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This report considers the gossiping problem in mesh-bus computers, in which n? nodes (i.e.,
processing elements) arranged on n X n array are connected by n column-buses and n row-
buses. Let V' be the set of nodes. The gossiping is a problem of exchanging |[V| tokens, each
of which is initially held by distinct node, among all nodes in V. In this rcport, we assume
that each shared bus is accessed in CREW manner, and that each message can carry at most
{ tokens in each step. This report proposes three algorithms; SIMPLE, PARTITION, and
CENTRALIZE, each of which asymptotically achieves a lower bound on the gossiping time for
a range of £.
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1 Introduction

A mesh-bus computer is a parallel processor in
which nodes (i.e., processing elements) are ar-
ranged on a two-dimensional array, and nodes
on each row and nodes on each column, respec-
tively, are connected by a shared bus. Each
shared bus is accessed in CREW manner, i.e.,
all nodes connected with a bus can eavesdrop
on the bus at the same time, while in each
time, at most one node is allowed to send a
message through the bus. So far, there have
been proposed several parallel algorithms for
mesh-bus computers [1, 2, 5, 6, 9, 10, 11].

Suppose that at the initial state, each node
contains a piece of information called a token.
The gossiping problem, which has been in-
vestigated extensively during the last decade
[4, 7, 8], is a problem of exchanging tokens
among all nodes in the system. This report
addresses the gossiping on mesh-bus comput-
ers. In [3], we have proposed a gossiping al-
gorithm for n x n mesh-bus computer, which
takes |n/2] + [log, n] + 2 steps provided each
message can carry eny number of tokens in a
step!. This report will extend the result. In
the following, we consider the same problem
under the following (more realistic) assump-
tion on the communication: Fach message can
carry at most £ (1 < £ < n?) tokens in a step.
A key to construct efficient algorithm under
the assumption is to increase the throughput
of the communication, e.g., (1) by packing as
many tokens as possible (< £) into each mes-
sage, and/or (2) by utilizing almost all buses
during the gossiping process.

This report is organized as follows. Section
2 provides some definitions. Section 3 consid-
ers lower bounds on the gossiping time. Sec-
tions 4, 5, and 6 propose gossiping algorithms
for £ = o(n), £ = w(n), and for £ = O(n),
respectively.

11t is at most only 3 more steps than a lower bound
[3] (c.f. Theorem 1).

2 Preliminaries

A mesh-bus computer M consists of n? nodes
arranged on n X n array. Denote the node lo-
cated at the ith row and the jth column by
(3,7). Let V.= N x N be the set of nodes in
M, where N = {1,2,...,n}. The nodes in M
are connected with n row-buses and n column-
buses. Node (7,j) € V is connected with row-
bus R; and column-bus C;. M has a global
clock, and all nodes execute their operations
synchronously according to the global clock.
We call a unit time of the clock a step. Each
node (%, ) always eavesdrops on two buses R;
and Cj to receive all tokens flowing on those
buses, and can send a message containing to-
kens through the two buses, while in each step,
at most one node is allowed to send a mes-
sage through a bus (i.e., each bus is accessed
in CREW manner).

Each node (4, ) in M initially holds a token
denoted by t(i,j), and we assume that each
message can carry at most £ tokens. The gos-
siping problem we consider in this report is de-
scribed as follows: For each (i,5) € V, broad-
cast t(, 7) to all nodes in V. For simplicity, we
suppose that all broadcast requests are issued
simultaneously.

3 Lower Bounds

For sufficiently large {, we have obtained a
lower bound on the gossiping time [3].

Theorem 1 When £ = oo, i.e., when each
message can carry any number of tokens, the
gossiping requires at least [n/2] + [log,n] — 1
steps. O

On the other hand, it needs at least n + 1
distinct buses to broadcast a token to all
nodes in V. Hence during a gossiping process,
n? x (n + 1) copies of tokens have to be car-
ried by 2n buses. Since each bus can carry at



most £ tokens in a step, we have another lower
bound as follows:

Theorem 2 When each message can carry at
most £ tokens, it requires at least n? /2L +n /2!
steps to complete the gossiping. O

4 Short Packets

This section considers the case of £ = o(n);
i.e., proposes an efficient algorithm for packets
with short length.

4.1 Basic Algorithm

First, consider the following algorithm.

Algorithm SIMPLE

Phase 1: If i 4 j is even (resp. odd), then
node (3,5) sends t(i,j) through row-bus
R; (resp. column-bus Cj).

