7 A = Y X A 36—5
(1993. 11. 25)

BA SN REIIEEEERAD S5 T TERT 5
O(nloglogn) K7V Y XL

B %
RO TR TR

HEEAEMOF D = (di,dy,....d,) 2RBT B/ 5 INEHETEEEX, DA 5 TRE
FlEnde 7T TREFIDICH LT, DEKBET S k-85 5 7T REET B0, (k+1)-
HESSTREELENE S, DOMEE(D) I kTHS LS. ERX TR 525
Nic 75 7REF| DIcxt LTy Dax(D)-H52 5 7 TEBRT 3 O(nloglogn) OFMD
TNVITYXLEFZ B, : . o

An O(n log logn) Time Algorithm for Constructmg a Graph of
Maximum Connectivity with Prescribed Degrees

Takao Asano

Department of Information and System Engineering
Chuo University, Bunkyo-ku, Tokyo 112, Japan

A sequence of hon11egative integers D = (dy,dy, ...,dy) is graphical if there is a graph
with degree sec,uence D. The connectivity x(D) of a graphical sequence D is defined to be
the maximv.m integer k such that there is a k-connected graph with degree sequence D.
In this 1 aper, we present an O(n loglogn) time algorithm, for a given graphical sequence
D, t, construct a x(D)-connected graph with degree sequence D.

._33._.

1 Introduction

Graphs considered in this paper are all simple. A sequence of nonnegative integers D =
(d1,da, ..., dn) is graphical if there is a graph G with degree sequence D (i.e., d; is the degree of
vertex v; of G for each 4 = 1,2,...,n.) A graphical sequence D = (dy,ds, ..., d,) is k-connected
if there is a k-connected graph with degree sequence D. If a k-connected graphical sequence
D is not (k + 1)-connected then its connectivity x(D) is defined to be k. The (k-connected)
graphical sequence problem is: Given a sequence D of nonnegative integers, determine whether
it is (k-connected) graphical or not. The graphical sequence problem is one of the most fun-
damental problems in graph theory [1, 5, 9] and was first considered by Havel [6] and then
considered by Erdés and Gallai [3] and Hakimi [4]. They gave simple characterizations which
lead to efficient algorithms. The k-connected graphical sequence problems were considered by
Berge [1](k = 1,2), by Rao and Ramachandra Rao [7] (k = 3) and by Wang and Kleitman [12]
(k > 2). They gave characterizations for a graphical sequence to be k-connected.

In this paper, we consider the following more general problem: Given a graphical sequence D,
determine its connectivity x(D) and construct a x(D)-connected graph with degree sequence D.
We present efficient algorithms including an O(n) time algorithm to determine the connectivity
of a given graphical sequence D = (d;,dy, ...,dn) and an O(m) time algorithm to construct a
k(D)-connected graph with degree sequence D (m =YL, d;/2).

The O(m) time algorithm for constructing a x(D)-connected graph is concerned with the
graphs represented explicitly. In some applications, however, implicitly represented graphs are
satisfactory and faster algorithms may be required. For this reason, we also consider an implicit
representation of graphs and present a faster O(nloglogn) time algorithm, for a given graphical
sequence D, to construct a x(D)-connected graph with degree sequence D

2 Connectivity of a Graphical Sequence

In this section, we present an efficient algorithm to determine the connectivity of a graphical
sequence. We first recall the previous results. Havel [6] and Hakimi [4] gave Proposition 1(a)
independently and Erdds and Gallai [3] gave Proposition 1(b) below [1, 5, 9].

Proposition 1. Let D = (di,ds,...,ds) be a sequence of integers with n > d; > dy >
. 2 dn 2 0 and let D' = (db, dj, ..., d;,) be a sequence of integers obtained from D by setting
d;=d;i—1(i=2,..,d1+1) and &j = d; (j = d1 +2,...,n). Then the following hold.

(a) D is graphical if and only if D’ is graphical.
(b) D is graphical if and only if Yi=1d; < i(i— 1) + X4 min{s, d;} for each i =1,2,...,n.

