7 oooF) R s 4T—3
(1995. 9. 21)

BN F—BLUBRERSHEER 7Y — ¥ OEl

FIoAE Eth B
BEBAFE L3 HlTER

(LS T — F R— A TRIRBOYRIDO O ICEHEER 7) — Y BHVLRD P, K TIEA
2=V ELTHHShABRERESBE L BIRTAMEICOWTEET D, ZOMBEIMERT -
FR-ABERIBI LB -—HELFRICEEL TV L, HEL LI NP RETHLNT, %
HABBEU7 VL) XA DBE»OEREIT) « AR TIL. THH & b IELEER SET COVER
HIE & F% (©(logn)) THAH T k. Kolmogorov SHEERIGHT A LI Y HHER S) -~
MEFEEICREBADEUSTRETH LI L. B EETT,

Approximating Minimum Keys and Optimal Substructure Screens

Tatsuya Akutsu and Feng Bao

Department of Computer Science, Gunma University
1-5-1 Tenjin, Kiryu, Gunma 376 Japan

e-mail: akutsu@cs.gunma-u.ac.jp bao@comp.cs.gunma-u.ac.jp

In this paper, we consider the problem of selecting an optimal substructure screen, which is
important in database systems for chemistry. This problem is closely related to the minimum
cardinality key problem. Since both problems are NP-hard, we consider polynomial time
approximation algorithms. We show that the performance ratios of both problems are ©(log n)
using reductions from/to the SET COVER problem. On the other hand, using Kolmogorov
complexity, we show that the optimal substructure screen problem can be approximated within
a factor of 2 + € in the average case.

1 Introduction

In chemistry, database management systems for chemical structures are very important since
the number of known chemical structures is very large. In particular, the following database
search problem (substructure search) is very important [1, 15]: given a part of chemical struc-
ture S, enumerate all chemical structures which contain substructures isomorphic to S. For
rapid substructure search, substructure screens have been used in several practical database
systems [1, 15].

Substructure screens are defined and used as follows (see Fig .1). For each chemical struc-
ture G, a bit vector b(G) is associated. If G contains a substructure isomorphic to a fixed
structure B;, then i-th bit 8(G)|i of b(G) is 1, otherwise 0. Note that if b(S)|¢ = 1 and
b(G)|i = 0 for some 4, G must not contain a substructure isomorphic to S and we need not
test G. Therefore these bit vectors can be used as screens before testing whether or not G

CH,

NO,
|l 1 o

1 0 1 1 1

Figure 1: Example of a substructure screen.

contains a subgraph isomorphic to S. Moreover index files can be constructed and utilized
from these bit vectors.

Although screens have been utilized effectively in existing database systems, no studies
have been done about how to select substructures used as a screen. Thus we have studied
such a method in this paper. For that purpose, the following approach seems reasonable: a
large set of candidate substructures is tested, and then a subset is selected which minimizes
the maximum number of structures in a database having the same bit vectors. Moreover two
approaches can be considered: minimizing the number of substructures used as a screen, and
optimizing a set of substructures under the limit of the number of substructures. The former
corresponds to OPTIMAL SCREEN, and the latter corresponds to OPTIMAL SCREEN-II,
which are to be defined soon. Although substructure screens have been applied to chemical
structures so far, it may be applied to other objects for which searching for similar structures is
important. For example, it may be applied to 3D protein structures, and mechanical/electrical
CAD data.

Here, we define problems formally. Let B = {b1,---,b,} be a set of bit vectors, where
each b; consists of m bits. For b; and an integer j, b;|j denotes j-th bit value of b;. For
a set of integers (bits) bs = {j1,---,jk}, bilbs denotes a projection of b; to bs. For ex-
ample, 1011011[{1,2,3,4} = 1011 and 1011011|{2,5,6,7} = 0011. Let width(B,bs) =
maxp,ep |[{bj : bj|bs = bj|bs}|. Then we define optimal screen problems as follows:

OPTIMAL SCREEN: Given a set of bit vectors B = {b1,---,b,}, find a
minimum cardinality set of bits bs such that width(B,bs) = 1.

OPTIMAL SCREEN-IL: Given a set of bit vectors B = {b;,---,b,} and an
integer L, find a set of bits bs of cardinality at most L which minimizes width(B, bs).

The above problems are closely related to the minimum cardinality key problem in database
theory [3, 12]. In this paper, we consider the following two versions of this problem:

MINIMUM KEY: Given a set of functional dependencies F = {Fj,---, F,}
over a set of attributes A = {Ay,---, A}, ind a minimum cardinality key K C A
implied by F.

MINIMUM KEY-II: Given a set of tuples r = {¢1,---,¢,} over a set of at-
tributes A = {A1,---,An}, find a minimum cardinality key K C A (i.e., find a
minimum K C A such that (Vi # j)(t;|K # t;|K) where t;|K denotes a projection
of t; to K).

Moreover we consider the following variants of the SET COVER problem, which are closely
related to the above problems:

SET COVER-II: Given a set § = {s1,--+,5m} over U where |U| = n and
an integer L, find a subset C' C S of cardinality at most L which maximizes the
number of covered elements in U.

SET COVER-III: Given S and L, find a subset C C S of cardinality at most L
which minimizes the number of uncovered elements in U.

