into two
machines, one to check that the relation c“e
holds where the intermediated configurations are
The other machine
guesses two configuration c’,d’ of the i+lst row
such that ckc’k=d’~d and goes down to the next
row to verify ¢’k d’. It is clear that T(M’)=T(M)
and M’ is log n space bounded.O

machine M;

only those of the Jith row.

Theorem 3.6. U x0.2 [NIk]ES 2 [3AT(log n}].

Proof. Let M be a NIk and x be an input for M
with Q@ (x)=m and O, (x)=n. In order to simplify
our argument, we assume that M uses all of the k
inks.

Suppose M accepts x and let PM(x) be an accept-
ing computation path of M on x. From proposition,
it follows that the number of the configurations
of Pu(x) in which M either drops the ink on the
tape or passes over the ink positions is at most
2 i-1¥(i-s), where s is the number of states of
finite control of M. Let

C105C114*" 4C1r1,C20,C214°** ,C2r2,y°**
Ck0+Chkiy** yChrk
be the extracted configurations in this way, where
cie is the configuration in which M just drops the
Ith ink and ri is a constant such that r;<1
(1<1<k). Let r=3% (ri+1)+1 and let Po,Pi,« ,P: be
the all subpaths
Ferrt"y"crirr#®ezo”,"czo ezt e, "Ckrk-1 Pokrk,
and "ckrxHci", where co,cy is the initial and an

accepting configurations of M, respectively.

Below, we construct a 3AT M’ simulating M on x.
While the simulation, M’ simultaneocusly performs
the two tasks, one is guesses of the k positions
P1,,pk where M drops the k inks, and the other
is r checks of the existence of P;,P2,:,and Pr.

In the algorithm, we must use a list remain ink
to represent the set of inks which have not yet
been located and use 2r pairs of variables (last g
¢ slast_jg ) and (first _qg; ,first_j, ) to repre-
sent the extended state and column number pair of
the configuration in which M moves on the current
row at first and at last between the way of Py ,
respectively.

"corere”,"c10P 11y, "Crri-a

For each { (1<Q<r), do the following: Guess an

extended state and column number pair in starting

node configuration of Py . Initialize (last_q,

ylast_j, ) to this pair. Also guess an extended

state and column number pair in goal node con-

figuration of P, Initialize
first j, } to this pair.

Initialize remain_ink to {1,2,.--,k}.

Fore i=0 to m+1 do the following:

1. Go to the ith row (when i=0, assume the
boundary symbols #s on the 1st row).

2. For each I in remain_ink do the following:

(1) Guess whether the Ith ink does lo-

cate at the current row. If yes, guess

also the real location of 1 and delete

{first_qg -

—89—



the element I from remain ink.
(2) For each subpath P, either (or both)
end node » of which is associated with I,
do step ' if the above guess is ves, else
do step @ . (Below, we only describe the
case when e ig the start node of P, and
insert in brackets the case when e is the
goal node.)
D) Check el (x9,last_qq ,(i,last_j, ))
[ (x0,first q, ,(i, last_j, )lke] .
(» Guess a configuration s [g] on the
current row and a configuration s’
[g’] on the next row such that s’
s [gkg’] . Check sk (x9,last g
¢ »tislast_jg V) [ (x°, first_q; ,
(i, first _jg )k g] And,
(last_q; ,last_j, ) [ (first_q, .
first_jg )] to the state and column

[g'] .

rewrite

number pair of s’

In step @' and 2 above, the check ckd for some
configurations c¢,d is achieved by the method of
Lemma 3.5. A universal branching must be carried
out if two checks of this kind are needed simul-
taneously. It is clear that T(M’)=T(M) and M’ is
log n space-bounded.]

Corollary 3.4. U k0.2 [NIk]G £ [ota].
Proof. Omitted here.[]

Corollary 3.5. For each k»1, the necessary and
sufficient space of 3AT to simulate NIk is log n.

From Theorem 3.6 and Lemma, we get the following.

Corollary 3.6. U ko2 [UlklE 2[3AT(log n}].

Corollary 3.7. U ko2 [UIk]E 2 [3UT(nk)].

4. Relationship to Marker and other automata.

In this section, we investigate the accepting
power of inkdot machines and compare with those of
marker and other automata.

