7T T U X A 46—T7
(1995. 7. 20)

Constant-Time Algorithms for Interval Graph Problems
on Reconfigurable Meshes
(Extended Abstract)

Yoojin Chung Kunsoo Park Yookun Cho

Department of Computer Engineering
Seoul National University

In this paper, we present O(1) time algorithms to solve two problems in interval graphs
on the reconfigurable mesh. The two problems are the domatic partition problem and the
minimum coloring problem in interval graphs. These problems have not been solved in 0(1)
time before, even on the idealistic CRCW PRAM model. These two algorithms are designed
on a two-dimensional 2n X 2n reconfigurable mesh, where n is the number of vertices (inter-
vals) in an interval graph. The reconfigurable mesh consists of an array of processors and a
reconfigurable bus system in a grid shape, and it is a practical model of parallel computation.

Constant-Time Algorithms for Interval Graph Problems
' on Reconfigurable Meshes
(Extended Abstract)

AXTI, 41¥ %=V 5 72381 % domatic partition problem & EMHED 2 >0 BEY
W%%ﬁxw&Jtvﬁﬂmﬁ<i&ﬁﬁ®7»ﬁ0iA%%ia.:h%@%%%%<iﬁ%
ﬁ@?ijXAu&ﬁm&CRmMNMM%mwtb@réiﬁéiru%anrw&w.K
ivuzoo7wquA%2$iomwwnoﬂ%mﬁxvvlivﬂﬁ¢%.::v,nu
4yy—N»797@Eﬁﬁ?é5.W%%ﬁxy&z&fﬂkw%@&ﬂt%%ﬁ@ﬂ%%ﬁ
DNAPHRY, BFFEOERNLZETVTH L.

1 Introduction

The reconfigurable mesh (RMESH for short)
consists of an array of processors connected
to a reconfigurable bus system [15]. (See Fig-
ure 1.) Though the buses outside the pro-
cessors are fixed, the internal connection be-
tween the 1/O ports of each processor can be
reconfigured by individual processors during
the execution of algorithms. Efficient algo-
rithms have been developed on the reconfig-
urable mesh [9, 14, 15, 18].

RMESH can be superior to the PRAM (par-
allel random access machine) model for some
computations. For example, Furst et al. [5]
have shown that the exclusive OR function of
n boolean values cannot be computed in O(1)
time on a2 PRAM using a polynomial number
of processors. Nevertheless, the exclusive OR
function can be computed in O(1) time on the
2-D RMESH with n? processors [14].

An interval graph G = (V,E) is a graph
defined by a collection of intervals on the real
line, as follows [6]. Given a set I of n inter-
vals, the corresponding interval graph has one
vertex corresponding to each interval in I and
two vertices are adjacent whenever the corre-
sponding intervals have at least one point in
common. The set I is called the interval rep-
resentation of graph G. If no interval in I is
properly contained in some other interval in
I,G is called a proper interval graph.

Interval graphs have been studied exten-
sively and have revealed their practical rele-
vance for modeling problems arising in the real
world. In particular, they have found appli-
cations in archaeology, genetics, ecology, psy-
chology, traffic control, computer scheduling,
storage information retrieval, and electronic
circuit design [6, 17].

One of the interesting features of interval
graphs is that many of the problems that are
NP-complete for general graphs are solvable in
polynomial time for interval graphs. Examples
include the problems of computing maximal
cliques, coloring, and computing maximum in-
dependent sets [1, 6, 10]. Most of these prob-
lems are solvable for interval graphs in linear
time or O(nlogn) time on a sequential ma-
chine.

In this paper, we present O(1) time algo-
rithms to solve two problems on interval graphs
on an RMESH with O(n?) processors. The
two problems are the domatic partition prob-
lem and the minimum coloring problem in in-
terval graphs. These problems have not been
solved in O(1) time before, even on the ideal-
istic CRCW PRAM model.