For a sequence of integers D = (d1,da,...,dy) withn > dy > dy > ... > dn 2 0, if T2 d;
is odd then D is not graphical. Thus, we assume throughout this paper that Y1, d; is even
and m = 3°7.; di/2. For a graphical sequence [, it is trivial to obtain a graph G with degree
sequence D in O(n?) time based on Proposition 1(a). A drawback to use Proposition 1(a) is
that d) > dy > ... > d/,_; does not always hold. Thus we have to sort again to use Proposition
1(a) recursively. If the proposition is modified to avoid sorting in the followiung way, then the
time complexiiy can be reduced to O(m) [8].

Proposition 2. Let D = (dy,dy, ...,d,) be a sequence of integers with n > dy>d22 .. 2
dn > 0. Let b =dy, z = min{j|d; = dp}, y = max{j|j <n—1,d; = d3} and

o= di—-1 ifl1<i<z-1ory—h+z<i<y,
R fz<i<y—h+z-1o0or y+1<i<n-1.

Then ¢; > ¢ > ... > ¢p—1 > 0 and D is graphical if and only if C = (c1,¢2, ..., €n—1) is graphical.
Similarly, if we let h' = d; + 1, 2’ = min{j|2 < j,d; = dw}, ¥/ = max{7|d; = dn} and

d = di—1 if2<i<z'=1or ¢y —Rh+2' <1<y,
7 d; ifz' <i<y —h 42 -1 or Yy +1<i<n,

then dj > dy > ... > d}, > 0 and D is graphical if and only if D' = (db, dj, ...,d.,) is graphical.

The above results are all without connectivity requirement. For k-connectivity requirement,
the following Proposition 3 is in Berge [1] (k = 1,2) and in Wang and Kleitman [12] (k > 2).

Proposition 3. Let D = (di,dy, ...,dn) be a graphical sequence with d; > do > -+ > dy.
Then, for a positive integer k, D is k-connected if and only if (i) dn > k and (ii) Ti=1dj 2

2(n+ Tl d; — k(k - 1)/2-1). : -

Based on Proposition 3, we can determine whether a graphical sequence D = (dj, da, ..., dn)

is k-connected or not in O(n) time. We can also compute the connectivity (D) in O(n) time
as follows:

function x(D):integer; begin
k=109 :=0; fori:=1tondo a;:=a;_1 +d
while (d, > k) and (an > 2n+2a4_; —k(k—1)—2) do k:=k+1;
k(D) :=k — 1 end; :

Note that it can be determined whether a given sequence of integers D is gra;phica.l or not in
O(n) time based on Proposition 1(b) [8]. Thus the following theorem is obtained.

Theorem 1. For a sequence of integers D = (dy, ..., dy,), it can be determined whether D is
graphical or not in O(n) time, and if so, the connectivity (D) can be computed in O(n) time.

3 An O(m) Time Algorithm

In this section, we will present an O(m) time algorithm, for a graphical sequence D, to construct
a x(D)-connected graph with degree sequence D. Since the algorithm is based on a proof of
Proposition 3 we first describe the proof, although it is almost the same as the proof givezi by
Wang and Kleitman [12]. Note that their proof is confined to k > 2. Our proof is valid even for
k =1 and this is necessary since our algorithm treats a graphical sequence D with k(D) > 0.

Proof of Proposition 3. (Necessity) Let G be a k-connected graph with degree sequence
D and U = {v1,vg,...,vk-1}. Then (i) is trivially true and G — U is connected. Thus, the
number of edges in G — U is greater than or equal to —1+ the number of vertices in G — U.
Since the number of edges in G — U is at most 2i=145/2 - (Z;“;% dj — (k—=1)(k—2)/2), we
have 21 d; — 2(Th21 dj — (k= 1)(k—2)/2) > 2(n - (k— 1) — 1) and (ii). -

(Sufficiency) We prove the sufficiency by induction on n. Since D is graphical and satisfies (i)
and (ii), we have k < dn < d; < nand thusn > k+1. If n = k+1, thend; = --- = dp=n-1=k
and the complete graph K., is k-connected and has degree sequence D. Thus, we now assume
that it is true for all integers less than 7 > k + 2. We divide into two cases: (dy =n—1 and
k>1)and (& <n—2o0rk=1). ;

Case I: dy = n—1and k > 1. Let D' = (dj,...,d],) be the same as in Proposition 2
(d; = dj — 1 for each j = 2,...,n). Since D' is graphical by Proposition 2 and satisfies (i) and
(ii) of Proposition 3 for k— 1, D' is (k — 1)-connected and there is a (k —1)-connected graph G'
with degree sequence D’ by induction hypothesis. The graph G obtained from G by adding the
edges joining new vertex v; and all vertices of G’ is k-connected and has degree 'sequence D.

