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Edge-Coloring and f—CoIoring for Various Classes of Graphs
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Abstract

In an ordinary edge-coloring of a graph G = (V, E) each color appears at each vertex
v € V at most once. An f-coloring is a generalized coloring in which each color appears
at each vertex v € V at most f(v) times. This paper gives efficient sequential and parallel
algorithms which find ordinary edge-colorings and f-colorings for various classes of graphs
such as bipartite graphs, planar graphs, graphs of fixed genus, partial k-trees, s-degenerate
graphs, graphs of fixed arboricity etc.
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1 Introduction

This paper deals with a simple graph G which has no multiple edge or no self-loops. An edge-
coloring of a graph G is to color all the edges of G so that no two adjacent edges are colored
with the same color. The minimum number of colors needed for an edge-coloring is called the
chromatic indez of G, denoted by x’(G). In this paper the mazimum degree of a graph G is
denoted by A(G) or simply by A. Vizing showed that x'(G) = A or A+1 for any simple graph
G [6, 21]. The edge-coloring problem is to find an edge-coloring of G using x'(G) colors. Let f
be a function which assigns a positive integer f(v) to each vertex v € V. Then an f-coloring of
G is to color all the edges of G so that, for each vertex v € V, at most f(v) edges incident with
v are colored with the same color. The minimum number of colors needed for an f-coloring is
called the f-chromatic indez of G and denoted by x};(G). The f-coloring problem is to find an

f-coloring of G using x}(G) colors. Let Af(G) = maxyev [d(v)/ f(v)] where d(v) is the degree
of vertex v. Hakimi and Kariv have proved that x’j(G) = Ay or Ay +1 for any simple graph

G [9]. An ordinary edge-coloring is a special case of an f-coloring for which f(v) =1 for every
vertex vE V..

The f-coloring has applications to scheduling problems like the file transfer problem in a
computer network [4, 15, 16]. In the model a vertex of a graph G represents a computer, and
an edge does a file which one wishes to transfer between the two computers corresponding to
its ends. The integer f(v) is the number of communication ports available at a computer v.
The edges colored with the same color represent files that can be transferred in the network
simultaneously. Thus an f-coloring of G using x;(G) colors corresp onds to a scheduling of file
transfers with the minimum finishing time.

Since the ordinary edge-coloring problem is NP-complete [11], the f-coloring problem is also
NP-complete. Therefore it is very unlikely that there exists a sequential algorithm which solves
the ordinary edge-coloring problem or the f-coloring problem in polynomial time. However
it is known that any simple graph G can be edge-colored with A + 1 colors in polynomial
time [18, 20]. The best known algorithm for edge-coloring G with A + 1 colors runs in time
O(min{nAlog n,m\/nlogn}) [8]. Throughout this paper n denotes the number of the vertices
and m the number of the edges in G. Hakimi and Kariv’s proof [9] yields a sequential algorithm
which f-colors any graph using Ay + 1 colors in time O(mn). On the other hand, there are
polynomial-time algorithms which find an edge-coloring using x'(G) colors for restricted classes
of graphs, as follows:

(a) an O(m logn)-time sequential algorithm for bipartite graphs [5, 7];

gb) a linear-time sequential algorithm for planar graphs of A > 19 [3];

c) an O(nlogn)-time sequential algorithm for planar graphs of A > 9 [2];

d) a linear-time sequential algorithm for series-parallel multigraphs [24]; and
ge) a linear-time sequential algorithm for partial k-trees [22].

However no efficient algorithms have been obtained for the f-coloring problem even for restricted
classes of graphs. On the other hand, NC parallel algorithms for finding an optimal edge-
coloring have been obtained only for a few restricted classes of graphs such as series-parallel
multigraphs [24], partial k-trees {23] and planar graphs with maximum degree A > 9 or A > 19
[2, 3]. However an NC parallel algorithm for finding edge-colorings with A + 1 colors has not
been known for general graphs except the case when A is bounded [13].