A dominating set of a graph G is a subset 5
of the vertices such that every vertex of G is ei-
ther in S or adjacent to some vertex in S. The
domatic number of G is the size of a maximum
cardinality partition of the vertices into dom-
inating sets and the domatic partition prob-
lem is to find such a partition. The domatic
partition problem has an obvious application
in the optimum location of facilities in a net-
work. Determining the domatic number of an
arbitrary graph is NP-complete [6]. However
polynomial-time algorithms exist for interval
graphs. Bertossi [2] proposed an O(n??®) time
algorithm to determine the domatic number
of interval graphs and an O(n logn) time algo-
rithm for proper interval graphs. Linear-time
algorithms for determining the domatic num-
ber of interval graphs were presented by Lu,
Ho, and Chang [12] and by Rao and Rangan
[16]. For the domatic partition problem on in-
terval graphs, an O(n) time algorithm was de-
veloped for the sorted case by Manacher and
Mankus [13]. An O(logn) time parallel algo-
rithm on the EREW PRAM with O(n) proces-
sors to solve the domatic partition problem on
interval graphs was proposed by Yu and Yang
[20]. In this paper, we present a constant-time
algorithm for finding a domatic partition of in-
terval graphs on a 2n X 2n RMESH.

Given a set of n intervals, the minimum
coloring problem is to assign a color to each in-
terval such that the overlapping intervals have
distinct colors. The minimum coloring prob-
lem on intervals is also called the channel as-
signment problem [4, 7], which has important
applications in computer-aided design of in-
tegrated circuits (3, 4, 7, 8, 19]. An optimal
O(nlogn) time algorithm was presented by
Gupta, Lee, and Leung [7]. An O(logn) time
parallel algorithm on the EREW PRAM with
O(n?) processors was developed by Dekel and
Sahni [4]. Yu, Chen, and Lee [19] improved the

O Processor

Locally
o controliable
switch

Reconfigurable
bus

Figure 1: The reconfigurable mesh architecture

result with time complexity O(log n) and pro-
cessor complexity O(n) on the EREW PRAM
model. The constant-time parallel algorithm
on an RMESH with O(n?) processors was pro-
posed recently by Lin [11]. In this paper, we
present a constant-time algorithm to solve the
minimum coloring problem on a set of intervals
on a 2n x 2n RMESH. Though our algorithm
has the same time and processor complexities
as Lin’s algorithm [11], our approach is differ-
ent from Lin’s.

2 Reconfigurable Mesh

An n x n RMESH consists of an n X n ar-
ray of processors connected to a grid-shaped
reconfigurable bus system, where each proces-
sor has four locally controllable bus switches,
as shown in Figure 1. Within each proces-
sor, four ports, denoted by L, R, U, and D
(stand for left, right, up, and down), are pro-
vided for dynamically adjusting the local con-
nections: These ports are able to realize any
set, A = {A;, A2}, of connections where A; C
{L,R,U,D}, 1 < i <2 and the A;’s are dis-
joint. The processors are connected to the re-
configurable bus system through these ports.
By setting the local connections properly, pro-
cessors that are attached to the same subbus
can communicate with one another by broad-
casting values on the common subbus. At any
given time, at most one processor can use the
subbus to broadcast a value. When no local
connection among ports is set within each pro-
cessor, an RMESH is functionally equivalent to
a mesh-connected computer. Each processor is
identified by a unique index (¢,7),1 < 4,5 < n,
and the processor with index (¢,7) is denoted
by Pl[i,7]- In one unit of time each processor

can perform basic arithmetic/logic operations
on its own data, can connect or disconnect its
local connections among ports , and can send
(broadcast) or receive a piece of data through
port L, R, Uor D.

3 Constant Time Domatic
Partition Algorithm

For a graph G = (V, E), a vertex v; € V dom-
inates a vertex vy € V if edge {vy,v2} € E.
A set S C V dominates a set S’ C V if every
vertex in §' — S is dominated by at least one
vertex in S. A set of vertices D is a dominai-
ing set of a graph G = (V, E) if every vertex
in V — D is dominated by at least one vertex
in D. Let GP = {P | P is a partition of V
and every set in P dominates V}. The do-
matic number of graph G is given by dm(G) =
maz{size(P) | P € GP}, where size(P) de-
notes the number of sets in P. A domatic par-
tition of graph G is a partition in GP whose
size equals dm(G) and the domatic partition
problem is to find a domatic partition of graph
G.