Case II: d; <n—2or k=1. Let C = (c1,¢2,...,cn—1) be the same as in Proposition 2. If
k =1landd, =1thend; > 2Dy (i) and wehave cp) = dn—1 > land Y05 ¢; = S0, di—2d, >
2(n—2). fk=1andd, > 2thenc; > di—1>1foralliand 0} ¢ > TF2d; > 2(n - 2).
Thus, we have two cases (II-A): cp—; > k and (II-B): ¢ca_y =k — 1 and k > 1.

Case II-A: ¢, > k. We have the following two cases ITI-A-1 and II-A-2;

Case II-A-1: E;‘_—ll =3 To1dj=2ds 2 2(n+ Ef;'ll ¢; —k(k—1)/2 - 2). In this case, C is
graphical by Proposmon 2 and k-connected by induction hypothesis, and there is a k-connected
graph G’ with degree sequence C. The graph G obtained by adding dn edges joining vertex vy
and the vertices v; of G with ¢ = d; — 1 is k-connected and has degree sequence D

Case II-A-2:- E, 216 < 2(n+ZJ —ici—k(k—1)/2—2). Note that k > 1 a.nd d <n-2
by the above argument. We will prove that this case cannot occur.

Let h be an integer such thatc,_1 2 h 2 k. Let a = ck 1—ck. Clearly 0 < a<.n—k-2since
n—22dy > dn > k. Thus, we have (k=2)(n—2) > T¥22c; > —a+ T2 ¢;—2n+k(k—1)+6
> hin—k —1)—2n+lc(k—l)+6—-a—- (k——2)(n—-2 J+(h—-k)n—-k-1)+ 2~ « since

P2ic; < 2(n+ TiZicj — k(k — 1)/2 — 3). This implies that co_y = h = k and a > 2.
Furthermore, cp-3 = k implies d, € dy—3 < k+ 1 and a > 2 implies dip; > dy + 2 and
that ¢; = d; — 1 for all i < k ~ 1. Thus, we have (k—1)(n —2) > 521 dj = Dl e+ k-1
> 2" G 2n+k(k—1)+6+k—-1= E”‘l dj—(dn—(k—1)) —2n+k(k—1)+k+5. This implies
that if d, = k+ 1 then we have (k — 1)(n 2) 2T di—(dn— (k=1))—2n+k(k—1)+k+5
> (k+1) (n k)— 2n+k(k D+k+3 = (k—1){n— 2)+k+l and that if d, = k then we have by (ii)
23_1 > i dj—(dn—(k—1))—2n+k(k—1)+k+5 > TZ] dj—2—dn— (dn— (k—1))+k+5

23_1 d; + 2. 'I‘hus we have a contradiction in either case.

CaseII-B ch-1 =k—1and k > 1, In this case, d, =dp_y =k anddpy=---=d, =k
by the definition of C, since if di, > dp—y then ch—; would be ¢pey = dny = k. We will give
an algorithm II-B to construct a graph G(D) with degree sequence D based on the algorithm
proposed by Wang and Kleitman [12]. We divide into two cases: dj < k¥ + 1 and d; >k+2.
Algorithm II-B.

Case II-B-1: d; < k+ 1. We first consider the case d; = k. Then d; = k for all 1 =
1,2,..,n. Let G(p,2b) (p > 2b) be the graph with vertex set {0,1,....,p — 1} and edge set
{GE N0 < |(F —4) mod p| < b,0 < 4,7 <p—1}. Here we assume (j — 1) mod p takes a value in
[—=lp/2],(p—1)/2]]. If p is even then let H(2a,2b+1) (p = 2a > 2b+1) be the graph obtained
from G(2a,2b) by adding edges {(i,%+ a)|t = 0,1,...,a — 1}. Note that G(p, 2b) is 2b-regular
and 2b-connected and also that H(2a,2b+ 1) is (2b + 1)-regular and (2b + 1)-connected. Thus,
G(n,k) (if k is even) or H(n, k) (if k is odd) is a required graph G(D) (vi =i — 1).

