7 A Y X 4 35-4
(1993. 10. 1)

Don'’t Care 5052 & X FF|Cxt3 3
VTl Fv 2« FLa) X4

BT AL sEEth,
BB TSEET

MFHOER <y Fv 7« TA=Y Xa kLT Landau & Vishkin KX 23747) XAl abhTw
So AMTRWO DT A=Y XA%HICEHF L. Don’t Care #0844 ¥ XFFICH T 2 BB X T 5o
Aley F¥ 7« TATY XL%TF hB. 1 k75X VXFFOEX, m TR XFFIOEX,

L ORNCFRE, k RHAIRE L LSS, BRT A=) Kotk O(VEmn log|T| log? 2 loglog my
REICBVEL, WHIT =) X 21x CRCW-PRAM ko O(\/Z,?—-n log |2 log 2 loglog) e 7' =
€y Y EANT O(k logm) BETHNET 2o & biIc, X VIR L ASTFIAL — v ICHF 2~ » 5 o
T e T Y XL HRT,

APPROXIMATE STRING MATCHING WITH
DON'T CARE CHARACTERS

Tatsuya AKUTSU

Mechanical Engineering Laboratory,
1-2 Namiki, Tsukuba, Ibaraki, 305 Japan.
e-mail: akutsu@mel.go.jp

This paper presents parallel and serial approximate matching algorithms for strings with don’t
care characters. They are based on the approximate string matching algorithm developed by
Landau and Vishkin. The serial algorithm works in O(Vkmn log|Z| log? T loglog 2) time
and the parallel algorithm works in O(k logm) time using O(\/%n log || log 7 loglog 2¢)
processors on a CRCW-PRAM, where n denotes the length of a text string, m denotes the
length of a pattern string, k denotes the maximum number of differences and ¥ denotes the
alphabet (i.e. the set of characters). Several extensions of algorithms are described, too.

1 Introduction

Approximate string matching is important not only from a theoretical viewpoint but also
from a practical viewpoint. In particular, it is important for molecular biology since the exact
matching is not sufficient [4]. While several variants are considered in approximate string
matching, the string matching with k differences is the most important one. It is defined as
follows [7, 8]. Let T = t1---{, be a text string and P = py - - pm be a pattern string over an
alphabet £. Note that |Z| < m can be assumed without loss of generality. A difference is one
of the following:

(A) A character of the pattern corresponds to a different character of the text.
(B) A character of the pattern corresponds to no character in the text.
(C) A character of the text corresponds to no character in the pattern.

If t;---t; can correspond to P with at most k differences, we say that P occurs at position j
of T with at most k differences. Then, the problem is defined as follows: given a text string
T, a pattern string P and an positive integer k (1 < k < m), find all positions of T' where P
occurs with at most k differences.

[Exampie 1] P ="bcdefgh” occurs at position 8 of T ="abxdyeghij” with differences 3 by
the following correspondence:

T a b x d y e g h i]
P P ¢ d e f g h
) (© (B)

Landau and Vishkin developed an O((k + log m)n) time algorithm for the string match-
ing with k differences [8]. Galil and Park developed theoretically and practically improved
algorithms [7]. :

Although efficient algorithms are developed, the string matching with & differences seems
insufficient for such applications as motif search. In motif search, don’t care characters are
frequently used [4], where the don’t care character is a character which matches any character.
In this paper, '+’ denotes the don’t care character. Concerning with don’t care characters, the
exact string matching with don’t cares was studied about 20 years ago. Fisher and Paterson
developed an O(n log|Z| log? m loglog m) time algorithm based on the fast calculation method
of convolutions [5]. Their technique was applied to various pattern matching problems [1, 2].
Abrahamson generalized their algorithm and developed algorithms for the generalized string
matching [1].