Theorem 1 [12] The domatic number of an
interval graph G equals §(G) + 1, where 6(G)
is the minimum degree of graph G.

An interval 7 is represented in the form of
(i.left,i.right): ileft and i.right are the left
and right end-points of interval 7, respectively.
Without loss of generality we assume that the
2n end-points of n intervals are distinct. We
label the intervals in the increasing order of
left end-points. For each interval ¢ € I, we
call Adj[i] the adjacency set of interval 7, which
consists of all intervals that overlap with ¢. Let

N{(i) = {i} U Adj(z), which is called the closed
netghborhood of 1.

Let d(¢) denote the degree of interval 7 (i.e.,
the degree of vertex ¢ of graph G). Assume
that ORDER(z) is the order number of interval
¢ in the increasing order of right end-points.
Also for 7 = 1,...,n, where n is the number of
intervals, we define

min{d(j) | j € G such that
iright < jleft} + ORDER(:)
+1 if such interval j exists
n+1 otherwise

LINK(i) =

;From now on, let MIN(i) denote min{d(j) |
J € G such that i.right < jleft}. So LINK(:)
is MIN(¢)+ ORDER(7)+1 if MIN() exists, and
n + 1 otherwise.

For : = 1,...,n, we link interval ¢ to in-
terval LINK(7) if LINK(:) # n + 1; other-
wise we link interval ¢ to null. In an interval
graph, interval ¢ which has the largest right
end-point and does not overlap with interval n
has LINK(t) = n because MIN(¢) = d(n) and
ORDER(t) = n—|N(n)|. Allintervalsin N(n)
link to null and every interval except those in
N(n) links to an existing interval.

We now show how to find dominating sets
from the linking lists constructed as above.
Since MIN(7) is nondecreasing as ORDER(3)
increases, LINK(?) is strictly increasing and
thus every interval is linked to by at most one
interval. If LINK(7) = j, where 7,5 € I and
t < j, then each interval in {7,714+ 1,...,5} is
dominated by interval i or interval j as follows:
(From the definition of LINK, j = ORDER(:)+
MIN(7) + 1. Suppose that there exists interval
k, i < k < 7, which is not dominated by 7 or
J- Since k is not dominated by ¢ or j, we have
t.right < kleft < k.right < j.left. Now we
compute the degree d(k) of interval k. Since
there are j — 1 (=ORDER(:)}4+MIN(7)) inter-
vals whose left end-points are less than point
J.left and there are ORDER(?) intervals whose
right end-points are less than or equal to point
t.right, d(k) is at most MIN(z) — 1, which con-
tradicts the definition of MIN(i). Therefore,
the intervals in every linking list dominate all
intervals from the first interval in the list to
interval n. Since LINK(1) = ORDER(1)+
MIN(1)+ 1 > §(G) + 2 is the minimum LINK

value, no interval links to the intervals 1, 2,
...y 6(G) + 1. Also these intervals are in N(1)
because |N(1)| > 6(G) + 1 and the intervals
are labeled in the increasing order of left end-
points. Therefore, the §(G) + 1 linking lists
which begin with the first 6(G) + 1 intervals
with the smallest left end-points (i.e., inter-
vals 1, 2, ..., 6(G) + 1) are dominating sets.
For1 <1< §(G)+ 1, give mark ¢ to all inter-
vals in the linking list beginning with interval
. This means that these intervals belong to
dominating set P;. Put all unmarked intervals
into dominating set P;. The details of correct-
ness proof of this algorithm are given in [20].

Now we define several data manipulation
algorithms for an RMESH. These are used to
develop the algorithms for the domatic parti-
tion problem and the minimum coloring prob-
lem.