Next -we consider the case di = k + 1. Let f be the number such that df = k + 1 and
df+1 = k. If k is even then f is even and the graph G*(n, k, f) obtained from G(n, k) by adding
edges {(4,i+ [n/2])]i = 0,1,..., f/2 — 1} is a required graph G(D). If k is odd, then the graph
G~ (n,k+1, f) obtained from G(n, k+1) by deleting edges {(2i,2i+1)|i = 0,1, ..., (n— f)/2 -1}
is a required graph G(D). These graphs G*(n, k, f), G~ (n, k+1, f) have the following property:
(*) For each vertex subset U of G with |U| < k, if G — U is disconnected then no connected
component of G — U consists of only vertices of degree k + 1 in G. .

Case II-B-2: d; > %k + 2. In this case let D' = (d),d) be the sequence as in
Proposition 2. We will show that 3°7_, d > 2(n+§:f_1 d; — (k 1)(1., 2)/2—2). Suppose that
Yiood; =7, dj—2d; < z(n+z§;2 d: — (k—1)(k — 2)/2 2). Let a = d},_; —d. Then we
have (k—3)(n—2) > Tf2d) > —a+ 2;;k+1 di—2n+(k—1)(k—2)+6 > (—-D(n—k)—
n+(k—1)(k—2)+6~a=(k—3)(n—2)+2— . This implies o > 2, dp—1 > di + 2 and that
d; =d;—1for all 2 <4 < k—1. However, this is a contradiction since 2 k-1 dj = E" l 3 dj+k—2
2 ek di =2+ (k-1)(k=2)+6+k~2=7_, d;— (di - (k—2)) - 2n+(k 1)(k 2)+k+4
> zj‘:}d —k(k=1) = (- (k=-2))+ (k= 1)(k—2)+k+2 =5} d; +2.

Thus, D’ satisfies (i) and (ii) for k — 1 and I’ is graphical and (k — l) connected The gragh
G(D') obtained by the algorithm II-B can be shown to be (k — 1)-connected and have degree
sequence D'. Furthermore, G(D’) satisfles the property (x) above (with k := & — 1). Thus, the
graph G(D) obtained from G(D') by adding edges (v1,v;) between vertex v; and verticesw; with
d; = d; — 1 is k-connected and has degree sequence D since only vertices of degree k may not
be joined to vy. G(D) can be shown to satisfy the property (%).

Case II-B-2-a. If df = k—1 and k — 1 > 1 then we have the case II-B for D’ and call
Algorithm II-B recursively. ‘

Case II-B-2-b. If d, =k or d, = k— 1 = 1 then let C' = (c}, c}, ..., ¢,,_;) be the sequence as
in Proposition 2 (by regarding I’ as D) and add edges (v;,v,) between vertex v, and vertices
v; with ¢ = dj — 1. We repeat this (by regarding C’ as D’) untild}, = k — 1 or d} = 0. Then we
have the Case II-B for new D’ and call Algorithm II-B recursively or d; = 0.

Thus we complete the proof of Proposition 3.

Since the proof of Proposition 3 is constructive, we can obtain an O(m) time algorithm, for
a graphical sequence D, to construct a x(D)-connected graph with degree sequence D. In the
algorithm below, L is initialized L = {j|d; > d;j41,7 = 1,2,...;,n — 1} U {0,n} and represented
by a doubly-linked list with pre[j] < j < suc[j] for each j € L, where pre[j] and suc[j] denote
the previous element and the next element of j € L (if pre[j] (suc[j]) does not exist then the
inequality pre[j] < j (j < suc[j]) should be neglected). Note that C' = (ci, g, ..., ;) is initialized
C = D and then maintained to satisfy c; > co3 > ... > ¢g. L is also maintained to satisfy
L= {jlcj > C_’l+1} U {O g} Thus, Core[jl+1 = Cpre[]]+2 =T > Gl = G2 = == Gyl for
eachj € Lwith£ < 7 <yg. find(h) returns a maximum mteger J with ¢; = ¢p, (thus, ¢; > cJ+1)

