7 o F v X A 36—10
(1993. 11. 25)

7

ZARBEO T TOBERERE

TEIL
B I B MBS ERERSEAT

ZRADZAT T 7 I3 0EE IS LT, BIATOERERE b 5 HiE %2 TF|
By OME (ERER) LT, HRORNTVTY X8 2EL D, bok bRKRE
WD, RO, F— ¥ DEBLIIL DR & 7 BUTEEE IS X5 — |ZARFE LT W A
@f%%o ») '

Orthogonal queries in triangles

Takeshi Tokuyama
IBM Research, Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi, Kanagawa, 242 Japan. Email:ttoku@vnet.ibm.com

We present an efficient orthogonal query data structure in a set of segments or trian-
gles in space. The most important feature of our results is that the efficiency of the data
structure is highly dependent on the geometric properties of the input set, as well as its
cardinality. (1) Given a set of n segments in d-dimensional space, we give a data struc-
ture of O(m) space (m > nlog? ! n) that allows us to count the segments intersecting
an orthogonal query window W in O~(‘/K /m) time. Here, K is the complexity of the ar-
‘rangement of the images of segments projected onto axial subspaces. (2) Given a set of n
triangles in d-dimensional space, we give a data structure of O(m) space that allows us to
report the triangles intersecting an orthogonal query window in O(+/K/m + VM /mi/3)
tifne, not including the time for the output. Here, M is a parameter that coincides with
the number of intersecting pairs of triangles if d = 3, and K is as the same as in (1) for
the set of edges of triangles. '

1 Introduction

In textbooks [19, 23], the orthogonal range-
searching problem is stated as follows: “Given a
set S of n objects in a d-dimensional space, con-
struct a data structure for counting (or reporting)
the objects intersecting a given orthogonal query
window”. For the case in which the objects are
a set of points, the problem has been well inves-
tigated, and an O(nlog? ! n) space O(log? 1 n)
time query structure can be obtained by using the
range search tree method [15]. Chazelle reduced
the space requirement by a facor of O(loglogn)
for d = 2. The space-time tradeoff of orthogonal
range searching is also an important topic [22, 21],
and it is known that Q((log n/ log log n)*~!) space
is necessary (on a pointer machine) for a polylog-
arithmic query time structure [8].

For non-point objects, several results (theo-
retically [6], practically [12]) are known for or-
thogonal quereis in a set of orthogonal segments
in a plane. The most general case, in which
the objects and the windows are non-orthogonal,
is studied as an application of space subdivi-
sions and simplex range searching by Dobkin-
Edelsbrunner [10].

In this paper, we study orthogonal queries
in non-orthogonal objects, particularly (possi-
bly intersecting) segments and triangles in d-
dimensional space. In order to distinguish the or-
thogonal queries in a set of non-point objects from
orthogonal queries in a set of points, we some-
times call it orthogonal clipping. Figures 1 and 2
give examples of two- and three-dimensional cas-
es.

Figure 1:
plane

Orthogonal clipping of segments in a

An immediate application of orthogonal clip-
ping is the design of clipping functions in CAD

Figure 2: Orthogonal clipping of triangles in space

(when d = 2 or 3) and window systems [14]. It
also gives efficient clipping of maps, which can be
used in geographic data base systems and central
navigation systems (when d = 2, 3,4).

The orthogonal clipping problem can be re-
duced to the dual of the simplex range searching
problem, and has a lower bound induced from
that of simplex range searching [7]. In simplex
range searching, the geometric properties of the
data set have little effect on the efficiency of a
query structure; indeed, the lower bound holds on
an uniformly distributed point set. In contrast,
we show that the geometric properties of the con-
figuration of the input objects strongly influence
the efficiency of orthogonal clipping. We define
parameters indicating the geometric property of
a configuration, and construct a data structure
that has a much better performance if these pa-
rameters are small.

Let us start with a set of n segments in a plane.
Let K be the complexity (i.e. the number of in-
tersections and endpoints) of the arrangement of
those segments.