In this paper we first obtain new upper bounds on the chromatic index for three classes of
graphs: graphs of genus g > 1, s-degenerate graphs, and graphs of arboricity a. (These new
bounds together with known ones are listed in Table 1.) We then give efficient sequential and
NC parallel algorithms which find edge-colorings for the three classes of graphs. (These new
algorithms together with known ones are listed in Table 2.) We next obtain new upper bounds
on the f-chromatic index for six classes of graphs: bipartite graphs, planar graphs, graphs of
genus g > 1, partial k-trees, s-degenerate graphs and graphs of arboricity a. (These results are



listed in Table 3.) We finally give efficient sequential and NC parallel algorithms which find
f-colorings for the six classes of graphs. (These results are listed in Table 4.) In this paper the
parallel computation model we use is a concurrent-read exclusive-write parallel random access
machine (CREW PRAM).

Classes of graphs I Upper bounds on x' I Refs.
Simple graph A+1 (21]
Bipartite A [14]
Series-parallel max{4, A} [18]
Partial k-tree max{2k, A} [22]
Planar graph max{8,A} (6
Genus g > 1 max{2[(5 +/48g + 1)/2]|,A} | ours
Degeneracy s max{2s, A} ours
Arboricity a max{4a — 2, A} ours

Table 1: Upper bounds on the chromatic index.

Classes of Sequ.entlal - Parallel . Numbers of used colors Refs.
graphs Time Time [ Operations
. O(min{nA logn,
rToen 1 8
Simple graph my/wTog}) open A (8]
Bipartite O(mlogn) open A [5, 7
Partial k-tree O(n) O(logn) O(n) x' [22]
O(n) O(log®n) | O(nlog®n) max{19, A} [3]
1 h
Planar grap O(nlogn) O(log® n) | O(nlog® n) max{9, A} [2]
Genus g > 1 O(nlogn) O(log® n) | O(nlog®n) | max{ [Msﬂiﬂi] —1,A} | Ours
Degeneracy s O(nlogn) O(log® n) | O(nlog®n) | max{[(s+2)%?/2] = 1,4} | Ours
Arboricity a O(nlogn) O(log®n) | O(nlog®n) | max{[(e +2)%/2]—1,A} | Ours

Table 2: Algorithms of the ordinary edge-coloring.

2 Summary Tables

In this section we summarize old results and our new ones in four tables. We first define
various classes of graphs. Let s be a positive integer. A graph G is s-degenerate if the vertices
of G can be ordered vy, vy, -+, v, such that d(v;,G;) < s for each i, 1 < i < n, where
Gi = G — {v1,v3,---,vi-1} and d(v;, G;) is the degree of vertex v in G; [1]. That is, G is
s-degenerate if and only if G can be reduced to the trivial (or degenerate) graph K; by the
successive removal of vertices having degree at most s. The degeneracy s(G) of G is the minimum
integer s for which G is s-degenerate. The degeneracy is also called the Szekeres-Wilf number
[19]. Clearly s(G) < 5 if G is planar.

The genus g(G) of a graph G is the minimum number of handles which must be added
to a sphere so that G can be embedded on the resulting surface. Of course, 9(G) = 0 if and



only if G is planar. We denote by 6(G) the minimum degree of vertices of G. It is known
that 6(G) < |(5 + /48¢(G) + 1)/2] if g(G) > 1 [10, 12]. Any subgraph G’ of G satisfies
9(G") < 9(G), and hence s(G) < |(5+ 1/48¢(G) + 1)/2] if g(G) > 1.

Classes of graphs | Upper bounds on x'f l Refs.
Simple graph As+1 [9]
Bipartite Ay (9}
Series-parallel max{4, Ay} ours
Partial k-tree max{2k, A} | ours
Planar graph max{8, Ay} v ours
Genus g > 1 max{2[(5 + /489 +1)/2],A4} | ours
Degeneracy s max{2s, Ay} ours
Arboricity a max{4e — 2, Ay} ours

Table 3: Upper bounds on the f-chromatic index.