Lemma 1 [9] The sorting of n values can be
performed in O(1) time on an n x n RMESH.
Initially, each processor of the first row owns a
value. Sorted values are stored in the first row
of an n x n RMESH in order.

Lemma 2 [18] The prefiz sum of a binary se-
quence of size n can be computed in O(1) time
onann xn RMESH.

For n data items z[1], z(2], ..., z[n], let smin
(1], smin[2], ..., smin[n] be the suffix minima
of z(1],z[2],...,z[n], i.e., smin[j] is the mini-
mum of z[j],z[j + 1}, ..., z[n].

Lemma 3 The suffiz minima of n values z[1],
z[2], ..., z[n] can be found in O(1) time on an
nxn RMESH. Initially, each processor P[1, j],
1 <7 < n, of the first row owns z[j] and the
computed suffix minimum smin[j] is stored in
processor P[1,j].

Now we describe a constant-time algorithm
for the domatic partition problem with » in-
tervals below. By preprocessing, we label the
n intervals in their increasing order of left end-
points in O(1) time on an » X n RMESH by
Lemma 1.

Algorithm Rmesh_Domatic_Partition

Input: n intervals 1,2,...,n represented in
the form of (i.left,i.right). Initially, i.left
and 7.7ight of interval ¢ are stored at Lcoordfi]
and Rcoord[i] in processor P[i,1], 1 < i < n,
respectively.

Output: domal[i] (the dominating set num-
ber assigned to interval ¢) in processor P[i,1],
1<i<n.

e Step 1: Sort the 2n end-points of n intervals
in O(1) time as below.

— Substep 1-1: Assign the 2n end-points of n
intervals in the n processors of the first col-
umn to the 2n processors of the first row so
that each processor P[1,j], 1 < j < n, has the
left end-point of interval j and each processor
P[1,j 4 n], 1 € j < n, has the right end-point
of interval j. This can be computed in O(1)
time as follows.

Each processor P[1,5], 1 < j < 2n, has

three variables: intervallj], side[j], and coord
{7]. Each processor P[1,j], 1 < j < n, sets
side[j] = L and interval[j] = j and each pro-
cessor P[1, n + j] sets side[n + j] = R and
interval[n + j] = j. Each processor P[i, 1],
1 < i < n, sends Lcoord[i] to coord[i] in pro-
cessor P[1,1] as follows: After each processor
P[i,1], 1 <1 < n, sends Leoord[i] to processor
P[i,] using row broadcasting, each processor
P[i,] sends it to coord[s] in processor P[1, 1]
using column broadcasting. Similarly, each
processor P[¢,1], 1 < i < n, sends Rcoord[i]
to coord[i 4+ n] in processor P[1,i + n].
— Substep 1-2: Sort the 27 triples (interval[j],
side[j], and coord[j]}, 1 < j < 2n, according to
coord[j] in the increasing order. By Lemma 1,
this can be computed in O(1) time on a 2n x 2n
RMESH.

Let NUM1(¢) be the number of intervals
whose left end-point is less than the right end-
point of interval ¢ and let NUM2(¢) be the
number of intervals whose right end-point is
less than the left end-point of interval . Then
d(i) =NUM1(i)~ NUM2(i) = 1,1 < i < n.

o Step 2: Calculate the degrees using prefix
sum in O(1) time as below.

Each processor P[1,7], 1 £ j £ 2n, has
three variables: numl1[j], num2[j], and deg[J],
where num1[j] is NUM1(interval[j]), num2[j)
is NUM2(interval[j]), and deg[j] is d(interval

D-

— Substep 2-1: Each processor P[1,7],1 <j <
2n, sets 1 if side[j] = L and sets 0 otherwise,
and calculates its prefix sum in O(1) time on
a 2n x 2n RMESH by Lemma 2. Then each
processor P[1,j] with side[j] = R, 1 < j < 2n,
saves this prefix sum value to numl[j].
~ Substep 2-2: Each processor P{1,j] with
side[j] = R, 1 < j £ 2n, sends numl[j] to
numl[k] in processor P[1,k] with side[k] = L
and intervallk] = intervallj], 1 < k < 2n, as
follows.

