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Abstract

Let P be asimple polygon and let P be a set of convex polygons that lie in the interior of
P and are attached to the boundary of P. The zoo0-keeper route problem asks for a shortest -
route inside P that visits (but does not enter) each polygon in P. Let n be-the total number
of vertices of polygon P and polygons in P. We present two new algorithms for the zoo-
keeper route problem; one is deterministic and runs in O(kn) time where k is the maximum
size of polygons in P’, and the other gives an approximate solution that is guarantced to be
within m/2 times the optimal solution value and takes only linear time. Both of our results

improve upon the previous results.
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1 Introduction

Shortest paths are of fundamental importance in robotics and computational geometry. The
z00-keeper route problem, introduced by Chin and Ntafos [2], is defined as follows: Given a
simple polygon P (the zoo0) with a set P of disjoint convex polygons (the cages) inside it, each
sharing one edge with the polygon P, find a shortest route inside P that starts from a given
vertex s of P, visits (without entering) at least one point of each cage and finally returns back
to s (Fig. 1). One may consider it as minimizing the route for a zoo-keeper to feed animals.

In some sense, the zoo-kéeper route problém looks like the well known Traveling Salesperson
Problem il we consider cage as cities. But, we actually know that the shortest zoo-keeper route
has to visit cages in the order they appear in the boundary of P, since otherwise it would
cross itself and could be shortened. On the other hand, the shortest zoo-keeper route is mainly
determined by cages, rather than by zoo P. See also Fig. 1. (It is absolutely true when the
given polygon P is convex.) If we consider cages as cities in the Traveling Salesperson Problem,
then it is reasonable to assume that each cage has a small number of edges and the number of
cages is very large. There is already such a research in which each cage is assumed to be a single
edge [3].

Let n denote the total number of edges of polygon P and polygons in P. With the unfolding
and adjusting techniques, Chin and Ntafos gave an O(n?) time algorithm for the zoo-keeper
route problem [2]. Recently, the result was improved to O(n log? n) by Hershberger and Snoeyink
[9], using a complicated data structure for shortest-path queries in a simple polygon [8]. In this
paper, we present two new algorithms for the zoo-keeper route problem. One is deterministic and
runs in O(kn) time, where k is the maximum size of polygons in P, i.e., k = maz{| P |P; € P}.
As pointed out above, k is usually rather small, say, smaller than O(logn). The other gives an
approximate solution, which is guaranteed to be within 7 /2 times the optimal solution value.
The time complexity of the approximate algorithm is O(n). Both of our results improve upon

the previous known results.

2 Preliminaries

In order to solve the zoo-keeper route problem, Chin and Ntafos’ algorithm [2] makes use of
the unfolding method. It is an extension of the classical method of finding the shortest path
between two points a and b, where the path must touch a given line [ and both a and b lie in
one side of L. To find such shortest path, we first reflect b across L to get the image ', then
draw a stré.ight line segment ab’ from a to b’, and finally fold back the portion of ab’ lying in
the other side of L to obtain the desired shortest path. If L is a line segment, the shortest path
can also be found analogously.

The shortest zoo-keeper route touches at least one edge on each cage. Suppose we have a set
of edges, one per cage. Then the corresponding optimum (not shortest) zoo-keeper route can be
constructed by unfolding the interior (or triangulation) of P — P using each edge in the set as
mirrors, then finding the shortest path between s and its image s’ in the unfolded polygon and