Combining Landau and Vishkin’s algorithm with Fisher and Paterson’s algorithm, we
developed serial and parallel algorithms for the string matching with & differences in which
don’t cares may appear both in a text string and in a pattern string. The serial algorithm works
in O(vkmn log|Z| log? 2 loglog %) time and the parallel algorithm works in O(klog m) time
using O(\/%n log |Z| log & loglog 7Yy processors, where a CRCW-PRAM is assumed as a
model of a parallel computer. While suffix trees are used in Landau and Vishkin’s algorithm,
tables which are constructed by Fisher and Paterson’s algorithm are used in our algorithms.
This paper describes these algorithms. Extensions for more general patterns of strings are
described, too.

[Example 2] P ="bcxeghi” occurs at position 8 of T' ="axcdefgij” with differences 2 by the
following correspondence:

) (B)

2 String matching with k differences

In this section, we overview Landau and Vishkin’s approximate string matching algorithm [8].

2.1 Simple algorithm based on dynamic programming

In this subsection, we describe an O{mn) time algorithm for the string matching with &
differences. It was developed by a lot of persons independently. It is based on the dynamic
programming technique.
Let D[i,j] (0 £ i < mand 0 < j < n) be the minimum number of differences between
-p; and any substring of T" ending at t;. Then, it is easy to see that D[4, j] is determined
by
D[i,5} = min(D[z —1,7]+1, D[4, —1]+1, D[i-1,j—-1]+h)

where h = 0 if t; = p; and h = 1 otherwise. Thus, the following procedure solves the string
matching with £ differences in O(mn) time. Note that all occurrences can be enumerated by
outputting all j’s such that D[m,j] < k.

Procedure Simple Dynamic(P,T)
begin
for all j such that 0 < 7 < n do DI[0,j] « 0;
for all ¢ such that 0 < ¢ < m do D[¢,0] « 3;
fori=1to mdo
for j=1tondo
begin
if p; =1t; then h «— 0 else h « 1;
Dli,j] « min(D[i = 1,5]+1, D[4,5—1]+1, D[i—1,5—1]+h)
end
end

[Example 3] Let P ="CAAG” and T ="CCCAGAT”. Then, the following table shows the
values of Di, j]’s.

QP >0
W N O
WK O ON
[N -] F e
w - o oO
N O e O
— e o
R] B
NN N~ O

2.2 Landau and Vishkin’s algorithm

While the simple dynamic programming algorithm takes O(mn) time, Landau and Vishkin
developed an O((k + logm)n) time algorithm [8]. Their algorithm computes the same in-

formation as in the matrix D[¢,j] of the simple dynamic programming algorithm, using the
diagonals of the matrix. A diagonal d of the matrix consists of all D[¢, j]’s such that j —i = d.

For a number of differences e and a diagonal d, L[d, e] denotes the largest row 7 such that
D[i,j] = e and j — 1 = d. For example, L[3,0] = 0, L{3,1] = 3 and L[3,2] = 4 in the case of
Example 3. Note that the value of D¢, j] such that j — ¢ = d grows monotonically as 7 grows.
Thus, for the string matching with k differences, we need only compute the values of L[d,e]’s
such that e < k. Since the number of diagonals is O(n), the number of L{d, e}]’s which are
required to be computed is O(kn). Moreover, Landau and Vishkin showed that L[d, €]’s could
be computed by the following procedure.

Procedure LandauVishkin(P,T)
begin ‘
for all d such that 0 < d < n do L{d, ~1] — —1;
for all d such that —(k+1) < d < —-1do
begin
Lid,\d| — 1] « |d| - 1;
Lid,|d| — 2] « |d| — 2
end
for all e such that —1 < e< kdo Lin+1,¢e] — —1;
for e =0to k do
for all d such that —e < d < n do
begin
row « max(L[d,e—1]+1,L{d—1,e - 1], L{d+ 1,e — 1]+ 1);
row « min(row,m);
while row < m and row + d < n and prows1 = trowt14d do Tow — rTow +1; -(3)
Lid,e] « row;
if L[d,e] = m then
Print "There is an occurrence ending at fg4m”
end
end

