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Edge Guards in Straight Walkable Polygons
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Abstract

We study a variation of the art’ gallery problem with the galleries restricted to straight
walkable polygons and with the guards allowed to patrol individual edges of a polygon.
Given a simple polygon P with vertices s and g, polygon P is said straight walkable if we can
move two points monotonically on two polygonal chains of P from s to g, one clockwise and
the other counterclockwise, such that two points are always mutually visible. For instance,
monotone polygons and spiral polygons are straight walkable. We show that {(n + 2)/5/
edge guards are occasionally necessary and always sufficient to watch an n-vertex gallery
of this type. Furthermore, we also show that if the given polygon is straight walkable and
rectilinear, then |(n + 3)/6) edge guards are necessary and sufficient. o

APL—P U R —h-TANZABLBIDI v CH - FIZDo0T
= =2 1A
WiBRKFHRILEY

AR THAINL - NI - T NEARILBT Iy P H - FHESL
W3, COHMBRENRBHUHEO—DOERBTHD, TP H-FRSAL
ORENRPIPO - NVTEEIHN—-FTHD. BMZABPICHAs g ¥EX S
hB3LER, slgi3POERAKEY —D0BIZHTFB. —_ADOH—KH=>
@ﬁl:?ﬁa‘(sblégi‘t’EV\EiéJ:5t:/*’bm—)lz’é“ét:}:%%iéo
NRPbO - VDORFABRY L2V Tsh o6gitBBTBLBTERIE. P%
AML—bIX DT NWHEARLES. AxE, BHRSARLBKSZAR
WAML- DA -D=-TNVNEARTHE., AWMRATEnHEDA ML -+
DA = A-TNSARCH UL/ ]y CH-FPRB+DTHD %I
B35, X5, BXAPML—-F I r—A—-7WEABICH L [(n+3)/6]
Ty PH-FRULB+HTHEILHRT,

—111—-



1 Introduction

The Art Gallery problem posed by V. Klee asks for a minimum number of guards such that
each point of an n-wall art gallery can be seen by at least one guard. The room is a polygon
and each guard is a stationary point who can see any point connected to it by a line segment
that does not go outside the polygon. The problem is shown to be NP-hard by Lee and Lin [9].
However, Chavatal showed that [n/3]| guards are occasionally necessary and always sufficient
for a simple polygon. For a survey on art gallery problems, see [10, 11].

Many variants of the art gallery problem have also been studied. Of particular interest to us
among these problems is the problem of placing edge guards in a polygon P of n vertices [10].
Edge guards are the guards who are allowed to patrol individual edges of P. A region is said
to be covered by a guard if the guard can see that region. In this paper, we consider the edge
guard problem for straight walkable polygons, a new class of polygons defined and studied by
Icking and Klein [8]. Given a simple polygon P with vertices s and g, polygon P is said straight
walkable if we can move two points monotonically on two polygonal chains of P from s to g,
one clockwise and the other counterclockwise, such that two points are always mutually visible.
For instance, monotone polygons and spiral polygons are straight walkable. We prove that for
a straight walkable polygon with n vertices, [(n + 2)/5] edge guards are occasionally necessary
and always sufficient. Furthermore, we also show that if the given polygon is straight walkable
and rectilinear, then [(n + 3)/6] edge guards are necessary and sufficient. Besides, both of our
algorithms require linear time to place edge guards.

Previous research has been focussed on placing edge guards in monotone polygons. In Ag-
garwal’s thesis, a_15-page proof was given to show the tight bound of [(n + 2)/5] line guards
for monotone polygons. Line guards are the guards who are allowed to patrol any line segment
wholly contained in the polygon. Later, Bjorling-Sachs and Souvaine showed the same result
using edge guards [3]. However, their proof even contains 53 pages! For rectilinear monotone
polygons, a tight bound of [(n + 3)/6] edge guards was also established by Bjorling-Sachs [4].
Again, the proof is very long and contains 37 pages.