Each processor P[i,j], 1< i< nand1l <
Jj < 2n, establishes the local connection {L,
R, U, D} if ¢ = interval[j] and the local con-
nections {L, R}, {U, D} otherwise. Each pro-
cessor P[1,j] with side[j] = R, 1 < j < 2n,
broadcasts numl1(j] through port D and each
processor P[1, k] with side[k] = L,1 < k < 2n,
receives data item numl[k] from port U.
— Substep 2-3: Each processor P[1,7],1 < j <
2n, sets 1 if side[7] = R and sets 0 otherwise,
and calculates its prefix sum in O(1) time on
a 2n x 2n RMESH by Lemma 2. Then each
processor P[1, j] with side[j] = L, 1 < j < 2n,
saves this prefix sum value to num2([j].
— Substep 2-4: Each processor P[1,j] with
side[j] = L, 1 < j < 2n, calculates deg[j] =
numl[j] — num2[j] — 1, and each processor
P[1, 4] with side[j] = R sets deg[j] to n.
e Step 3: Calculate LINK using degrees in
O(1) time. ‘
— Substep 3-1: Each processor P[1,7],1 < j <
2n, calculates the suffix minima of deg[j] (i.e.,
min{deg(i] | j < i < 2n}) in O(1) time on a
2nx2n RMESH by Lemma 3 and each proces-
sor P[1,j] with side[j] = R saves the result to
min[j]. Note that min[j] in processor P[1,]
with side[j] = R equals MIN(interval[j]) =
min{d(interval(k]) | interval[k] € G such that
interval(j].right < intervallk].left}.
— Substep 3-2: Each processor P[1,j],1 < j <
2n, has variables order[j] and link[j], where
order([j] is ORDER(interval[j]) and link[j] is
LINK (interval[j]).

Each processor P[1,5], 1 < j < 2n, sets
1 if side[j] = R and sets 0 otherwise, and
calculates its prefix sum in O(1) time on a
2n X 2n RMESH by Lemma 2. Each proces-
sor P[1,j] with side[j] = R saves this prefix
sum value to order[j]. Each processor P[1, j]

with side[j] = R, 1 < j < 2n, sets link[j] =
order[j] + min[j] + 1 if min[j] < n.

e Step 4: Make linking lists using LINK and
find the dominating sets in O(1) time as below.

Each processor P[i,1], 1 < ¢ < n, has vari-
able doma[t] which is the dominating set num-
ber assigned to interval <.

— Substep 4-1: Find the first element of each
dominating set.

To put all unmarked intervals into domi-
nating set Py, each processor P[i,1},1 <1< n,
sets doma[t] = 1 as initial value. Each pro-
cessor P[i,1], 1 < i < n, establishes the lo-
cal connection {U, D} and processor P{l,1]
broadcasts min[1] (min[1] calculated in Sub-
step 3-1 is the minimum degree of graph G)
through port D. Then, each processor P(i, 1],
1 < i < n, receives min[1] and sets domali] = ¢
if i < minf1] + 1. ‘

— Substep 4-2: Find the other elements of each
dominating set.

Each processor P[1,j], 1 € j < 2n, broad-
casts side[j], interval[j], and link(j] to all pro-
cessors P[i,j], 1 < i < n, by column broad-
casting. Each processor P[i,j], 1 < ¢ < n and
1 < j < 2n, establishes the local connection
{L, R, U, D} if (i = intervallj] and side[j] =
R) or (i = link[j] and side[j] = R), and the
local connections {L, R}, {U, D} otherwise.
Then each processor P[7,1], 1 < i < n, broad-
casts doma[i] through port R if i < min{1]+1.
Each processor P[i,1], 1 £ i < n, receives the
data item domal[i] from port R.

Since each step in the above algorithm takes
O(1) time, the overall time complexity is O(1).
Therefore, we obtain one of the main results of
this paper as follows.

Theorem 2 The domatic partition problem in
interval graphs with n intervals can be solved
in O(1) time on a 2n x 2n RMESH.