Algorithm CG; {comment For a graphical sequence D = (dy, ..., d,) with dj > ... > d,,, this
constructs a k(D)-connected graph G(D) with degree sequence D}
begin '
k:=k(D); L:={0,n};fori:=1tondoc :=d;;
for i :=1ton—1do if d; > d;y; then insert 7 into L;
constructl_graph(1,n)
end.
procedure constructl_graph(?,g);
{comment this constructs a (k — £+ 1)-connected graph with degree sequence (cg, ..., cg)}
begin {comment ¢; > k — £+ 1}
if (¢, = g — £) and (k > £) then begin {comment Case I}
for i:= £+ 1 to g do begin add edge (ve,v:); ¢; *= ¢; — 1 end;
delete £ from L; if £+ 1 < g then constructl_graph(l +1,9) end
else
if cg > k — £+ 1 then begin {comment Case II-A}
if g — 1 is not in L then insert g — 1 into'L; delete g from L;
J = find(cg + £~ 1); {comment g — 1 > j > ¢y + £~ 1 > pre[j]}
create_edge(g); if £ < g — 1 then constructl_graph(4,g — 1) end
else {comment Case II'B: j =g~ 1, ¢t =--- = cg=k—-£+1}
construct the (k — £+ 1)-connected graph G(c, ..., ¢g) by Algorithm II-B
end;
procedure create_edge(f);
begin :
if j =c¢s +£—1 then for i := £ to j do begin add edge (vs,v;); ¢; := ¢; — 1 end
else begin
Inew = J = (¢f + £~ 1) + pre[j]; {comment j,e, — pre[j] = j — cg—£4+1>0} -
if pre[j} # 0 then begin
for i := £ to pre[j] do begin add edge ('uf,vz) ci'=¢; — 1 end;
if (cpre[j] = Cpre[j}+1) then delete pre[j] from L end;
for ¢ := jpew + 1 to j do begin add edge (vy,v;); ¢; := ¢; — 1 end;
insert jpew into L; {comment jpey is inserted before]} end;
if (j <g—1) and (¢; = ¢j41) then delete j from L
end;

v v ———t I1(vg)

—— I1(ve) i Io(ve)
Vg U3 —i I (vs
— Ij(vy)
V7 N — I1{v3)
|I1(v2)
' 17 T T T T T] 1
Ve Vs 1 2 3 4 5 6 T 8
(a) (b)

Fig. 1. (a) Graph G with degree sequenceD = (6,5,5,4,3,3,3,3)
(b) An implicit representation of G by a set of intervals.

As noted in the algorithm, procedure constructl_graph(¢, g) constructs a (k —£+1)-connected
graph with degree sequence (cg, o1, ..., €g), Which can be easily observed if we consider the
correspondence between procedure constructl._graph(4,g) and the the proof of Proposition 3.
Thus, Algorithm CG correctly constructs a x(D)-connected graph with degree sequence D. The
time complexity is clearly O(m). Thus, we have the following theorem.

Theorem 2. For a graphical sequence D = (dy,dz,...,d,) with dy > d2 > -+ > dj, a &(D)-
connected graph with degree sequence D can be constructed in O(m) time (m = Y7, di/2).

4 An O(nloglogn) Time Algorithm

In this section we present an O(nloglogn) time algorithm for constructing a x(D)-connected
graph represented implicitly for a given graphical sequence D. Before giving the algorithm, we
consider an implicit representation of a graph by using an example.

Let D = (6,5,5,4,3,3,3,3). Then D is 3-connected graphical. Based on Proposition 2 (not
on Algorithm CG), we have the following sequence (Do = D, D; = C):

Dy = (675a57413a3,3a3)a -D_l = (5, 4, 4s4)313’3), Dy = (4a4,31373a3))

D3 = (3,3,3,3,2), Dy = (3,3,2,2), Ds = (2,2,2), Dg = (1,1).
The graph obtained in this way is shown in Fig.1(a). Note that we can represent vertices
adjacent to vertex wg by an interval Ij(vg) = [1,3] when we obtain D; from Dy. Similarly,
vertices adjacent to vertex v;7 can be represented by intervals I (v7) = [1,1], Ia(v7) = [3,4] when
we obtain Do from D;. Repeating this, we have a set of intervals shown in Fig.1(b). Thus,

E(v;) = {(vj,vi)ls < 4,5 € Li(vi) UTa(vi) } U {(vj, vi)lj > 4,3 € T1(vj) U T2 (v;)}

is the set of edges incident on vertex v; in G (I2(v;) and I5(v;) may be empty).