finally folding back the shortest path to get the zoo-keeper route. This unfolding process takes
linear time [2]. To obtain the set of the edges with which the shortest zoo-keeper route makes
contacts, Chin and Ntafos’ algorithm first select an initial set of edges and then compute the
initial zoo-keeper route using the unfolding method. Since the initial zoo-keeper route is not
the shortest, it can be adjusted (or shortened) at some places. A zoo-keeper route is clockwise
(counter-clockwise) adjustable at a vertex v; of a cage P if and only if the incoming angle of
the route with the supporting line of edge 770,31 (9i=1%;) is greater (smaller) than the outgoing
angle. An adjustment involves a change in the edge set and calls the unfolding process once
to compute the new shorter zoo-keeper route. In [2], the difference between the incoming and
outgoing angles is defined as the sliding tension of the current route at cage P, which can be
used as a measure of the adjustability of the route. Chin and Ntafos’ algorithm always selects
the adjustment with the maximum tension from possible candidates. In the adjusting process,
the length of the current route decreases monotonically. When the current route can not be
adjusted any more, it gives the shortest zoo-keeper route. Chin and Ntafos showed that the
current route in their algorithm moves along the boundary of each cage in a single direction,
i.e., the contact points of the current route with a cage P; are well ordered on the boundary of
P; in the adjusting direction. This observation gives an O(n?) time algorithm, since it requires
at most n adjustments before the shortest zoo-keeper route is found.

In the Section 3 of this paper, we make an important observation that all possible adjustments
can be done once together, regardless of different sliding tensions. The current route in our
algorithm moves along the boundary of each cage in a single direction, too. Thus, it gives us
an O(kn) time algorithm, where k is the maximum size of cages in P. In Section 3, we further
present a linear-time approximate algorithm, which is guaranteed to be within /2 times the

optimal solution value.

3 The deterministic algorithm
Our deterministic algorithm for computing shortest zoo-keeper routes is as follows:

Step 1. Index cages Py, - -+, P, along the boundary of zoo P in the clockwise order.
Step 2. Choose the leftmost edges of odd-numbered cages and the rightmost edges
of even-numbered cages to form the initial set of edges.
Step 3. Compute the initial route Rg for the edge set chosen in Step 2 and let 7 = 0.
Step 4. While the current route R; is adjustable do
Perform all adjustments together, then compute the new zoo-keeper route R;;;
using the unfolding method and let i — i + 1.
Step 5. Report the final (non-adjustable) route R; as the shortest zoo-keeper route.

In the above algorithm, Steps 1 to 3 select a special set of edges, one per cage, to construct
the initial zoo-keeper route. This set of edges is so selected that the initial route tends to
be adjustable on each cage from one extreme (the leftmost or rightmost) vertex to the other.



The only difference between our and Chin-Ntafos’ algorithms is Step 4. While Chin-Ntafos’
algorithm performs adjustments one by one, our algorithm does all possible adjustments once
together. The correctness of our algorithm is shown by the following lemma.

Definition 1 The direction of an adjustment on a cage P; is the shift direction of the contact

points on the boundary of F;.

Lemma 1 Let Ry be the initial zoo-keeper route constructed in Steps 1 to 8. The ad]ustable
dzrectzon on any cage can not be changed in Step 4.

Proof. The initial route Ro has the property that it makes contacts with each F; at a point
that is clockwise (i.e., towards higher indexed vertices) from the point of the contact of the
shortest route if i is odd and counterclockwise (towards lower indexed vertices) from it if i is
even. That is, if one unfolds both the initial route Ro and the shortest route R, then the unfolded
route Rp lies in one side of the unfolded route R throughout its extent. Furthermore, since Ry
is locally optimum, the unfolded route R forms a convex chain in the unfolded polygon. See
Fig. 2.

‘Consider two adjacent adjustments. Observe that no matter which adjustment is performed
first, the directions of both adjustments can not be changed. After one adjustment is done, the
tension of the other adjustment is increased. Hence, such two adjustments can be performed
together. Generally, all possible adjustments for Ro can be performed together. Let Ry be the
new route after all adjustments for Ry are done. Since we perform adjustments on each cage
edge by edge, R; should retain as a convex chain in the unfolded polygon; otherwise the length
of Ry can not be shorter than that of Ro. Thus, R still has the same property as Ro, that is,
the unfolded version of Ry is a convex chain that lies in one side of the unfolded route R. In the
adjusting process, the current route R; gradually moves close to the shortest route R, but can
never go over R. Thus, all adjustment directions can not be changed in the adjusting process.