If procedure LandauVishkin(P,T) is implemeted as it is, it takes O(mn) time. However,
Landau and Vishkin shows that the part ($) can be computed in O(1) time if the suffix tree
associated with 7 - P is already constructed, where 7T - P denotes the concatenation of 7' and
P. Note that a suffix tree associated with a string of length n is constructed in O(n) time
for an alphabet of fixed size and in O(nlogn) time for a general alphabet (3, 9]. Using this
technique, LandauVishkin(P,T) works in O(kn) time for an alphabet of fixed size and in
O((k + log m)n) time for a general alphabet where the time for the construction of a suffix
tree is included. Refer [8] for details.

3 Approximate matching with don’t cares

In this section, we describe serial and paraliel algorithms for the % differences problem with
don’t cares. TFor two characters p and ¢, we write p ~ ¢ if p = ¢, p ="%’, or ¢ ="+’ holds, For
two strings s = sy ---s; and v = uy - - uk, we write s ~ u if (Vi)(s; ~ u;) and j = & hold.
First, note that procedure LandauV ishkin(P,T) works correctly for strings with don’t
cares if the part Prow+1 = trowti+d i ($) is replaced by Prows1 ~ trow+1+d- However, suffix
trees can not be used to compute this modified part efficiently. Thus, we use a table W|r,j]

instead of a suffix tree.

3.1 Utilization of a table

Let M be an integer where the value of M is to be determined later. We assume without loss
of generality that M divides m. Let P" denotes the substring p(,_1)p41P(r~1)M+2 - Prm Of
P. Let T7 denotes the substring t;¢j+1---t;4m—1 of T. If j+ M — 1 > n, T? denotes the
empty string. Then, W[r, j] denotes the maximum number h such that P7-P7+1... prt+h=1)
T3 . Ti+M . pi+(=1M holds, If such h does not exist, Wr,] = 0.

If W([r,j]’s are already computed for all 1 < 7 < % and 1 < j < n, the part corresponding
to (8) can be computed efficiently by the following:

while M does not divide row + 1 and row < m
and row + d < n and Prow+1 ~ trowtds1 do
row «— row+1;
if row < m and row +d < n then row — row+ M x W[5t row + 1 + dJ;
while row < m and row + d < n and prowt1 ~ trowtds1r do Tow — rTow + 1;

Let (#) denote the above part and let ModifiedLV(P,T) denote the modified procedure of
LandauVishkin(P,T) where ($) is replaced by (#). Then, it is easy to see that the following
proposition holds (see Figure 1).

[Proposition 1] Assume that a table W{r, j] is already constructed. Then, Modified LV (P, T)
solves k differences problem with don’t care characters in O(knM) time.

3.2 Construction of the table

The table W(r,j] can be constructed using the convolution based algorithm by Fisher and
Paterson. The following procedure constructs the table.

Procedure MakeT able(P,T)
begin
for all 7 such that 1 < r < §; do ‘ -(a)
begin
FisherPaterson(P",T);
forallj (1<j<n)do
if P7 ~ T7 then W|r,j] — 1 else W[r,j] — 0

end;

for all j suchthat 1<j<n-M+1do -(b)
Using the list ranking technique, compute W{r, M (r — 1) + j]’s for all r;

for all r such that 2< r < & do -(¢)

for all j such that 1 < j < M do
Using the list ranking technique, compute W[h, M(h — 1) + j]’s for-all h > r
end

[Proposition 2] MakeTable(P,T) computes the table W{r, j]in O(%¢ log |Z| log? M loglog M)
time.
(Proof) Since it is easy to see that the procedure computes the table correctly, we consider
the time complexity.

Fisher and Paterson’s convolution based algorithm computes all occurrences of a pattern of
length ¢ in a text of length p with don’t cares in O(p log|Z| log? ¢ loglogq) time [1, 5]. Thus,

t row+l+d M M M

/ g 7 O ———— \

S | < S A R N
:: \ match "
|| /\'\" . '

2NN [> [|
\.&.\){\.V_/\,W/\N_/\m/
M M\\ M M M M

Prguer Table Look Up

Figure 1: Utilization of the table W{r,j].