Cl i
asses of Sequ.entla.l - Parallel - Numbers of used colors Refs.
graphs Time Time l Operations
. O(min{mAylogn,
Simple graph ( nf\/;n‘-ljo—g%}) open Ap+1 Ours
Bipartite O(mlogn) open Ay Ours
O(n) O(log?n) | O(nlog®n) max{19, As} Ours
Pl h !
Fanar grap O(nlogn) O(log® n) | O(nlog® n) max{9, Ay} Ours
Genus g > 1 O(nlogn) O(log® n) | O(nlog®n) | max{ [wﬁ] —1,A¢} | Ours
Partial k-tree O(n) O(log® n) | O(nlog®n) | max{[(k+2)*/2] —1,A84} | Ours
Degeneracy s O(nlogn) O(log®n) | O(nlog®n) | max{[(s+2)%/2]-1,4;} | Ours
Arboricity a O(nlogn) O(log® n) | O(nlog®n) | max{[(a+2)*/2] — 1,4} Ours

Table 4: Algorithms of the f-coloring.

A graph G = (V, E) is a k-tree if either it is a complete graph on k vertices or it has a vertex
v € V whose neighbors induce a clique of size k and G — {v} is again a k-tree. A graph is a
partial k-tree if and only if it is a subgraph of a k-tree. Clearly s(G) < k for any partial k-tree
G.

The arboricity a(G) of a graph G is the minimum number of edge-disjoint forests into which
G can be decomposed. Nash-Williams [17] proved that a(G) = maxgcg{m(H)/(n(H) - 1)],
where H runs over all nontrivial subgraphs of G, n(H) is the number of vertices and m(H)
the number of edges of H. His results immediately implies that a(G) < s(G). Furthermore
a(G) < 3 if G is planar, because m(H) < 3n(H) — 3 for any nontrivial subgraph H of G.

We are now ready to describe our results in detail. In Section 3 we obtain new upper bounds
on the chromatic index, which are expressed in terms of A and one of the invariants g(G), s(G)
and a{G). The new bounds together with the known ones are listed in Table 1. The bound
x'(G) < max{2s(G), A} is a generalization of the known one that x'(G) < max{2k,A} if G
is a partial k-tree, since s(G) < k. Furthermore this bound implies that x'(G) < max{2|(5 +



VA8g(G) + 1)/2],A} if ¢(G) > 1, and that x'(G) < max{4a(G) — 2,A} because s(G) <
2a(G) — 1 as shown in Section 3. ‘

The proofs of the upper bounds on the chromatic index immediately yield sequential algo-
rithms which find an edge-coloring using colors no more than the bounds in O(mn) time. In
Section 4 we give a more efficient algorithm which may use colors more than the bounds. The
algorithm edge-colors a graph G with max{[(a(G) + 2)?/2] — 1, A} colors in time O(nlogn).
Since a(G) < 5(G) and 5(G) < (5 + /359(G) + 1)/2], [(a(G) + 2*/2] < [(5(G)+2)?/2] and
[(a(G)+2)?/2] < [(9+ /489(G) + 1)2/8]. These consequences together with the known ones
are listed in Table 2.

In Section 5 we prove that the f-coloring problem on a graph G can be reduced to the edge-
coloring problem on a new graph G;. Then, using the reduction, we derive new upper bounds
on the f-chromatic index from the upper bounds on the chromatic index listed in Table 1.
The new upper bounds are listed in Table 3. Furthermore, using the reduction, we derive new
efficient sequential and NC parallel algorithms for the f-coloring problem from the algorithms
for the edge-coloring problem listed in Table 2. The new algorithms are listed in Table 4.

3 Chromatic Index

By the classical Vizing’s theorem, x'(G) = A or A+1 for any simple graph G [6, 21]. The
main result of this section is the following theorem.

Theorem 3.1 x'(G) = A(G) zfA(G) > 25(G).

We observe the following upper bounds on the minimum degree 6(G) expressed in term of
a(G).

Lemma 3.2 5(G) < 2a(G)—1.

Proof. Assume that a graph G = (V, E') has no isolated vertices. Let n = |V|, and let n’ be
the number of all the vertices of degree < 2a(G). Then clearly n’ + 2a(G)(n — n’) < 2|E|. On
the other hand G can be partitioned into a(G) forests, and any forest has at most n — 1 edges.
Therefore |E| < a(G)(n —1). Thus n’ > 2a/(2¢ = 1) > 1. . QED.