If we can use O(K +nlogn) space, an O(logn)-
time query structure can be constructed by using

a planar partition [16] and a persistent tree struc-
ture [20]. However, O(K) space is often too huge.
We study the space-query trade off so that we can
store the data in a given amount of storage.

Because of a lower bound given by Chazelle [7],
an-Q(n//mlogn) query time is needed for an
O(m)-space data structure (in a slightly more
general model) if we consider the set of lines
(where K = n(n — 1)/2), since the problem
involves the dual problem of range searching
with respect to (non-isothetic parallel-sided) slab-
s. However, K is practically smaller than O(n?) in
many cases. Moreover, it may also happen theo-
retically in many cases; for example, K = O(n!-%)
if we consider the set of O(n) segments obtained
by projecting the 1-skeleton of a Voronoi diagram
of y/n points in space [13]: Chazelle’s lower bound
implies an Q(+/K/m/logn) lower bound for or-
thogonal clipping, and it'is shown to be tight
within polylogar:thmlc factors even in lngher di-
mensional cases.

In general, given a set of n segments in d-
dimensional space, we define K as the sum of the
complexity of arrangements obtained by pro ject-
ing the segments to axis-parallel two-dimensional
subspaces (i.e, z-y, y-z, and z-z planes). Obvi-
ously, K = O(n?), and smaller in practice.

Theorem 1.1 For any m > nlogd 1n a data
structure of O(m) space and O((K/m)) query
time can be constmcted for orthogonal query on
n segments in RY.

The problem is a kind of dynamic computa-
tional geometry [2], if we consider the d-th co-
ordinate as the time parameter. The set of seg-
ments can be considered as a set of points that
are linearly moving (inserted and deleted at cer-
tain time epochs). If we consider the range tree
for (d — 1)-dimensional orthogonal range search-
ing in those points, the number of combinatorial
changes is O(K +n). Hence, if m = K, the theo-
rem implies a logarithmic query persistent search
structure [11] for orthogonal range searching. The
theorem gives the space-query trade-off for the
persistent structure.

Our data structure is a hierarchical structure
based on a segment tree, each of whose nodes
has a simplex range-searching structure. More-
over, we use a clustering of the set of segments

into sparse sets and dense sets, and also balanc-
ing of the space complexity for the simplex range-
searching structure in each node in order to ob-
tain the space complexity of the total data struc-
ture.

Next, we consider the orthogonal query in a
set of triangles (called a castle in the air [4]) in d-
dimensional space. Let K be the complexity that
defined above associated with the set of edges of
triangles, and let M be the number of intersecting
pairs of triangles.

Theorem 1.2 For any m > nlog®'n, there
exists o data structure of O(m)- space such that
an orthogonal reporting query is can be done in
O((K/n)? + V/M/n'/3) time, ezcluding the time
for output.

. As a corollary, we can query the Los-nearest tri-
angle to the query point in O((K/n)z +\/_—/'n1/3)
time.

The rest of the paper is organized as follows; in
Section 2, we discuss the tubular hammock query
which is the main tool for devising algorithms sen-
sitive to K and M. In Section 3 and 4, we deal
with orthogonal queries in segments and triangles
respectively.

2 Hammock query

In this section, we give a construction of an ef-
ficient data structure for the tubular hammock
query defined below. Although we only use it
for the case where d = 2,3 in orthogonal clip-
ping, we formulate it in general dimensional case.
We consider a d-dimensional space with an or-
thonormal coordinate system (z1,z2,..,74). Let
‘H be an arrangement of n hyperplanes in d-
dimensional space. Given a (d — 1)-dimensional
convex region @, we define a tube Z(Q) = {Z €
RY(z1,..,24-1) € Q}. We call Z(Q) = Z(Q) N
A(H) a tubular hammock, or a hammock for short.
If d = 2, it coincides with the hammock defined
by Chazelle [5]. Let M be the sum of n and the
number of pairs of hyperplanes intersecting inside
the hammock. Obviously, M = O(n?).