A graph G represented by a set of intervals in this way is called implicitly represented.
Note that, if necessary, the edge set E(v;) incident on vertex v; can be obtained efficiently
(in O(|E(wv;)| + logn) time) by solving the 1-dimensional range search and 1-dimensional point
enclosure problems in computational geometry [2].

Degree sequence D can also be represented by a set of intervals w1th weights as follows. Let
J (D) be the set of intervals obtained by partitioning the underlying set [1, 7] using the elements
i with d; > di+1. Thus, for each interval J € J(D), d; = d; if 4,5 € J. We define the weight
w(J) of J to be d; for any ¢ € J. For example, corresponding to. D = (6,5,5,4,3,3,3,3) we have

J(D) = {[1,1},(2,3], 4,4, 5,8]}

with w([1,1]) = 6,w([2,3]) = 5, w([4,4]) = 4,w([5,8]) = 3. If D = Dy is modified to D; =
(5,4,4,4,3,3,3), then J(D) and the weigths will be updated to

J(D1) = {[1’1]1 [2)4}7 [577]}7 ‘LU([]., 1]) =5,w([2,4]) = 47"”([5’7]) =

Thus, if we represent a degree sequence in terms of the corresponding set of intervals as above,
we need three kinds of operations (find, delete and split) to efficiently manipulate such disjoint
intervals. Here, find(i) returns the maximum element in the interval containing i. delete(s)
unites the interval J containing i and the interval J' containing ¢ + 1 (old J and J’ will be
destroyed). If i is the maximum element of a current underlying set, then delete(s) sets J :=
J—{3} (and J will be removed if J becomes empty). split(s) splits the interval J containing 7 into
two intervals J' := {j € J|j < i} and J” := {j € J|j > i} (old J will be destroyed and J” will be
removed if J” = §). Initially J(D) can be obtained by split(i) for each i with d; > di4;. Thus,
in the example above, J(D) is obtained by a sequence of split(1), split(3), split(4). Similarly,
J(D1) is obtained from J (D) by a sequence of delete(8), find(3), delete(3).

For each 4, we initially set A(n) := d, and A(¢) := d; — di4; for each i % n. Thus d; =
Y7=i A(j)- In each iteration with the current degree sequence C = (cg, ..., ¢g), A and A(3) are
maintained to satisfy A = ¢4, A(g) = ¢; (£ and g are the minimum and maximum elements of
a current underlying set [£, g]) and A(3) = ¢; — cjq1 for £ < 4
legg — 1. Thus, ¢; = Z§=i A(j) for all 4. Note that A(i) > 0 if and only if find(s) = i.

Now we will present an O(nloglogn) time algorithm for a graphical degree sequence D =
(d1,ds,...,ds) to constructa x(D)-connected graph represented implicitly. Note that for the
graphs G(p,2b), H(p,2b + 1), G*(p,2b, f) and G~ (p,2b, f) defined in Case II-B of the proof
of Proposition 3, one can represent them implicitly by using intervals in O(p) time. Similarly,
it is an easy exercise to represent the graph in Case II-B with degree sequence C = (cey .y cg)
implicitly in O(n) time (this will be done by procedure construct2_graph_implicitly (¢, g)). In the
algorithm, we use data structures proposed in {10, 11] to support three operations find, delete
and split described above as well as to support operations in the doubly-linked list representing
the maximum elements of all current intervals. :