Theorem 4.1. (1) 22 ([NI1]& 2 [NM1],
(2) £[UIlls 2 [M1].

Proof. Omitted here.[d

Theorem 4.2. 2 [NMl]lc 2[ATIl}.

Proof. Let M be a NM1 and x be an input for M.
We construct a AIl M which acts as follows. While
M does not pick up the marker, M’ behaves in the
When M will put down the marker at
a configuration c=(%,(q,(i,j))), M’ first guesses
the configuration d=(%£,q’,(i,j}}) at which M would
pick up the marker again and memorizes the state

same way as M.

q’ in the finite control.

Next, M’ universally
branches into two machines, one of which continues
to simulate behaviors of M after the configuration
d, and the other of which verifies the validity of
the guess cFd. To the latter end, M’ drops an
ink as a landmark in this place. It is clear that

(M’ )=T(M).O

In the following, we show that two-dimensional
alternating finite automata with constant k leaves
(AF(k)) [6) can be simulated by multi-inkdots non-
deterministic finite automata. Intuitively,
"leaf-size" is the minimum number of leaves among
possible accepting computation trees of an alter-
nating machine on the given input.

Theorem 4.3. 2 [AF(k)]E L [NI2Zk-1-17,

Proof. Let M be an AF(k) and x be an input for M.
Without loss of generality, we assume that any
computation tree of M is a binary tree, i.e., out-
degree of computation tree is at most two.

When M behaves existentially, A inkdot automaton
M' behaves in the same way as M. When M branches
universally at a configuration ¢, M’ begin to per-
forms a depth-first search of computation subtree
of M rooted at c. To complete the task, M’ drops
a ink in this place to be a landmark when it
return here in backtrack of the depth-first
search. detailed construction of M’ is omitted
here.

We next see how many inks must be used by M’.
In general, if the number of leaves of a binary
tree t is k, the depth of t is at most k-1. Con-
sequently, the number of the non-leaf nodes is at
most 2k-1-1, From this fact, it follows that M’
uses at most 2k-1!-1 inks in our algorithm.O

This result is useful to derive the properties
of AF(k).

Corollary 4.1. 2[AF(2)]< £[NT1].

Corollary 4.2. U x»:18[AF(k)]E £ [otal.

5. Hierarchy Based orn the Number of Inkdots

In this section, we show that no hierarchy based
on the number of inkdots exists for deterministic
machines.
Theorem 5.1. £ [DFl= U k1.2 [DIk].

Proof. The simulation method of Ref.[11, which
only treats one-ink machines, is alsc valid in our
two-dimensional case. We recall this technique
for the beginning: DF M’ behaves in the same way
as DI1 M until M uses its own ink. When M drops
its ink, M’ memorizes the input symbol on the cur-
rent cell. After that, M’ continues to simulate
M, except when M’ encounters the same input symbol



as recorded symbol in the finite control. When
such a case happens, M’ memorizes the current
state of M and performs "depth-first backward
search” of the computation toward the initial con-
figuration of M, in order to test whether the en-
countered cell must be the place of ink drop. If
M’ reaches the initial configuration of M, it per-
forms "foreword simulation” of M until M will drop
the ink. After that, M’ continues to simulate M
from the memorized state as if there is a ink in
this place.

Based on this, we will prove the theorem by in-
duction on the number of inkdots. That is, assum—
ing that DFs can simulate DIk's, we will show that
a DIk M’ can simulate a given DIk+1 M. Before M
will drop the k+lst ink, each time when M’ encoun-
ters a previously dropped ink, it memorize the
pair of ink and current state as an anchor like
the initial configuration described above. When M
drops the k+lst ink, M’ memorizes the current in-
put symbol in the finite control. After that, M’
continues to simulate M, except when M’ encounters
the same input symbol as recorded symbol in the
finite control. When such a case happens, M’ per-
forms "depth-first backward search" and "foreword
simulation” of M between the current configuration
and the most recent configuration that encountered
the inkdots represented by the newest pair in the
finite control.d

6. Recognizability of Connected Pictures
In this section, we investigate the ability of

two-dimensional inkdot automaton to recognize some

properties of two-dimensional binary pictures.