Hammock query (Figure 3) Given a query
segment lying in Z(Q), count (or report) the hy-
perplanes intersecting it.

RS
\\ ’\\; Q
An"A‘b &

Hammock: n =30 knOS

\\\ WS i/
&

: Query segment

‘

Figure 3: Hammock query

In the dual setting, n hyperplanes are trans-
formed into n points in the dual space. The seg-
ment intersection counting query is therefore a
special case of simplex range searching. We use
the following result of Matougek [18]:

Theorem 2.1 There ezists an O(n) space and
an O(n!=1/%) query-time range-searching data
structure. The preprocessing time is O(n1t%) for
any positive constant §. For n < m < nz,
there exists an O(m) space and an O(-Trr log3 n)
query-time range-searching structure, constructed
in O+ 4 m(logn)?) preprocessing time. The
query time is reduced to Ot log®n) if the
ranges are wedges or slabs.

We devote the rest of this section to proving the
following theorem:

Theorem 2.2 There ezists an O(m)-space data
structure m > n such that the number of hyper-
planes intersected by a query segment in the tube
can be given in O((1+;‘n%),log27"1” n) time. The
hyperplanes are reported in an additional time
proportional to the output size.

Proof The outline of the construction of the
data structure is decomposed in stages as follows:
In the first stage, we classify the hyperplanes into
two classes, tame and wild, by using a parameter
r initially set as 3M/n, and give a data struc-
ture for the tame hyperplanes. In the next stage,
we reclassify the wild hyperplanes into tame and
wild, using a new parameter v, and give a data
structure for the (new) tame hyperplanes. We
continue this process until there are no wild seg-
ments.

Let us give the initial stage construction. We
choose -an arbitrary point ¢ of Q as the refer-
ence point. Let I(g) be the line penetrating g
and orthogonal to x4 = 0. We sort the intersec-
tion points of the hyperplanes with the line {(g),
and give a total ordering to the set of hyperplanes
according to it. One by one, we remove the hy-
perplanes (called wild) that intersect more than
2M /n hyperplanes, until no hyperplane intersects
2M /n other hyperplanes(Figure 4). So far, there
are at most s = n/2 wild hyperplanes. The rest of
the hyperplanes are temporally classified as tame.
We choose every r = 3{ M /n]-th tame hyperplane
as a partition hyperplane (Figure 5). It is easy to
see that a pair of partition hyperplanes never in-
tersect; thus the partition planes decompose the
tube into at most n/r trapezoids, which we cal-
I buckets (Figure 6). We reclassify hyperplanes
intersecting partition hyperplanes as wild.

\

Figure 5: Partition lines

Figure 6: Bucket partition of segments

At most (n—s)/r x 2M/n = 2(n—s)/3 hyper-
planes are reclassified; hence, the total number of
wild hyperplanes is at most 2n/3 + s/3 < 5n/6.
By definition, each hyperplane is contained in
a bucket; thus, we have a clustering of hyper-
planes. Each bucket contains at most 7 hyper-
planes. We provide Matousek’s O(rm/n)-space
O(r(rm/n)~Y%)-query data structure (called the
range-query structure) for each bucket. We al-
so construct an interval tree over {1,2,..,n/r},

so that the tame hyperplanes in the union of
buckets B;, Bii1,.., B; are retrieved as a union
of logn sets (named principal sets) for any i < 7,
where B; is the i-th bucket from the left. This
approach requires O(nlogn) space, but the re-
quirement can be easily reduced to O(n) space
for counting queries by storing only the number of
hyperplanes to buckets. For reporting queries, the
space can also be reduced to O(n), by represent-
ing the point set as a disjoint union of O(n/logn)
subsets of size O(logn) and storing the pointers
to those point sets in each bucket instead of each
point set. -

Lemma 2.3 If the above structure is used, the
tame hyperplanes intersecting a query segmen-
t can be queried in O(logn + r(rm/n)~1/4) time.