Bjorling-Sachs and Souvaine’s proof for monotone polygons depends on the triangulation
algorithm of Garey, Johnson, Preparata and Tarjan [6]. They converted the triangulating al-
gorithm into an algorithm for placing edge guards, which results in a long proof. In the next
section, we first give a method to partition a straight walkable polygon P into n — 2 triangular
regions. The partition is generally not a triangulation of polygon P. But, an important property
of this partition‘is that its dual is a path. In contrast, the dual of a triangulation of a monotone
polygon is not necessarily a path. Then we cover five triangular regions by one guard, which
yields a total coverage by |(n + 2)/5] guards.

2 Straight Walkable Polygons

We define notation for the rest of the paper; much of our notation is borrowed from [8]. A
simple polygon is the polygon without selfintersections or holes. When two vertices s and g of
polygon P are given, the boundary of P consists of two polygonal chains, L and R, with common
endpoints s and g. Both chains L and R are oriented from s to g. Points on L (R) are denoted
by p, o', p1, etc. (g, ¢, @1, etc.). For a vertex v of a polygonal chain, Succ(v) denotes the vertex
of the chain immediately succeeding v, and Pred(v) the vertex immediately preceding v. For
convenience, we assume that polygon P is in a general position in the plane. That is, no three
vertices of P are collinear, and no three edge extensions have a point in common.

A vertex of P is reflez if its interior angle is greater than 180°; otherwise, it is convez. An
important definition for reflex vertices is that of ray shots: the backward ray shot (or hit point)
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from a reflex vertex v of chain L or R, denoted by Backw(v), is the first point of P hit by a
“bullet” shot at v in the direction from Suce(v) to v, and the forward ray shot Forw(v) is the
first point hit by the bullet shot at v in the direction from v to Pred(wv).

A walk instruction is one of the following elementary motions. (i) Both guards move forward
along segments of single edges. (ii) One guard moves forward but the other moves backward
along segments of single edges. As a special case of (i) or (ii), one guard may stand still while
the other moves.

A general walk on P is a pair of functions:

1:[0,1]—= L, r:[0,1] < R,
where (0) = r(0) = s, {(1) = 7(1) = g, and [(t) and r(t) are mutually visible for all {. Any line
segment [(t)r(t) is called a walk line segment of the walk. The point r(t) is the walk partner of
I(t), and vice versa. A walk is straight if [ and r are monotonic functions. A straight counter-walk
is a pair of monotonic, continuous functions with I(0) = 7(1) = s and [(1) = r(0) = g. Polygon
P is said walkable if it admits a walk.

For polygon P with two marked vertices s and g, a straight walk can be found in the following
way [8]. First, we check if L and R are mutually weakly visible. If not, P is not straight
walkable. Otherwise, we proceed to compute for each vertex v, a closed interval [lo(v), hi(v)]
of the polygonal chain, L or R, opposite to v such that according to the shot restrictions of
reflex vertices, any possible walk partner of v must be contained in this interval. The interval
[lo(v), hi(v)] is called the walkable interval of v. P is straight walkable if and only if none of the
walk intervals is empty. Icking and Klein developed an O(nlogn) time algorithm to determine
and find a straight walk [8]. Later, the time complexity was improved to O(n) by Herffernan
[7]. .

The functions lo and hi are defined on the vertices of P. The following definition is given
for L, and the case of vertices of R is symmetric. (The operation min and maz are defined with
respect to the ordering on the chain L.)