4 Constant Time Minimum
Coloring Algorithm

We use the same notations, assumptions, and
preprocessings as in Section 3. So intervals
1,...,n are labeled in the increasing order of
left end-points.

Two intervals are independent (or nonover-
lapping) if their intersection is empty. A set of
intervals are independent if they are pairwise
independent. A partition {P1, P;,..., P} of an
interval set {1,...,n} is a coloring if every F;,
1 < 1 < k, is an independent set. The mini-
mum coloring problem is to find a coloring with
the minimum number of sets in it.

For a set of intervals, a subset of it forms
a cligue if each pair of intervals in this subset
has a nonempty intersection. A clique with
the maximum number of elements is called a
mazimum clique. For a set of intervals I, let
w(T) be the number of intervals in a maximum
clique of I and let x(/) be the minimum num-
ber of colors needed to color intervals of I.
Since an interval graph is a perfect graph, we
have w(I) = x(I) for a set of intervals I [6].

To solve the minimum coloring problem,
we divide the available colors into two types:
colors that have been used (queue OLD) and
colors that have not been used (stack NEW).
NEW stores the colors which have not been
assigned to intervals and OLD stores the col-
ors which had been assigned to some intervals
but are now available again. Initially, NEW
contains the colors {1,2,...,w(I)} and OLD is
empty. Scan the end-points in the increasing
order as follows: When scanning the left end-
point of an interval, assign a color to the in-
terval by getting a color from OLD if OLD is
not empty and getting a color from NEW oth-
erwise, and when scanning the right end-point
of an interval, return its color to queue OLD.
The correctness of this scheme was proved in
[19]. ‘

For each interval i, let NEXT(:) be the
next interval that receives the same color as
i after the above approach is completed. To
solve the minimum coloring problem on an R-
MESH, first we compute NEXT(%) for each in-
terval i, 1 < ¢ < n. Then we assign a suitable
color to the first node of each list, and propa-
gate this color to the other nodes of each list.

Now we describe a constant-time algorithm
for the minimum coloring problem with n in-
tervals below.

Algorithm Rmesh_Minimum_Coloring

The same input in the Rmesh_Domatic.
Partition algorithm.

Output: color[i] (the color assigned to in-
terval 1) in processor P[,1],1 < i< n.

e Step 1: Sort the 2n end-points of n intervals
as in Step 1 in the Rmesh_Domatic_Partition
algorithm. As a result, each processor P(1,j],
1 < j < 27, has variables intervalfj], side[j],
and coord[j] in the increasing order of coord[j].
e Step 2: For each interval 7, 1 < i < n,
find NEXT(4). For this, each processor P[1,j],
1 < j < 2n, has variable used.color[j] and
each processor P{1,j] with side[j}] = R, 1 <
7 < 2n, has variables total.color[j], shift[j],
local.next[j], and global.nezt[j).

— Substep 2-1: used.color[j]+1 is the number
of colors currently used when scanning coord[j]
with side[j] = R.

Each processor P[i,j] with side[j] = L,
1 < j < 2n, sets used.color[j] = 0. Each pro-
cessor P[1,j] with side[j] = R, 1 < j < 2n,
sets used.color(j] = Ty<i<;k(t], where k[t] = 1
if side[t] = L and k[t] = —1 if sidet] = R,
which is the number of intervals that intersect
coord[j]. This can be computed in O(1) time
as follows: Each processor P[i,j],1 < i< n+l
and 1 € j < 2n, establishes the local connec-
tions {L, U}, {R, D} if side[j] = L and the
local connections {L, D}, {R, U} if side[j] =
R. Then processor P{n + 1,1] broadcasts 1
through port L on this configuration. Each
processor P[i,j] with side[j] = R, 1 £ 1 £
n+ 1and 1 < j < 2n, which receives 1 from
port R, sends (n + 1) — i to used.color[j] in
processor P[1, j] using column broadcasting.
— Substep 2-2: total.color[j] with side[j] = R
is mazy<k<;(used.color[k]). total.color(j] + 1
is the total number of colors used till now when
scanning coord[j] with side(j] = R.