Proof When the query segment is given, we
first count the intersecting tame hyperplanes. We
first locate the buckets in which the endpoints
of the segment lie (this takes O(logn) time). In
each such bucket, we count the intersections in
O(r(rm/n)~1/%) time by using the range-query
structure. The hyperplanes in the buckets pene-
trated by the segment are reported (or counted)
by using the segment tree structure. O

Next, we must deal with wild hyperplanes. Let
there be n; wild hyperplanes and M; intersecting
pairs of wild hyperplanes. We set r; = 3M1/n;.
If r; < 3M logd n/n, we create the same data
structure as given in the initial stage, and go to
the next stage. Note that we use n; space for the
data structure in this case, and that the query
time in this stage is O((M/n)'~/¢logn + logn).
It is easy to see that (M/n)!=1/d < MY/2/nl/d,
because M < n?.

Otherwise, 3Mi/n; > 3Mlogn/n,
and we make the same bucket subdivision,
but give an O(;77l;) space range searching
structure for each bucket. The space com-
plexity is O(m/logn) and the query time is
O(ry (Mym/n3logn)~41og!> n).

Because M; < n?, ri(Mym/n?)~1/d
m‘l/dnf/d_lM11~l/d < m“l/dMll/z. Hence, the
query time is O(Mll/zm'"l/d logh3t1/dp).

Because the number of wild hyperplanes is re-
duced to at most half in each stage, the number
of stages is at most logn. Thus, the total space
complexity of the structureis O(n), and the query
time is O(;n‘[l——% log2t1/dp). O

T1 =

We make the following claim about the prepro-
cessing time.

Proposition 2.4 The hammock query structure
can be constructed in O{n't€) 4 O(m) time for
d £ 3 and in O(n2) + O(m) time for d > 4, pro-
vided that Q has constant number of faces.

Remark. It is not crucial that Z(Q) should be
tubular. In fact, it suffices that Z(Q) is convex,
and that there exists a line segment located in
Z(Q) intersecting all hyperplanes of A(H) that
intersect Z(Q).

Remark 2. For intersection query with re-
spect to a general line segment in a set of seg-
ments in a plane, Dobkin-Edelsbrunner [10] gives
an O(n)-space O(n%9%)-query time algorithm for
the counting query in a set of segments. Howev-
er, the solution is independent of K, and the best
known data structure for the counting segmen-
t intersection query among non-intersecting line
segments using O(npoly log n) space takes O(y/n)
query time [1].

3 Orthogonal clipping

3.1 Orthogonal clipping of segment

Given a set S of n segments in d-dimensional s-
pace R?, we preprocess it, so that the set of seg-
ments intersecting an window W parallel to the
axis is counted (or reported) efficiently.

Let K;; be the complexity of the arrangemen-
t obtained by projecting segments to the prin-
cipal two-dimensional subspaces spanned by z;
and z;. We define K = 3 ,.; K; ;. Obviously,
K = 0(n?).

Let N be the number of segments intersecting
with W. Let N; be the number of endpoints in W,
and Ny the number of intersections between seg-
ments and 6W (the boundary of W). If a segment
intersects 6W twice, we count both intersections.
The following lemma is easy to see:

Lemma 3.1 N =1/2(N; + Ng)

It is easy to count Ny, since it is the orthogo-
nal query on a point set. Hence, orthogonal clip-
ping of segments can be reduced to the problem
of counting (or reporting) the segments with each
facet. We give d-dimensional space a Cartesian

coordinate system {zi,..,z4-1,2}. A segment is
called (e, B8)-bound if the segment has its lower
(vesp. upper) endpoint on z = § (resp. z = a).
The orthogonal clipping problem is reduced to the
following:

Flat orthogonal clipping: Let £ be a set of
n (o, §)-bound segments in d-dimensional space
(d > 2). Given (¢, W), where W is an orthogonal
region of R%1, report the segments of £ whose
points of intersection with z = (are located in

w.

Proposition 3.2 There ezists o data structure
for flat orthogonal clipping in O(m) space (m >
nlog? 2n) and O((1 + £)1/210g(5¢=5/2n) query
time.