Definition 1 /8] For a vertez p € L, we define:

hiP(p) = min { q|q vertez of R and L 5 Backw(q) > p }
hiS(p) = min { Forw(p’) € R|p’ vertez of Ly, }

hi(p) = min { hiP(p), hi5(p), g }

loP(p) = maz { q|q vertez of R and L > Forw(q) > p }
loS(p) = maz { Backw(p') € R|p’ vertez of L, }

lo(p) = maz { hiP(p), hiS(p), g }

Icking and Klein also gave a way to actually find a straight walk. For instance, we choose
lo(p) as a walk partner for each vertex p € L, and hi(q) for each vertex ¢ € R. Note that two
chosen walk line segments may overlap each other but can not cross. (Overlapped walk line
segments can be avoided if we carefully choose hi(g) for some vertices ¢ of R, see [8]). Since
a walk line segment is chosen for each vertex, polygon P is partitioned into quadrilaterals and
triangles, which gives us a sequence of walk instructions. See Fig. 1(a). We call the partition,
which is produced by assigning lo(p) as a walk partner for p € L and hi(q) for ¢ € R, the walk
partition of polygon P.

As stated in Section 1, our goal is to partition a straight walkable polygon into triangular
regions. For this purpose, we first note that there are two quadrilaterals in the walk partition
of Fig. 1(a) and both of them are concave. (Because of the choice of lo(p) as a walk partner for
each vertex p € L and hi(q) for each vertex ¢ € R, it is impossible for a quadrilateral in the walk
partition to be convex.) Within a guadrilateral, segment vBackw(v) or vForw(v) is a walk line
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segment, where v denotes the reflex vertex of the quadrilateral. Thus, any quadrilateral can
further be divided into two triangles by introducing the walk segment vBackw(v) or vForw(v).
We call the resulting partition, which has only triangular regions, the modified walk partition of
polygon P. See Fig. 1(b) for an example. Note that the modified walk partition is generally
not a triangulation of polygon P. Polygon vertices may lie on edges of triangular regions. On
the other hand, there may exist at most two vertices in a triangle that are not polygon vertices.
They are instead Forw(v) or Backw(v) of reflex vertices v.

Lemma 1 The number of triangles in the modified walk partition of polygon P is n — 2.

Proof. Consider first the simplest case where neither Forw(v) nor Backw(v) appears in the
modified walk partition. In this case, the modified walk partition is a triangulation of polygon
P. Thus, the number of triangles is n — 2. If there exist some Forw(v)s and Backw(v)s in
the modified walk partition, then the walk segments assigned with them divide polygon P into
disjoint pieces. If we consider each piece P; as a polygon, then F; is triangulated by the walk
segments within it and the number of triangles in P; is size(P;) — 2. By noticing that Forw(v)
and Backw(v) are generated from a reflex vertex v, we have 3_ (size(F;) —2) =n—-2. O
Since polygon P is straight walkable, we have the following immediate consequence.

Corollary 1 The dual graph of the modified walk partition of a straight walkable polygon P,
with a node for each triangle and an arc connecting two nodes whose triangles share a walk
segment (or some part of a walk segment), is a path.

Now we give the main result of this paper.

Theorem 1 |(n + 2)/5] edge guards are occasional necessary and always sufficient to cover a
straight walkable polygon of n vertices.

Proof. Suppose that P is a straight walkable polygon of n vertices. The necessity of |(n+2)/5]
edge guards has been simply established by a spiral polygon [12] or a monotone polygon [3]. We
now prove that [(n + 2)/5] edge guards are sufficient to cover polygon P.

From Lemma 1 and Corollary 1, we obtain a partition of polygon P, whose dual graph is
a path. Our method for placing edge guards in the modified walk partition is to cover five
consecutive triangles by one guard, which yields a total coverage by [(n — 2)/5] = [(n + 2)/5]
guards. Note that we should place the guards on the edges belonging to L or R, but not on the
walk line segments. In the following, if a guard is said to place at a vertex of P, then it means
that the guard is placed on either edge adjacent to the vertex. If a guard is said to place on
some part of an edge of P, then it means that the guard is placed on the whole edge.

Let Ps denote the union of five consecutive triangles. Most vertices of Ps coincide with the
vertices of polygon P, but there may exist at most two vertices in Ps, which are not the vertices
of P. This is because only the first and last walk segments in the group of five triangles can
introduce a new vertex, respectively. See Fig. 2. Since five consecutive triangles (of the modified
walk partition) do not give a triangulation of polygon Ps, the number of vertices of Ps is not
always seven. In some special cases, P; may have eight vertices.