Each processor P[1,j}, 1 £ j < 2n, cal-
culates the prefix maximum of used.color(j],
1 < j < 2n,in O(1) time on a 2n X 2n RMESH
as in Lemma 3, and each processor P[1, j] with
side[j] = R saves it to total.color[j].

— Substep 2-3: shift[j] with side[j] = R is
total.color([j] — used.color[j]. shift[j] is the
number of available colors in queue OLD when
scanning coord[j] with side[j] = R.

— Substep 2-4: local.next[j] with side[j] = R

is the smallest interval k with k.le ft > coord[j].

As all coord[k], 1 < k < 2n, are sorted in
Step 1, and intervals are labeled in the in-
creasing order of left end-points, local.next(j]
is interval[t], where ¢ is the smallest one with
t > j and side[t] = L. This can be computed
in O(1) time as follows.

Each processor P[l,j} with side[j] = R,

1 < j < 2n, establishes the local connection
{L, R}. Then each processor P[1,j] with side
[i] = L, 1 £ j < 2n, broadcasts intervallj]
through port L. Each processor P[1,j] with
side[j] = R, 1 < j < 2n, receives a data item
local.nezt[j] from port R.
— Substep 2-5: global.next[j] with side{j] = R
is NEXT(interval(j]). If shift[j] (the num-
ber of available colors) is 0, the color used for
interval[j] which becomes available at coord(j]
will be used for the next interval local.next[J],
i.e., global.nezt(j] = local.next[j}. If k = shift
[j] > 0, the k colors available will be used
for the first k intervals starting after coord[;]
and thus the color used for interval[j] will
be used for the (k + 1)st interval, which is
local.next[j]+ shift[j]. Therefore, global.next
[5] = local.next[j] +shift[s].

Fach processor P[1,j] with side[j] = R,
1 < j < 2n, sets global.nezt [j] = local.nezt(j]
+shift[j] if local.next[j] exists.

e Step 3: Color the intervals. This step can be
computed in O(1) time as below.

o Subtep 3-1: Find and color the first node of
each list (coloring from stack NEW).

Each processor P[i,1], 1 < ¢ < n, sets
mark[i] = 1 as initial value. Each proces-
sor Pli,j}, 1 < i< nand 1l < j < 2n, es-
tablishes the local connection {L, R, U, D} if
(i = global.nezt[j] and side[j] = R) and the
local connections {L, R}, {U, D} otherwise.
Then each processor P[1,j] with sidelj] = R,
1 € j < 2n, broadcasts global.nezt(j] through
port D if global.next[j] exists. Each processor
P[i,1], 1 € i < n, which receives ¢ from port
R, sets mark[i] = 0.

Each processor P[i,1}, 1 < i < n, calcu-
lates the prefix sum of mark[i] in O(1) time
on an n X n RMESH by Lemma 2. Each pro-
cessor P[i,1] with mark[i] = 1,1 <7 < n,
saves this prefix sum value to color[i].

o Subtep 3-2: Color the other nodes (coloring
from queue OLD).

International Conference on Parallel Process-
ing, pp- 130-132, 1992. Also Technical Report,
IRIS 277, UCS, 1991.

P.N. Klein: “Efficient parallel algorithms for
chordal graphs,”, Proc. of Foundations of
Computer Science, pp. 150-161, 1988.

S.S. Lin: “Constant-time algorithms for the
channel assignment problem on processor ar-
rays with reconfigurable bus systems,”, IEEE
Transactions on Computer-Aided Design of
Intergrated Circuits and Systems, vol. 13, no.

Each processor P[i,j], 1< i< nand 1<
7 < 2n, establishes the local connection {L, R,
U, D} if (i = interval[j] and side[j] = R) or
(¢ = global.next(j] and side[j] = R), and the
local connections {L, R}, {U, D} otherwise.
Then each processor Pli, 1] with mark(i] = 1,
1 < i < n, broadcasts the color value color]i]
through port R. Each processor P[i,1],1 < ¢ <
n, receives the data item color[i] from port R.