O(n log || log? M loglog M) time is required per FisherPaterson(PT,T). Since *for loop’ of
(a) is repeated F} times, the total time required for (a) is O(54 log |T| log? M log log M).
Since list ranking can be done in linear time, part (b) takes O(n x ;) = O(5F) time
and part (c) takes O(Jy X M x f1) = O(%—) time. Thus, the total time required for
MakeTable(P,T) is O(5f log|X| log? M loglog M) time. o

Letting M = /% and combining propositions 1 and 2, we get the following theorem.

[Theorem 3] The k differences problem with don’t care characters can be solved in
O(Vkmn log |T| log? 2 loglog &) time.

3.3 Parallel algorithm

In [8], a parallel version of procedure LandauVishkin(P,T) is described. Tt works in O(k)
time using O(n) processors except the construction of the suffix tree. Here, we consider a
parallel version of our algorithm.

First, we consider procedure ModifiedLV(P,T). Since the other parts are not modified
from LandauV ishkin(P,T), We may consider part (#) only. It is easy to see that part (#) can
be done in O(log M) time using O(M) processors per execution. Thus, Modified LV (P, T)
works in O(k log M) time using O(nM) processors.

Next, we consider the construction of the table. For a text string of length p and a
pattern string of length g, the exact matching with don’t cares can be done in O(logg)
time using O(p log || log ¢ loglog ¢) processors [6]. Thus, part (a) can be done in O(log M)
time using O(%% log || log M loglog M) processors. It is easy to see that O(%F) processors
and O(logm) time are sufficient for parts (b) and (c) even if a simple parallel list rank-
ing algorithm is used. Thus, the table W][r,j] can be constructed in O(logm) time using
O(34 log|Z| log M loglog M) processors. Letting M= \/%, Modified LV (P,T) can be done
in O(k log m) time using O(\/%n) processors and the construction of the table can be done

in O(k logm) time using O(\/%n log |Z| log % loglog %) processors. Therefore, the following
theorem holds.

[Theorem 4] The k differences problem with don’t care characters can be solved in O (k log m)
time using O(\/%n log |X| log 7 loglog) processors on a CRCW-PRAM.

4 Extensions

In motif search, more complex patterns are used [4]. For example, the number of consecutive
don’t care characters is sometimes specified instead of repeating don’t care characters. For an
another example, such a description as (A C) is sometimes used, which denotes a character
which matches a character A’ or 'C’. In this section, we show that the & differences problem
can be solved in o(mn) time for small & even if such extented patterns are used.

4.1 Approximate matching with integer characters

In this subsection, we consider the k differences problem with integer charactersin which any
positive integer number may appear as a character in a pattern string. For example, ’ab1db3c’
denotes ’ab*dbx* % *c’. We assume without loss of generality that two consecutive characters do
not appear in a pattern string. Of course, the k differences problem with integer characters can
be treated by expanding an input pattern string to a string in which each integer is replaced
by consecutive don’t care characters. However, the expanded string may become much longer
than the input pattern string. Thus, we describe an algorithm for the & differences problem
with integer characters by modifying the serial algorithm described in Section 3.

First, we describe how to modify the part of the construction of the table. The table W{r, 5]
is defined in the same way except P" is replaced by (P"), where s’ denotes the expanded
string of s. Since the length of (P")’ may be O(n), the time complexity of part (a) increases
to O(%F log|Z| log? n loglogn). Since it is sufficient for parts (b) and (c), the total time
required for the construction of the table is O(%f log |Z| log? n loglogn).