If no three vertices of Ps are collinear, then Ps has exactly seven vertices. Otherwise, a
contradiction generates if Ps has six vertices (then a new walk partition of Ps with four triangles
can be easily found), or if Ps has eight vertices (then any walk partition of Ps should have six
triangles).

In Ps there may exist three collinear vertices. This is because Ps can contain two vertices not
belonging to P. (Recall that no three vertices of polygon P are collinear.) These two vertices,
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denoted by v; and of v (Fig. 2), are introduced by the first and last walk segments, respectively.
First, It is possible for v; to be collinear with a pair of other two vertices, see Fig. 2. However,
the situation is different for v;. It is imposible for vy to be collinear with a pair of other two
vertices of Ps. Suppose that vy = Forw(v) or Backw(v) for some vertex v. Then either v lies
on the first walk line segment of Ps, or v is not contained in Ps. If vs is collinear with a pair of
other two vertices of Ps, say v; and vg, then v must not lie on that line (otherwise at least one
of »; and vy can not be a vertex of Ps). Therefore, the three lines extending the edge containing
vy, the walk segment 770 and the edge ;o7 have point vy in common. It contradicts with the
assumption that polygon P is in a general position in the plane. Note that the difference of vy
and v; generates from our method used for determining the modified walk partition. Further,
it is impossible for v; to be collinear with two pairs of other vertices, since otherwise three edge
extensions of P should have a point in common. In summary, Ps has either seven or eight
vertices.

According to the number of vertices of P5, we consider two different cases for placing edge
guards in Ps.

Case 1 Ps has seven vertices. Let Ly denote the numbers of vertices of Ps belonging to the
left chain L. Clearly, 1 < Ly < 6. By symmetry, we only consider the cases where Ly = 1,2,
and 3.

Case 1.1 Ly = 1 or 2. That is, the left chain consists of only one vertex or edge. Clearly,
the guard placed on that vertex or edge covers Ps.

Case 1.2 Ly = 3. Let I; (i = 1,2,3) and r; (j = 1,2,3,4) denote the vertices lying on L
and R, respectively. In the following, we distinguish two different cases. Our first case handles
all configurations where either r; or r4 is visible to I; in Ps (i.e., the line segment Ior; or lor4 is
entirely contained in Ps.) If 7y and r4 are not visible to 5, then vertices 75 and r3 must be reflex,
and /; must lie in the intersection of three lines extending edges 7174, 7373 and 7374. Thus,
and r3 are visible to I3, to which our second case devotes.

Case 1.2.1 FEither vy or r4 is visible to Iy in Ps. If ry is visible to I3, then all vertices r; are
visible to some points of edge I3l3. Since all vertices of Ps are visible to some points of I3l3, a
guard on edge lyl3 covers Ps [2]. Similarly, if r4 is visible to I3, then a guard on edge I/ suffices.

Case 1.2.2 Both v and r3 are visible to l; in Ps. In this case, {; is visible to 7, and I3 is
visible to 73. Thus, a guard on edge 773 covers polygon Ps.

Case 2 Ps has eight vertices. In this case, there are three collinear vertices in Ps, and these
vertices lie on an edge of the last triangle. Let A denote the last triangle, and let Py = P5 — A.
Then, P4 has six vertices. Again, let Ly denote the numbers of vertices of P4 belonging to the
left chain L. Since 1 < Ly < 6, we only consider the cases where Ly = 1,2 and 3.

Case 2.1 Ly = 1 or 2. That is, the left chain consists of only one vertex or edge. Clearly,
the guard on that vertex or edge covers Py and A.

Case 2.2 Ly = 3. Let I; (1 = 1,2,3) and r; (j = 1,2,3) denote the vertices lying on L and
R, respectively. In this case, either [, is visible to 7y, or 3 is visible to Iy in Py. If I, is visible
to r1, then an guard on edge I35 covers polygon Py and triangle A. Similarly, if r, is visible to
I, then a guard on edge 7573 suffices. O

Remark. From the above proof (Case 1), it is not difficult to find a triangulation for a
straight walkable polygon with seven vertices, such that the triangulation dual is a path.