It completes the proof. O

Theorem 1 The time complezily of our deterministic algorithm is O(kn)v, where k is the maz-

imum size of all cages.

Proof. Let k be the maximum size of all cages, i.e., k = maz{|Pi| |P; € P}. For the
current route R;, we perform all possible édjustments for R; once together. Since no adjustment
directions can be changed in the adjusting process, the unfolding method is apphed at most k
times. Hence, our algorithm runs in O(kn) time. O

4 The approximate algorithm

The zoo-keeper route algorithms known so far (and our algorithm presented in Section 3) are

all based on the unfoldmg method, which requires the multiplication of O(n) transformation
matrices. If the input coordinates have L bits of precision, then the output will have O(nl)
bits. Hence, these algorithlms do not work well in most of practical examples.



In the following, we make twe observations to give an approximate algorithm for the zoo-
keeper route problem, which is guaranteed to be within 7 /2 times the optimal solution value.
Our approximate algorithm does not depond.on the unfolding method and takes only linear
time. First, if we find out the shortest path from s to the boundary of a cage FP;, then the
endpoint of the shortest path on P; is very near to the point of P; where the shortest zoo-keeper
route visits (see also Fig. 1). In other words, if we connect these points by shortest paths, then
we will get a zoo-keeper route that is close to the shortest one. Second, if any two adjacent
segments of an unfolded zoo-keeper route are connected with an obtuse angle (> 90°), then the
route must be near to the shortest zoo-keeper route.

We now give an approximate algorithm based on the above observations. Let 8 =80 = Sm41-
We first find the shortest path from s to the boundary of Py. Let s; be the other endpoint of
this shortest path on P;. Then we find the shortest path from s; to the boundary of P;, and let
s2 be the other endpoint on P, and so on. In this way, we will get a séquehce of shortest paths
between points s; and s;41 (0 < i < m) and finally go back to sp41 (= s). Putting all these
shortest paths together gives a zoo-keeper route R'.

Consider the inner (or smaller) angle between two adjacent segments of the unfolded route
R’. We now show that any inner angle is greater than 90° and smaller than 180°. Since si41
is the other endpoint of the shortest path from s; to the boundary of P41, the shortest path
usually has the right angle to the boundary of P4y at s;+;. See Fig. 3. When we unfold route
R' using the edges containing s; as mirrors, any angle between two adjacent segments of the
unfolded route R’ must be greater than 90° and smaller than 180° (Fig. 3). Furthermore, since
route R’ has the right angle to the boundary of P; at s;, R’ is adjustable on all cages P; in the
clockwise direction. Hence, the unfolded route R’ is an obtuse zigzag path. See Fig. 4.

Let R be the shortest zoo-keeper route. In most cases, each segment of the unfolded route R’
intersects with the unfolded route R. It may also be the case that some segments of the unfolded
route R’ do not intersect with the unfolded route R (since we can not determine whether s; is left
to the contact point of R with cage P; or not). We call the unfolded route R’, whose segments
do not intersect with the unfolded route R at all, a one-sided path. To show that the length of
R’ is no longer than /2 times the length of R, we first give the following two lemmas.

Lemma 2 Let Z be an obtuse zigzag path with :the source point s and the target point t on the
z azis and let each segment of Z intersect with the z-axis. Then the length of Z is smaller than
7 /2 times the distance between s and 1. .

Proof. The path Z and the z-axis together form many obtuse triangles with the longest
edge on the z-axis. The lemma is simply proved by noticing that the length sum of two shorter
edges of an obtuse triangle is smaller than m/2 times the length of the longest edge. O

Lemma 3 [{] Let Dy, Dy, -+, Dy be circles all centered on the z-axis such that D = U1<,<k D;
is connected. Then the boundary ofD has length at most 7r(z, — z;) where z; and z, are the
least and greatest z-coordinates of D respectively.