Since each step in the above algorithm takes
O(1) time, the overall time complexity is O(1).

(10]

(11]

Therefore, we obtain one of the main results of
this paper as follows.

(12]

Theorem 3 The minimum coloring problem

in interval graphs with n intervals can be solved
in O(1) time on a 2n X 2n RMESH.

(13]

References

7, pp. 884-890, 1994.

T.L. Lu, P.H. Ho, and G.J. Chang: “The do-
matic number problem in interval graphs,”,
SIAM Journal on Discrete Mathematics, vol.
3, no. 4, pp. 531-536, 1990.

G.K. Manacher and T.A. Mankus: “Deter-
mining the domatic number and a domatic
partition of an interval graph in time O(n)
given its sorted model,”, Submitted SIAM
Journal on Discrete Mathematics, 1991.

(1] A. Aboelfotoh and C. Colbourn: “Efficient al- [14] R. Miller, V.K. Prasanna Klimar, D. Reisis,
gorithms for computing the reliability of per- and Q. Stout: “Data movement operations
mutation and interval graphs,”, Networks, vol. and applications on reconfigurable VLSI ar-
20, pp- 883-898, 1990. rays,”, Proc. of International Conference on

[2] A.A. Bertossi: “On the domatic number of Parallel processing, pp. 205-208, 1988.
interval graph,”, Information Processing Let- [15] R. Miller, V.K. Prasanna Kumar, D. Resis,
ters, vol. 28, pp. 275-280, 1988. and Q. Stout: “Meshes with reconfigurable

[3] K. Chaudhary and P. Robinson: “Channel buses,”, Proc. of '_5“] MIT Conference on Ad-
routing by sorting,”, IEEE Transactions on vanced Research in VLSI, pp. 163-178, 1988.
Computer-Aided Design, vol. 10, no. 6, pp. [16] A.S. Rao and C.P. Rangan: “Linear algo-

4]

(6]

(8]

]

754-760, 1991.

E. Dekel and S. Sahni: “Parallel scheduling al-
gorithms,”, Operations Research, vol. 31, no.

pp. 260-270, 1981.

M.C. Golumbic: Graph theory and perfect
graphs, Academic Press, New York, 1980.

U.I. Gupta, D.T. Lee, and J.Y.-T. Leung: “An
optimal solution for the channel assignment
problem,”, IEEE Transactions on Computers,
vol. C-28, no. 11, pp. 807-810, 1979.

(19]

A. Hashimoto and J. Stevens: “Wire routing
by optimizing channel assignment within large
apertures,”, Proc. of 8th Annual Design Au-
tomation Workshop, pp. 55-169, 1981.

(20]

J. Jang and V. Prasanna: “An optimal sorting
algorithm on reconfigurable meshes,”, Proc. of

rithm for domatic number problem on interval
graphs,”, Information Processing Letters, vol.
33, pp. 29-33, 1989/90.

1, pp. 22-49, 1983. [17] F.S. Robert: Graph theory and its application

t bl f society, SIAM, Philadelphia,

[5] M. Frust, J. Saxe, and M. Sipser: “Parity, cir- 1;7‘;0 cms of socely, radelphia
cuits and polynomial time hierarchy,”, Proc.))

of IEEE Foundations of Computer Science, (18] B. Wang, G. Chen, and H. Lin: “Config-

urational computation: a new computation
method on processor arrays with reconfig-
urable bus systems,”, Proc. of International
Conference on Parallel processing, vol. 3, pp.
42-49, 1991.

M.S. Yu, C.L. Chen, and R.C.T. Lee: “An op-
timal parallel algorithm for minimum coloring
of intervals,”, Proc. of International Confer-
ence on Parallel Processing, vol. 3, pp. 162~
168, 1990.

M.S. Yu and C.H. Yang: “An optimal parallel
algorithm for the domatic partition problem
on interval graphs,”, Proc. of International
Conference on Parallel Processing, vol. 3, pp.
146-150, 1992.