Next, we describe how to modify procedure Modified LV (P,T). In the modified procedure,
Prow and row are considered not for P but for P’. Note that the size of the table L[d, €] remains
O(n). Since it is enough to modify part (#) only, we consider part (#) only. If prows1 is the
first character of (P") for some r, the table is looked up. If proy+1 is not '+, it is processed
in the same way as (#). If prowt1 is '*’, row jumps to the next position of P’ such that
Prow+1 7 *. It can be done in O(1) time if appropriate preprocessing is done. It is easy to
see that this preprocessing can be done in O(n) time. Thus, the total time required for the
modified procedure is O(knM). Therefore, letting M = /%, the k difference problem with

integer characters can be solved in in O(vkmn log|Z| log® n loglogn) time.

4.2 Approximate matching with generalized string patterns

Abrahamson considered the generalized string matching problem [1], which was a general-
ization of the string matching with don’t cares. In the generalized string matching, such
expressions as (z1 zz ---) and [zy 3 ---] may appear in a pattern string. (z1z, ---) denotes
a character which matches any character of 1,22, --. [z122 ---] denotes a character which
matches any character except z1, 22, - -. Similar expressions sometimes appear in motif search.
While Abrahamson considered the exact matclung problem, we consider the generalized string
matching problem with k differences.

The algorithm is almost the same as the serial algorithm described in Section 3. Only the
difference is that Abrahamson’s generalized string matching algorithms are used in place of
Fisher and Patterson’s algorithm. Here, m denotes the length of the expression of the pattern

and we assume that m < n. Abrahamson described an O(/m n polylog(m)) time algorlthm
for a general alphabet. Using a similar discussion as in Section 3 and letting M = (75')3

we can obtain an O(k3 m¥ n polylog(m)) time algorithm for the generalized string matching
with & differences. For a fixed size alphabet, Abrahamson described an O(n polylog(m)) time
algorithm. Using a similar discussion as in Section 3, we can obtain an O(\/Enpolylog(m))
time algorithm for the generalized string matching with k differences for a fixed size alphabet.

5 Concluding remarks

This paper have presented algorithms for generalized approximate string matching problems.
Although the algorithms work in o(nm) time for small k, they are not practical since the
convolution based exact matching algorithms are not practical. However, for a small size
patterns, Abrahamson describes a practical algorithm for the generalized string matching [1].
It can also be used for the string matching with don’t cares. Using this algorithm, practical
algorithms for generalized approximate string matching might be developed.

Another problems are remained for the presented algorithms. The most important one is
that the space complexities of algorithms are at least O(y/% m). Thus, more space economical
algorithms should be developed. Of course, more efficient algorithms should be developed since
the presented algorithms do not seem to be optimal.

References

[1}] K. Abrahamson. “Genaralized string matching”. SIAM Journal on Computing, Vol. 16,
pp. 1039-1051, 1987.

[2] A. Amir and G. Landau. “Fast parallel and serial multidimensional approximate array.
matching”. Theoretical Computer Science, Vol. 81, pp. 97-115, 1991.

3] A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin. “Parallel con-
struction of a suffix tree with applications”. Algorithmica, Vol. 3, pp. 347-365, 1988.

[4] C. Branden and J. Tooze. “Iniroduction to Protein Structure”. Garland Publishing Inc.,
New York, 1991. ‘

[5] M. Fisher and M. Paterson. “String matching and other products”. In Complexity of
Computation (SIAM-AMS Proceedings), volume 7, pp. 113-125, 1974.

[6] Z. Galil and R. Giancarlo. “Data structures and algorithms for approximate string match-
ing”. Journal of Complzity, Vol. 4, pp. 33-72, 1988.

[7] Z. Galil and K. Park. “An improved algorithm for approximate string matchmg SIAM
Journal on Computing, Vol. 19, pp. 989-999, 1990.

[8] G. M. Landau and U. Vishkin. “Fast parallel and serial approximate string matching”.
Journal of Algorithms, Vol. 10, pp. 157-169, 1989,

[9] P. Weiner. “Linear pattern matching algorithms”. In Proceedings of IEEE Symposium on
Switching and Automata Theory, pp. 1-11, 1973.