Phase 2: Let H(i,j) (resp. V(i,5)) be
the set of tokens received by node (i, 7)
through row-bus R; (resp. column-bus
Cj) in Phase 1. Each node (i,5) € V
sends V (7, 7) (resp. H(i,j)) through row-
bus R; (resp. column-bus Cj). o

See Figure 1 for illustration. The correct-
ness of the algorithm is clear. Let 7 = [n/2].
Phase 1 takes T steps, since each bus is se-
quentially accessed by at most 7 nodes. On
the other hand, Phase 2 takes

T n+1\ /1 1
n[7] < ”{( 2 )(z)“‘z}
n? n

steps. Hence we have the following theorem.

Theorem 3 Algorithm SIMPLE cdmpletes
the gossiping correctly on M in at most
n?/2t —n/20 + [3n/2] steps. o

Corollary 1 When ¢ = o(n), algorithm SIM-
PLE asymptotically achieves a lower bound on
the gossiping time on M. O

4.2 Refinement

If £ divides 7 (= [n/2]), we have the following
corollary of Theorem 3.

Corollary 2 If { divides [n/2], algorithm
SIMPLE completes the gossiping on M in
n?/2L +n/2L + [n/2] steps. o

Note that the upper bound in the corollary
is at most [n/2] more steps than the lower
bound in Theorem 2.

On the other hand, suppose that £ (= o(n))
does not divide 7, and that £ < 7. Note
that the inequality always holds for sufficiently
large n, since £ = o(n). Rewrite T as af + 3,
where 8 = 7 (mod ¢) and 8 # 0.

In Phase 1 of algorithm SIMPLE, each node
sends exactly one token through a bus. How-
ever, since each message can carry at most £
tokens, during Phase 1, each node can send at
most £ — 1 other tokens having been received
in previous steps of Phase 1.

In the tth (1 <t < {) step of Phase 1, node
u has received |H(u)| = [V(u)] = t — 1 to-
kens from other nodes on the same row or col-
umn. Hence, the above modification reduces
the running time to

T < i[——_T"(:"l)]

i=1

Hr-7-a+7(a+ 1)}

B L
> a+1)+ > a}
i=f+1

=1

+(n-la+T1
= (la+B)+(n-la+r
= na+fB+T.



Since a = (1 — §)/¢, we have
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When { < n, 8 = 1 gives the maximum value
to T. Hence we have the following theorem.

. Theorem 4 When ¢ < [n/2] and ¢ does not
divide [n/2], the gossiping on M takes at
most n2 /2L — n /2L + n + 2 steps. o

It is at most n — n/2{ 4+ 2 more steps than a
lower bound. '

5 Long Packets

This section considers the case of £ = w(n).
The reader can easily verify that when { =
w(n), algorithm SIMPLE is not (asymptoti-
cally) tight (it takes at least n steps, while the
lower bound in Theorem 1 is n/2 + o(n)).

5.1 When £ = o(n?)

Suppose that £ = o(n?). Let m = [2{/n] and
o = [n/m] (i.e., m = o(n) and o = o(n)). We
first partition N into o subsets Ny, Na,..., N,
such that N; = {(i — 1)m + 1,...,4m} for all
1<i<oand Ny = N\U,<;c, Ni- Under the
partition, consider the following algorithm.

Algorithm PARTITION

Phase 1: If i+ j is even (resp. odd), then
node (i, 7) sends token ¢(%, j) through row-
bus R; (resp. column-bus Cj).

Phase 2: Let Hy(u) (resp. Vi(u)) be the
set of tokens received by node u through
row-bus (resp. column-bus) in Phase 1.
For all 1 < z < o in parallel, each node
u € N, x N, sends V;(u) (resp. Hi(u))
through row-bus (resp. column-bus).

Phase 3: Let Hy(u) (resp. Vz(u)) be the set
of tokens received by node u through row-
bus (resp. column-bus) in Phase 2. For
each i € N, node u € {(i,s+1tm) : t €
Z} NV, where Z is the set of integers,
sends V5 (u) through row-bus R;. For each
j€N,nodew € {(j+tm,j):t€e Z}nNV
sends Hy(w) through column-bus C;. O

See Figure 2 for illustration.

Theorem 5 Algorithm PARTITION com-
pletes gossiping correctly on M.