Although above proposition is the key propo-
sition, we omit the proof of it because of space
limitation.

Theorem 3.3 Suppose that we are given n seg-
ments in d-dimensional space. For any m 2>
nlog?~!'n, a date structure with O(m) space
is constructed, and orthogonal clipping query is
done in O((1 + %)1/2 log®4=3)/2) time.

Proof Clearly, it suffices to prove the theorem
for the case in which m = nlog?'n. We use
the segment tree trick [19]. A hyperplane (or it-
s subset) orthogonal to the z-axis is said to be
horizontal. Because of Lemma 3.1, it suffices to
count (or report) the segments intersecting the
upper horizontal face F of the query window W.
We project segments of S onto the z-axis to ob-
tain a set Z of intervals. Let 2, .., 2o, be the set of
points, which are projected images of endpoints,
on the z-axis. We make an interval tree according
to this set of points. ‘

We store the intervals of Z in an interval tree to
create a segment tree. An interval in 7 is subdi-
vided into at most logn principal intervals of the
interval tree. Accordingly, each segment of S is al-
so cut into at most log n subsegments, and stored
in the associated nodes. The subsegments stored
in a node naturally form a hammock. Let the
hammock associated with a node ¢ contain n(q)
segments and K (¢) intersections. We make a data
structure of O(K/n)'/2 log2¥=2 n) query time, us-
ing O(max{n(g)log?2n, (K(¢)nlog? 1 n)/K})

space. It is clear that the total space complex-
ity of the data structure is O(nlogd~! n).

The query is performed as follows: Suppose a
face F of the query window lies on the horizontal
hyperplane y = a. Then, we find all the prin-
cipal intervals containing a. We perform ham-
mock query for the hammock at the nodes as-
sociated with these principal intervals. The to-
tal query time is obviously O((K/n)!/? log2~1n)
time, which is O((X/n logd_1 n)i/2 log(5‘1’3)/2 n).
m}

3.2 Orthogonal clipping of triangles

Orthogonal clipping of triangles: Given a set
S of n triangles in d-dimensional space R%, we
preprocess it, so that the set of triangles inter-
secting an axis parallel orthogonal window W is
reported efficiently.

Note that we consider only the reporting prob-
lem, in contrast to the orthogonal clipping of seg-
ments. Although we deal mainly with the case
in which d = 3, we start with the general case.
Because of limitation of space, we omit proofs in
this section.

Given a query window W, a triangle T inter-
sects W if (1) one of the vertices of T is locat-
ed in W, (2) one of the edges of T intersects a
facet of W or (3) T intersects one of the (d — 2)-
dimensional faces (called ridges) of W.

Cases (1) and (2) can be handled by using clip-
ping in segments. Therefore, we concentrate on
case (3).

Let F be a ridge of W. We can assume that
F is orthogonal to the two-dimensional space H
spanned by z; and z3. Let p be the point, that is
the image of F via the orthogonal projection to
H.

If F intersects T', then the projection of T onto
H contains p. However, the converse is not true.
Let af f(T) be the two-dimensional affine space
containing T'.

Lemma 3.4 T intersects F' if and only if the im-
age of T' projected onto H contains p and af f(T')
intersects F.

We first construct the set Pr(S) of images of a
set S of triangles projected onto H, that makes
a set of triangles in the plane H. Next, we query

the triangles in Pr(S) containing p on H, so that
the output is given as a union of canonical subsets
of Pr(S). We can ensure that a point is contained
in at most O(logn) canonical subsets.

Let us describe the query structure for the set
of triangles containing g in a plane. We can cut
each triangle in S with a horizontal line, and make
a pair of triangles each of which has a horizontal
edge. Hence, we may assume that each triangle of
S has a horizontal edge. Note that this transfor-
mation is not permitted if we consider the count-
ing query..