Lemma 4 The length of route R' is smaller than = /2 times the length of route R.



Proof. If each segment of the unfolded route R’ intersects with the unfolded route R, then
we are done by applying Lemma 2. If some segments of the unfolded route R’ do not intersect
with the unfolded route R, then-we can partition the unfolded route R’ into pieces so that each
piece is a one-sided path with respect to the unfolded route R. Since all inner angles between
two segments of a one-sided path are greater than 90° and smaller than 1809, we can find a
circle for each segment so that the circle passes through two endpoints of the segment and the
center lies on the unfolded route R. Thése circles are connected and the centers of them must
lie in between two endpoints of the one-sided path. Lemma 3 then applies to the one-sided path
because the half of the boundary of union of these circles that lies above (or below) the one-sided

path has length at least as'great as the path itself. It completes the proof. O

Theorem 2 For any instance of the zoo-keeper route problem, the approzimate algorithmv gives
a solution that is within 7 /2 times the optimal solution value. Furthermore, the approzimate

algorithm runs in O(n) time.

Proof. The first part of Theorem 2 is already proved in Lemma 4. Let us analyze the time
complexity of our approximate algorithm. We first triangulate the interior of P — P using the
linear time algorithm [1], and then repeatedly find the shortest path from s;—; (i > 1) to the
boundary of P; until i = m + 1. To efficiently find the shortest path from s;_; to the boundary
of P; (i > 1), we first figure out a new polygon P/ that contains point s;_1 and polygon P;. Let
LS; and RS; denote the left sleeve from s;_; to the head edge of P; and the right sleeve from
si~1 to the tail edge of P;, respectively. Sleeve LS; (RS;) is the union of the triangles, in which
all shortest paths from s;_; to any interior point of the head (tail) edge of F; are contained. We
define polygon P/ as the union of LS; and RS;. (From the definition of LS; and RS;, LS;URS;
is connected.) Clearly, LS;, RS; and P/ can be found in the time linear to their sizes. Moreover,
the sum of sizes of all polygons P! is still linear to n, since each triangle appears at most six
times in these polygons P!. (Imagine that one walks in LS; (or RS;) from s;_; to the head (or
tail) edge of P;. We call the first (last) edge of a triangle T encountered in the way the entry
(ezit) edge of T. A pair of entry and exit edges of T can appear at most twice in all polygons
P!.) Hence, all of polygons P; can be obtained in O(n) time.

Within polygon P, we can find the shortest path from s;.; to the boundary of cage P; in
the time linear to the size of P;. Let us first introduce the concept of shortest path maps. In [7],
the collection of all shortest paths from a source vertex to points inside P! is called the shortest
path map. The shortest path map partitions the interior of P/ into triangular regioﬁs, each with
a distingunished vertex called the apez. The regions are so chosen that the shortest path from
the source vertex to a point p passes through the apex of the region containing p. Not only the
size of the shortest path map but also the time required to compute it is linear to the size of P/
[7]. Based on the shortest path map of s;_1, we can quickly know the region that contains the
‘ta,rget point s; (by compdring the lengths of the shortest paths from s;_; to all vertices of the
shortest path map that lie on the boundary of F;) and then figure out the exact piosition of s;
on the boundary of P;. After point s; is fixed, the shortest path from s;_; to s; can simply be
obtained. Thus, the time complexity of our approximate algorithm is O(nr). O




5 Conclusion

We have presented two new algorithms for the zoo-keeper route problem; one is deterministic
and runs in O(kn) time where k is the maximum size of cages in P’, and the other finds an
approximate solution that is guaranteed to be within 7 /2 times the optimal solution value and
takes O(n) time. Both of our results improve upon the previous results.
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Fig. 2. Illustration for the proof of Lemma 1.

Fig. 1. A shortest zoo-keeper route.
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Fig. 3. Any angle between two adjacent segments Fig. 4. The unfolded route R’ is an zigzag path.

of the unfolded route R’ is obtuse.