 If g(G) > 1, then-§(G) < |(5 + /48¢(G) + 1)/2] [10, 12]. Therefore by Lemma 3.2 we can
immediately ‘derive the following upper bounds on s(G) in terms of a(G) and g(G). Note that
a(G') € a(G) and g(G’) < ¢(G) if G’ is a subgraph of G.

Lemma 3.3

(a) s(G) < 2a(G) - 1.
(b) s(G) < [(5+ /489(G) +1)/2] if 9(G) 2 1.

By Théorem' 3.1 and Lemma 3.3 we have the followiﬁg corollary.
Corollary 3.4 x'(G) = A(G) if - '

(a) A(G) > 4a(G) — 2; or
(b) A(G) > 2|(5 + /489(G) + 1)/2] and ¢(G) > 1.



4 Edge-Coloring

Theorem 3.1 and its proof yield an algorithm which edge-colors a graph G with max{2s(G), A}
colors. However the algorithm spends O(mn) time, since it repeats “shifting a fan sequence”
and “switching an alternating path” O(m) times [23]. By Corollary 3.4 the algorithm edge-
colors G with max{4a(G) — 2,A} colors in O(mn) time. Since a(G) < 3 for any planar graph
G, the algorithm edge-colors a planar graph G with max{10, A} colors in O(n?) time. On the
other hand, an algorithm in [18, 20] edge-colors a planar graph G with max{8, A} colors in
O(n?) time. Furthermore two more efficient algorithms have been known: an algorithm in [3]
edge-colors a planar graph G with max{19, A} colors in O(n) time, and an algorithm in [2
edge-colors a planar graph G with max{9, A} colors in O(nlogn) time. -

In this section we give an O(nlogn) algorithm for edge-coloring a graph G of fixed a(G).
The number of used colors may exceed max{4a(G)— 2, A} but does not exceed max{c,(G), A}
where ' '

ca(G) = [(a(L)z-}-_fl_)z_] -1

If G is planar, then a(G) < 3 and hence ¢,(G) = 12. Thus our algorithm has a flavor of
generalization of the two algorithms above in [2] and [3]. Furthermore we give a NC parallel
algorithm. The main result of this section is the following.

Theorem 4.1 A graph G of fized arboricity a(G) can be edge-colored by at most max{c,(G),

A(G)} colors in O(nlogn) sequential time or in O(log® n) parallel time with O(nlog® n) oper-
ations. '

Since a(G) < §(G) and s(G) < |(5 + /489(G) + 1)/2] if g(G) > 1, we have the following
corollary.

Corollary 4.2

(a) A graph G of fized s(G) can be edge-colored by at most max{[(s(G)+2)?/2] —1,A} colors
in O(nlogn) sequential time or in O(log® n) parallel time with O(nlog®n) operations.

(b) A graph G of fized g(G) > 1 can be edge-colored by at most max{[(9+/48¢(G) + 1)%/8] -
1,A} colors in O(nlogn) sequential time or in O(log®n) parallel time with O(nlog®n)
operalions.

5 f-Coloring

In this section we give efficient sequential and NC parallel algorithms for the f-coloring problem
on various classes of graphs. We first show that the f-coloring problem on a graph G can be
reduced to the edge-coloring problem on a new graph G defined below. We may assume without
loss of generality that f(v) < d(v) for each v € V. For each vertex v € V with f(v) > 2, replace
v with f(v) copies v1,v2,--,vs(), and attach the d(v) edges incident with v to the copies;
[d(v)/f(v)] edges to each copy vi, 1 <i < f(v) — 1, and the remaining edges to the last copy
vs(v)- Let Gy be the resulting graph. Clearly A(Gy) = Af(G) = maxyev [d(v)/f(v)], and the
number of edges in Gy is equal to that of G. If G is a simple graph, Gy is also a simple graph.
Clearly an ordinary edge-coloring of Gy induces an f-coloring of G. One can easily observe
that the following lemmas hold.