Let y1,..,¥2, be the set of the y coordinate
values of the vertices of the triangles. We con-
struct an interval tree on v, ..,y2,. Then, we can
reduce the problem to the following trapezoidal
query with adding an O(log n) factor for the space
complexity. Trapizoidal query Given a set of n
trapezoids in a z-y plane, whose upper edges are
on the horizontal lines y = o and whose lower
edges are on y = 3, for a query point p, report all
trapezoids containing p.

Proposition 3.5 We can construct o data struc-
ture for trapizoidal query with O(m) space and
O((K/m)"?log®n) query time for K > m >
nlogn, where the output is formed as a union of
sets of trapezoids.

We now have the set of cahonical subsets, and
we describe how to use it in the clipping prob-
lem. For a canonical subset A, we define the cor-
responding subset of triangles as Pr=1(4). Let
J(A) be the set of all two-dimensional affine sub-
spaces corresponding to the triangles of Pr—1(A).

Because of Lemma 3.4, it suffices to report the
set of affine spaces in J(A) intersecting F for each
A. Combining with a result of range searching,
we have the following:

Theorem 3.6 There ezists an O(m)-space data
structure (m > nlog?'n) such that orthogonal
clipping in n triangles is done in O((K/m)/? +
M2 /ml/3) time, where (1) M is the number of
pairs of triangles intersecting each other if they
are projected to axial three-dimensional spaces,
and (2) K is the number of pairs of edges of tri-
angles intersecting each other if they are projected
to azrial two-dimensional spaces.

We briefly invesﬁiga.te the orthogonal clipping
of simplices in three-dimensional space. Given n

simplices in three-dimensional spaces, we use the
above method to report the simplices intersecting
a query window W except those tha contain W.
Hence, it suffices to report the simplices contain-
ing a particular vertex v of the window, besides
clipping the faces of the simplices. This can be
done similarly to the clipping in triangles as fol-
lows: We project all the faces of the triangles to
the z-y plane, and report the triangles containing
the projected image of v as a union of canonical
sets. For each canonical set, we project back the
triangles, and make a tubular hammock. We lo-
cate the point v in the hammock, and report the
simplices (represented by pairs of planes) contain-
ing v.

Corollary 3.7 There ezists an O(m)-space data
structure (m > nlog?n) such that the orthogonal
clipping in n simplices in three-dimensional space
is done in O((K/m)/24+ M1/2 m1/3) time, where
(1) M is the number of pairs of simplices inter-
secting each other, and (2) K is the number of
pairs of edges of triangles intersecting each other
if they are projected to an azial two-dimensional
subspace.

4 Nearest-neighbour search

Let us consider a set of triangles in d-dimensional
space, and consider the triangle nearest to a query
point with respect to Lo, metric. This problem
can be solved by parametric searching, using the
orthogonal clipping algorithm.

Proposition 4.1 There ezists an O(m)-space
data structure (m > nlog®'n) such that the
L -nearest triangle to a query point is found in
O((K/m)Y/2 4 M2 |m1/3) time, using the nota-
tion introduced in the previous section.

The following is a problem in a central naviga-
tion system: “Among n moving objects in (three-
dimensional) space, query the object approach-
ing nearest to a query point during a given query
time-interval.” If the objects move piecewise lin-
early, the problem is to report the line segment (in
4-dimensional space) nearest to the query point
(precisely speaking, to the vertical line segment
which is the trajectory of the query point). Thus,
if we consider the Lo, distance, this problem can
also be solved in O((K/m)'/?) time.

5 Cohcluding remarks

There are several problems for future research:
(1) Investigate orthogonal clipping in simplices in
d-dimensional space. (2) For higher-dimensional
cases, let N be the complexity of a hammock.
Then, can we obtain a bound of O((N/m)/4),
which is better than O(M1/2/m1/4), for the ham-
mock query? (3) How efficiently can we query if
we use O(n) space? This problem is difficult even
for a set of points, unless we permit O(n€) query
time. (4) Give a practical algorithm; we should
avoid using sophisticated range searching meth-
ods that have huge constant factors, We can use
the practical bucketing technique [3] for the sub-
routine, although we lose the theoretical bound.