Algorithm KCGIMPL; {comment For a graphical sequence D = (di, ..., d,) with
di > ... > dy, this implicitly constructs a «(D)-connected graph G(D) with degree sequence D}
begin ‘ '
for i :=1to n—1 do begin A(s) := d; — diyy; if d; > diy; then split(i) end;
A(n) := dn; A := dy; k := k(D); constructl_graph implicitly(1, n) \
end. ‘
procedure constructl_graph_implicitly(¢, g); {comment this implicitly constructs
a (k — £+ 1)-connected graph G(C) with degree sequence C = (cy, .y Cg)}
begin
if (A =g —~¢) and (k > £) then begin {comment Case I}
- L(8) =L+ 1, g); delete(£); A= A — Al -1
if £+1 < g then constructl_graph_implicitly(¢ + 1, g) end
else begin
j = find(A(g) +£—1);if j=g then j :=g—1;
{comment A(g) > k—£+1,9-1>7>A(g)+£~-1 > pre[j]}
if j#g-1)or(A(g)+A(g—1)>k—£+1) then begin {comment Case II-A}
delete(g); A(g — 1) == A(g — 1) + A(g); {comment find(g— 1) = g—1}
create_edge(g, A(g)); if £ < g — 1 then constructl_graph_implicitly (4, g — 1) end
else {comment Case II-B: j=g—1,cp = -+ = cg=k—£+1}
construct2_graph_implicitly (£, g) end
end;
procedure create_edge_implicitly(, h);
begin '
ifj=h+{—1then begin I;(f) :=[¢,j; A:=A~1 end
else begin
Jnew =7 — (h+4£—1) + pre[j);
if pre[j] > 1 then begin 20

L(f) = (&, pre[jll; Lo(f) = [new + 1, 7); & 1= & = 1; Alpre[f]) := A(pre[j]) — 1;
if A(pre[j]) = 0 then delete(pre[j]) end
else {comment pre[j] = 0} I1(f) := [fnew + 1,]
A(jnew) = A(jnew) +1; Split(jnew) end;
A(F) = A(G) — 1; if (j # g — 1) and (A(j) = 0) then delete(y)
end; : - '

_The correctness of Algorithm CGIMPL can be easily shown by observing the correspondence
between Alogrithms CG and CGIMPL. Since there are only O(n) operations find, delete and
split in the Algorithm CGIMPL, it takes O(nloglog n) time and O(n) space by the data structure
of van Emde Boas and Zijstra [10, 11] Thus we have the following theorem.

Theorem 3. For a graphical sequence D = (d1,dg,...,ds) with dy > d2 > - -+ > dy,, Algorithm
CGIMPL implicitly constructs a x(D)-connected graph with degree sequence D in O(nloglogn)
time and in O(n) space.

Concluding Remarks

We have presented an O(n) time algorithm for computing the connectivity K)(D) of a graphical
sequence D and an O(m) time algorithm for constructing a x(D)-connected graph with degree
sequence D. Furthermore, we have given O (n loglog n) time algorithm for implicitly constructing
a k(D)-connected graph with degree sequence D. The same technique will be also applied
to other kinds of graphical sequence problems. We conclude by giving a few remarks. In
EREW PRAM model, based on Propositon 3, we can easily obtain an O(logn) time parallel
algorithm with O(n/logn) processors to determine whether a given sequence of nonnegative
integers D = (di,dy,...,ds) is graphical or not and if so, compute its connectivity. It will
be interesting to 1mprove the time complexity of the algorithm for 1mphcxtly constructing a
k(D)-connected graph presented in this paper and find an o(nloglogn) time algorithm.

References

[1] C. Berge, Graphes et Hypergraphes, Dunod, 1970.
[2] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

[3] P. Erdés and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat. Lapok, 11
(1960), 264-274.

{4] S. Hakimi, On the realizability of a set of mtegers as degrees of the vertices of a. graph, J. SIAM
Appl. Math., 10 (1962), 496-506.

[3] F. Harary, Graph Theory, Addison-Wesley, 1969.

[6] V. Havel, A remark on the existence of finite graphs (Hungarian), Casopis Pést. Mat;,'80 (1955),
477-480.

[7] S.B. Rao and A. Ramachandra Rao, Existence of 3-connected graphs wi.th prescribed degrees, Pac.
J. Math., 33 (1970), 203-207.

[8] M. Takahashi, K. Imai and T. Asano, Graphical Degree Sequence Problems, Technical- Report TRO3-
AI-33-15, Information Processing Society of Japan, 1993.

[9] K. Thurlasirman and M.N.S. Swamy, Graphs: Theory and Algorithms, John Wllely & Sons, 1992.

[10] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space,
Information Processing Letters, 6 (1977), 80-82.

{11} P. van Emde Boas and E. Zijstra, Design and implementation of an eﬁ'ectwe priority queue, Math.
System Theory, 10 (1977), 99-127.

[12] D.L. Wang and D.J. Kleitman, On the existence of n-Connected Graphs with Prescrxbed Degrees,
Networks, 3 (1973), pp.225-239.