Lemma 5.1 For a graph G there ezists G; such that



a) Gy is bipartite if G is bipartile;
b) G; is planar iof G is planar;

(3) g%gf) Ey(g){ ;
) atar) < sty

Lemma 5.2 Let G be a class of graphs such that Gy € G if G € G, and let o, B and v be real
numbers.

(a) If there exzists a sequential algorithm which edge-colors any graph G in G with max{a,
BA(G) + v} colors in T(m) time, then there exists a sequential algorithm which f-colors
any graph G in G with max{a, BA;(G) + v} colors in O(T(m)) time.

(b) Ifthere exists a parallel algorithm which edge-colors any graph G in G with max{a, BA(G)+
v} colors in T(m) parallel time with P(m) operations, then there exists a parallel algo-
rithm which f-colors any graph G in G with max{ea,BA;(G) + v} colors in O(T(m))
parallel time with O(P{m)) operations.

Proof. (a) Let G = (V,E) be a graph in G. One can construct G; from G in linear time.
Using the assumed algorithm, one can find an edge-coloring of G; using max{ca, 8A;(G) + v}
colors in O(T'(m)) time. The edge-coloring of G; immediately induces an f-coloring of G using
max{c, 8Af(G) + v} colors. Thus one can find a desired f-coloring of G in O(T(m)) time in
total.

(b) Gy can be easily obtained in O(logm) parallel time with O(m) operations. 0.£D.

It is known that x'(G) = A(G) for bipartite graphs [14], x'(G) < max{8, A(G)} for planar
graphs [6], and x'(G) < max{2k, A(G)} for partial k-trees [22]. Therefore, by Theorem 3.1,
Corollary 3.4 and Lemmas 5.1, 5.2, we have the following upper bounds on x}.

Theorem 5.3
(a) X4(G) = Ay (G) if G is bipartite [9];
(b) x}(G) < max{8, A;(G)} if G is planar;
(c) x7(G) < max{2[(5 + /48¢(G) + 1)/2],A4(G)} if 9(G) > 1;
(d) x3(G) < max{2s(G),A;};
(e) x3(G) < max{2k,As(G)} if G is a partial k-tree; and
() x5(G) < max{4a(G) - 2,4(G)}.
If G is a partial k-tree, then G, is not always a partial k-tree, but s(Gy) < s(G) < k.

therefore (e) above is an immediate consequence of (d). Using the previous results listed in
Table 2 and ours in Theorem 4.1, Lemmas 5.1 and 5.2, we have the following results.

Theorem 5.4

(a) Graphs G can be f-colored by at most Ay(G)+1 colors in O(min{mA; logn, m\/mlogn})
sequential time.

(b) Bipartite graphs G can be f-colored by x;(G) colors in O(mlogn) sequential time.

(¢) Planar graphs G can be f-colored by max{9,A;(G)} colors in O(nlogn) sequential time
or in O(log® n) parallel time with O(nlog® n) operations.

(d) Planar graphs G can be f-colored by max{19, A;(G)} colors in O(n) sequential time or
in O(log® n) parallel time with O(nlog® n) operations.



(¢) Graphs G of fized g(G) > 1 can be f-colored by max{[(9+/48¢(G) + 1)?/8] — 1, A;(G)}
colors in O(nlogn) sequential time or in O(log® n) parallel time with O(nlog® n) opera-
tions.

(f) Graphs G of fized s(G) can be f-colored by max{[(s(G) + 2)%/2] — 1,A;(G)} colors in
O(nlogn) sequential time or in O(log® n) parallel time with O(nlog®n) operations.

(g) Partial k-irees G can be f-colored by max{[(k + 2)?/2] — 1, Af(G)} colors for fized k in
O(nlogn) sequential time or in O(log® n) parallel time with O(nlog® n) operations.

(h) Graphs G of fized a(G) can be f-colored by max{[(a(G) + 2)%/2] — 1, A;(G)} colors in
O(nlogn) sequential time or in O(log® n) parallel time with O(nlog®n) operations.
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