3 Rectilinear Walkable Polygons

We have shown in Section 2 that [(n + 2)/5] edge guards are necessary and sufficient to cover
a straight walkable polygon. What is then the bound if straight walkable polygons are also
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rectilinear? A polygon is rectilinear if its edges are all parallel to a pair of orthogonal coordinate
axes. We will show that |(n+3)/6] edge guards are necessary and sufficient to cover a rectilinear
walkable polygon P of n vertices. In [4], Bjorling-Sachs gave a 37-page proof for rectilinear
monotone polygons. His proof depends on Sack’s monotone quadrilateralization algorithm [10).
However, the quadrilaterals produced by Sack’s algorithm are not rectilinear. It is the reason
why the proof is so long. In the following, we first divide polygon P into disjoint rectilinear
pieces, each with eight vertices, and then cover each piece by one guard.

Theorem 2 [(n + 3)/6] edge guards are occasional necessary and always sufficient to cover a
rectilinear walkable polygon of n vertices.

Proof. Suppose that P is a rectilinear walkable polygon of n vertices. Again, the necessity of
[(n+3)/6] edge guards can be simply established by a rectilinear spiral (or a rectilinear monotone
polygon [4]). Let r be the number of reflex vertices. We now prove that [(r +1)/3] edge guards
are always sufficient to cover polygon P. Since n = 2r +4 [10], [(r 4+ 1)/3] = |(n + 3)/6].

For polygon P, we can assume that both the first and last walk segments are vertical. We
first index the reflex vertices of P in the walk ordering of two guards, and then partition P into
pieces by drawing a vertical (walk) line segment at every third reflex vertex. Each of resulting
pieces then has at most eight vertices (or at most two reflex vertices), which will be covered
by an edge guard. Hence, we obtain the sufficiency of [(r + 1)/3] edge guards for rectilinear
walkable polygons.

We now show that each piece with eight vertices can be covered by one guard. There are
only six types of rectilinear walkable pieces with eight vertices, as shown in Fig. 3. (Symmetric
cases are omitted.) In Fig. 3a and Fig. 3b, two reflex vertices are consecutive. The guard placed
on the edge (bold line) having two reflex vertices as its endpoints covers the whole piece. In Fig.
3c and Fig. 3d, there is a chain that consists of only one edge. The guard placed on that edge
covers the piece. In Fig. 3e and Fig. 3f, two reflex vertices lies in different chains. The guard
placed on a vertical edge in Fig. 3e or a horizontal edge in Fig. 3f that is adjacent to either
reflex vertex covers the piece. Note that no guard is placed on two (dotted) walk line segments
of the piece in Fig. 3. O

4 Concluding Remarks

In this paper, we have shown the tight bounds of |(n + 2)/5] and |(n + 3)/6] edge guards
for straight walkable polygons and rectilinear walkable polygons, respectively. Our key idea is
to divide a polygon into a partition, whose dual is a path. Finally, we pose an open problem
on edge guards in simple polygons. It is conjectured that [(n + 1)/4] is a tight bound for
edge guards in simple polygons. Two types of polygons, discovered by Paige and Shermer [11],
established the lower bound of [(n + 1)/4] guards. One type of polygons has seven vertices and
requires two edge guards while the other has eleven vertices and requires three edge guards.
A possible way to show the upper bound is first to partition an n-vertex polygon into n — 2
triangular regions and then cover every four triangles by one guard. The resulting bound would

be [(n - 2)/4] = |[(n + 1)/4].
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(a) The walk partition due to Icking and Klein. (b) The modified walk partition.
Fig. 1. Construction of a straight walk.

Fig. 2. Ps may have cigth vertices.
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Fig. 3. Edge guards in rectilinear walkable polygons with eight vertices.
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