Proof. Let (i,7) be a node in V. Assume that
i+ 7 is odd. (When i+ j is even, we can prove
the same statement in a similar way.)
Suppose that i € N,. In Phase 1, t(i,7) is
broadcast to all nodes on the ith row, i.e., all
nodes in U = {(i,y) : y € N,}. In Phase 2,
node (i,k) € U sends t(i,5) (€ Hi(i,k)) to
all nodes on the kth column. In other words,
Phase 2 broadcasts t(, ) to all nodes in W =
N x N.. Now, for each row, there is a node in

{(z,y):y € N.}n{(z,i +tm): t € Z},

which broadcasts the token to all nodes on the
same row in Phase 3. Hence (4, ) is broadcast
to all nodes in V. ‘ (]

Theorem 6 When £ = w(n) and £ = o(n?),
algorithm PARTITION requires at most n/2+
o(n) steps, which asymptotically achieves a
lower bound.

Proof. Let 7 = [n/2]. Phase 1 takes T steps.
In Phase 2, each bus is sequentially accessed
by m (= |2¢/n]) nodes, each of which sends at
most 7 tokens through one bus. It holds £ > 7
since m = o(n) and { = w(n). Hence Phase 2
takes at most m steps. In Phase 3, each bus
is sequentially accessed by ¢ nodes, each of
which sends at most m7 (< {) tokens. Hence



Phase 3 takes at most o steps. Consequently,
algorithm PARTITION takes at most

n
T+m+o = §-+o(n)

steps. (m]

5.2 When £ = 0(n?)

Next consider the case of £ = ©(n?). By defi-
nition, there is a constant c such that ¢ > cn?.

Let D = {(z,z) : z € N}. In [3], we have
proposed an efficient gossiping algorithm pro-
vided £ > n?,

Algorithm CENTRALIZE

Phase 1: If ¢ 4+ j is even and ¢ # j, send
t(i,7) to node (4,7) (€ D) through row-
bus R;. If i+ is odd, send £(%, j) to node
(4,4) (€ D) through column-bus Cj;.

Phase 2: Collect tokens held by nodes in D
to a node in V as follows:

Step 1: Let U = D.

Step 2: Let U = {z1,2,...,zp}. If
|U| =1, then go to Phase 3.

Step 3: Let W = {(z2i-1,%2:) :
i< |Ul/2]}.

Step 4: Let U = 4.

Step 5: For each ((a,b),(c,d)) € W,
(a,b) sends a message to (a,d)
through row bus R,; (c,d) sends
a message to (a,d) through column
bus Cy; and add (a,d) to U.

Step 6: Go to Step 2.

Phase 3: Let u be the node in U. Node
1 broadcasts the set of all tokens to all
nodes in V. (m]

1<

See Figure 3 for illustration.

Theorem 7 When { = ©(n?), algorithm
CENTRALIZE completes the gossiping on M
in n/2 + O(logy n) steps.

Proof. At the end of Phase 1, foranyv € V (=
Vo UW1), t(v) is held by a node in D, since
there is a node in D on each row and column.
Since [n/2] nodes exclusively send messages
through each bus, Phase 1 takes [n/2] steps.

In Phase 2, the nodes in D collect tokens to
a node in V. Clearly, if nodes in U share no
buses, then nodes in new U created in Step 5
share no buses. Since each message can carry
cn? tokens for some constant ¢, Phase 2 takes
O(log, n) steps.

At the end of Phase 2, a node u € U holds
the set of ‘all’ tokens. In Phase 3, node u
broadcasts the set to all nodes in V, which
takes O(1) steps. o

6 Other Cases

Finally, consider the case of { = ©(n). Sup-
pose that £ < cn for some constant c.

When £ < n/2, by Theorem 4, an improved
version of algorithm SIMPLE in Section 4.2
completes the gossiping in at most

n2 2

n ne
—_—— <
2 2l+n+2 S 3 +n+2

2
< (L+20)5; +2

steps, where we use 1/n < ¢/f. When £ < n/2,

since ¢ < 1/2, it is at most n/f 4 O(1) steps.

On the other hand, when £ > n/2, we can
modify algorithm PARTITION in such a way
that m = |2¢] and o = [n/m].

Note that 2 < mn (e, n/m < n?/2¢)
since { < cn. By Theorem 6, the modified
version of algorithm PARTITION finishes the
gossiping in

[2] tmt+o < S4 n
2 - 22U
steps. When £ < n, it takes at most

L\ n?
(1+;)§+O(1) <

+ O(1)

2
n
2 X —
X o7 +0(1)
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< 2x 5 +0(1)
steps. Hence we have the following theorem.

Theorem 8 When £ = ©(n), the gossiping
completes in at most 2 x max{n/2,n?/2L} +
O(1) steps, which is (asymptotically) at most
twice of a lower bound. 0
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Figure 1: Algorithm SIMPLE (when i + j is
even). Figure 2: Algorithm PARTITION.
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Figure 3: Algorithm CENTRALIZE.