Acknowledgement

The author gratefully acknowledges the advice of
K. Kuse, who introduced him the problem of clip-
ping a straight-line graph with moderate intersec-
tions in application to window systems. He also
thanks P. K. Agarwal for suggesting a way of sim-
lifying the data structure.

References

[1] P. Agarwal, Ray Shooting and Other Applica-
tions of Spanning Trees with Low Stabbing Num-
ber, Proc. 5th ACM Comput. Geom., (1989), 315-
325.

[2] M. Atallah, Some Dynamic Computational Ge-
ometry Problems, Computers and Mathematics
with Applications, 11 (1985), 1171-1181.

[3] T. Asano, M. Edahiro, H. Imai, M. Iri, and K.
Murota, Practical Use of Bucketing Techniques in
Computational Geometry, in Computational Ge-
ometry ed. G. Toussaint , Elsevier, North Holland
(1985), 153-194.

[4] B. Aronov and M. Sharir, Triangles in Space
or Building (and Analyzing) Castles in the Air,
Combinatorica 10, (1990) 137-173. (1988), 381-
391.

[5] B. Chazelle, Reporting and Counting Segment
Intersections, J. Comput. System Sci. 32 (1986)
156-182.

[6] B. Chazelle, Filtering Search: A New Approach
to Query-Answering SIAM J. Comput. 15 (1986)
703-724.

[7] B. Chazelle, Lower Bounds on the Complexity of
Polytope Range Searching, J. Amer. Math. Sci.,2
(1989) 637-666.

{8] B. Chazelle, Lower Bounds for Orthogonal Range
Searching I. The Reporting Case, J. ACM,37
(1990) 200-212.

[9] B. Chazelle, M. Sharir, and E. Welzl, Quasi-
Optimal Upper Bound for Simplex Range Search-
ing and New Zone Theorems, Proc. 6th ACM
Comput. Geom. (1990) 23-33.

D. Dobkin and H. Edelsbrunner, Space Searching
for Intersecting Objects, Proc. 25th IEEE FOCS
(1984), 387-392. :

J. Driscoll, N. Sarnak, D. Slator, and R. Tarjan,
Making Data Structure Persistent, Proc. 18th
ACM STOC (1986), 109-120. ‘

M. Edahiro, K. Tanaka, T. Hoshino, and T.
Asano, A Bucketing Algorithm for the Orthog-
onal Segment Intersection Search Problems and
Its Practical Efficiency, Proc. 8rd ACM Comput.
Geom. (1987) 258-267.

T. Hifata, J. Matougek, X. Tan, and T. Tokuya-
ma, Complexity of Projected Images of Convex
Subdivisions, Proc. 4th CCCG (1992) 121-126.

K. Kuse, private communication.

G. Lueker, A Data Structure for Orthogonal
Range Queries, Proc. 19th IEEE FOCS (1978),
28-34.

K. Mulmuley, A Fast Planar Partition Algorithm,
II, Proc. 5th ACM Comput. Geom, (1989), 33-43.

J. Matou$ek, Efficient Partition Trees, Proc. 7th
ACM Comput. Geom. (1991), 1-9.

J. Matousek, Range Searching with Efficient Hi-
erarchical Cuttings, Proc. 8th ACM Comput. Ge-
om. (1992), 276-285.

F. Preparata and M. Shamos, Computational Ge-
ometry, an Introduction, 2nd edition, Springer-
Verlag (1988).

N. Sarnak and R. Tarjan, Planar Point Location
Using Persistent Search Trees, Comm. ACM 29
(1986), 669-679.

P. Vaidya, Space-Time Tradeoffs for Orthogonal
Range Queries, Proc. 17th ACM STOC (1985),
169-174.

A.C. Yao, Space-Time Tradeoff for Answering
Range Queries, Proc. 14th ACM STOC (1982),
128-136. '

[21]

[22]

[23] F. Yao, Computational Geometry, in Handbook
of Theoretical Computer Science A, van Leeuwen

ed. Elsevier (1991).