Definition 6.1. Let ¥ be a two-dimensional tape
over {0,1}. An l-component of x is the maximum
subset P of N X N satisfying the following:

(i} For each (i,j)e P, 1<i<;(x), 1<, (x},
and x(i,j)=1,

(ii) for any (i,j),(h,k)e P, there exists a
sequence (io,Jjo),(i1,j1),,(in,jn) of ele-
ments of P such that

(a) (io,Jo)=(i,J),(in,jn)=(h,k), and

(b) for each m(1<m¢n),

Pim=im-1 | +! jm=jm-1] <1.

If x€ {0,1}(2) has exactly one l-component, we say
that x is a connected picture. The set of all
connected pictures is denoted by T¢. Similar to
1-component, O-component of x can be defined. Any
O~component not adjacent to boundary #s is called
a hole of x. If x has no hole, we say that x is a
simply-connected picture. The set of all simply-
connected pictures is denoted by Tgc.

Definition 6.2.(19) TLet x be a two-dimensional
tape over {0,1}. The tail point of x is the
unique position (ie,jo) such that (1) x(io,je¢)=1
and (2) for each (i,j) ( £(io,Jo), 1€igR, (%),1<i<0,
(x)) with x(i,j)=1, it holds that

io>1 or (ie=i & Je>j),
ices, i-Qp (x)+j<io-Uy (X)+j0.

Further, we need some preliminaries to get the
desired results. The reader should recall the
standard border-following procedure on binary pic-
tures [11].

Definition 6.3. Let C denote a closed simple
curve in 2Z-dimensional Euclidean space composed
entirely of a finite number of horizontal and ver-
tical line segment.

Let walk(C) be a walk from some point po of C to
pe that begins at po, initially goes in either
direction, and continues in the same direction
along C until pe is reached. Define

turn<walk(C)>=[total number of right hand turns

- total number of left hand turns that
must be made in a walk(C)]

+ 4 Lemma. (1®) tyurnd<walk(C)>=+4 if walk(C) is
homotopic to a clockwise loop. turn{walk(C)>=-4
if walk(C) is homotopic to a counterclockwise
loop.

Here, we convert "Mod 3 Corollary” in [10,12]
to more convenient form.

Propposition 6.1. The component surrounded by the
closed curve C is a hole iff [turn<walk(C)>=1 mod3
& symbol '1’s are seen in the left hand side on
the walk] or [turn<walk{C)>=2 mod3 & symbol '1’s
are seen in the right hand side on the walk]

Theorem 6.1. Tc¢",Tsc"€ £ [NI1].

Proof. Let x be a two-dimensional tape over
{0,1}. We construct an NI1 M accepting T¢" as
follows. First, M existentially chooses some 0-1

border point pe, and drop an inkdot. Next, it
resets a mod3 counter and begins to perform the
border-following algorithm which starts from Po.
In this walk, M increments the mod3 counter at
each turn of direction. If M meets the tail posi-
tion of x along the walk, then it halts in a non-
accepting state. If M does not meet the tail
position on the walk and finally returns to the
starting point po, it follows that the component
surrounded by C is either a hole or a 1-component
different from the l-component on which the tail
position locates. The latter shows that x is not
connected. M enters an accepting state only when
the component is not a hole, which is easily
verified by the criterion of Proposition 6.1. It
is clear that T(M)=T¢".

In case of Tsc¢”, M enters an accepting state
even if there is a hole in the input.O

Corollary 6.1.0) T¢",Tsc € 2 [otal.

Theorem 6.2. Tce 2 [UI1].



Proof. TIn the previous theorem, the constructed
NI1 M accepting Tc¢” always halts,
enters a loop for anv time for any input.

on this fact,

i.e., it never
Based
it follows thal, by exchanging the
evistential states of M to universal states, non-
accepting states to accepting states, and accept -
ing states to non-accepting states conversely, we
obtain a UTl accepling Tc. {we can get the same
result by parallelization of the raster scan
method of deterministic l-marker in [13]) O

Corollary 6.2. Tc,T¢ € &2[3AT(log n)].

7. Final Remarks

We conclude this paper giving the open problems
concerning two-dimensional inkdot automata.

+ & [NIk] is not closed under intersection?

- co-2 [NFl€ U £ [ATK]?

- co-& [UI2]e #[NI2]?
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