Recall that SET COVER is defined as below:

SET COVER: Given a set S over U, find a minimum cardinality set (cover)
C C S such that U si=U
$i€C
Since all the above problems are NP-hard, we consider polynomial time approzimation
algorithms. In particular, we consider upper and lower bounds of performance ratios. Recall
that the performance ratio of an approximation algorithm for a maximization problem is the
worst-case ratio of the size of the optimal solution to the size of the approximate solution (for a
minimization problem, we use the inverse). Moreover we consider the average case performance
ratios for optimal screen problems, where we assume that each instance of the same problem
size appears with the same probability. Results are summerized in Table 1, where we assume

P # NP and NPEDTIME(nP°%99(")) and € is any constant such that 0 < e < 1.

Table 1: Summary of results.

Problem Upper bound | Lower bound
OPTIMAL SCREEN 2Inn+ 1 Q(log n)
(Average case) 2+¢€
OPTIMAL SCREEN-II n¢
{(Average case) O(logttn)
MINIMUM KEY ? Q(log n)
MINIMUM KEY-II 2lnn+1 Q(logn)
SET COVER-II e/(e—1) MAX SNP-hard
SET COVER-III ne

Here, we briefly review related work. A lot of studies have been done for approxima-
tion algorithms [2, 4, 8, 14]. SET COVER is one of the most important problems. Johnson
and Lovész independently showed that SET COVER can be approximated within a factor of
Inn+1 using a simple greedy algorithm (8, 11], from which several improvements followed [6].
Lund and Yannakakis proved that SET COVER can not be approximated within a factor of
7 logn under the assumption of N PG DTIM E(r?¥/9(")). MINIMUM KEY and MINIMUM
KEY-II were shown to be NP-complete [3, 12]. We found that SET COVER-III and OP-
TIMAL SCREEN-II are closely related to MIN 3NON-TAUTOLOGY, which is the problem
of minimizing the number of satisfiable disjunctions, given a boolean formula in disjunctive
normal form with three literals per disjunct [9]. Although Kolaitis and Thakur showed that
MIN 3NON-TAUTOLOGY can not be approximated within any constant factor, their proof
can be modified to showing n¢ lower bound for any constant 0 < € < 1. We use similar proofs
to obtain lower bounds for SET COVER-III and OPTIMAL SCREEN-II. Our average case
analysis for optimal screen problems uses Kolmogorov complezity. Jiang and Li have already
applied Kolmogorov complexity to the analysis of the average case performance ratio [7]. Our
analysis is similar to their analysis.

2 Set cover

Hereafter we describe the proofs for the obtained results where details are omitted. In this
section we consider variants of SET COVER. First we show that SET COVER-II is MAX
SNP-hard, from which a lower bound of the constant size performance ratio follows [2, 14].

Theorem 2.1 SET COVER-II is MAX SNP-hard.

Proof We prove it by means of an L-Reduction from MAX 2SAT-B [14]. From an instance
of MAX 2SAT-B which consists of a set of clauses C = {c1,***,cm} over a set of of variables
X ={=z1, -,z } where ¢; = {c!,c?} and ! is a literal (z or Tf), we construct an instance of
SET COVER-II in the following way:

1

Uz{ch"'vcm}u{d{: 1S2Sm71$JS2B}a S={Sl,§,32,3_2-,"',5n,3_n-},
si={cj: m,-GCj}U{d},---,d?B},sT:{Cj: 'a'c'{Ecj}U{d},---,d?B}, L =n.

It is easy to see that the above reduction is an L-reduction. 0O

Next we show that SET COVER-II can be approximated within a factor of e/(e — 1) using
a well-known greedy algorithm [8, 11].

Theorem 2.2 SET COVER-II can be approzimated within a factor of e/(e—1) using a simple
greedy algorithm.

Proof. Given a family of sets S = {s1, 52, -, sn} and an integer L, the greedy algorithm for
SET COVER-II is as follows:

for i:=1 to n do sh:=s;;

for j:=1to L do begin ' ‘
pick s}, such that [séllZ Isﬂ for any 7; output shi=s];

TES S

for i:=1 to n do s; s; — 53, end.

The solution of the greedy algorithm is Ulesj. Next we show that lU]l-'=1 si;|/1 UJ["=1 s < 5
for any 1 < 41,19, - ,4 < n, where e is the nature number. From the greedy algorithm, it is
not difficult to see the following facts:

Lis > |Ubky sl 18t +Lis%l 2 [Ukeysigly ooy Js'l o+ 127N+ LlsT] 2 [Ufey sigl

Hence, we transform the upper bound problem of SET COVER-II into a linear programming

problem: finding the maximum value of min{ sz = o fz‘:'f’i TR “";'::ij}ﬁi“ }.
We will prove later that it reaches maximum when Lz = z21+Lzy=---=xz1+ -+ 1+LxL.
From Lz; = z21+Lzy = - -+ = 1+ - -+z -1+ Lz, wehave z; = (1—%)"‘%1 fori=2,3,---,L.

Hence, we obtain the conclusion that the maximum value is equal to 1—71—1——,? < % . Moreover
-UTT

we can prove that this bound is tight where we omit the proof here.

—_) Lz z1+Lzg .. mteetzpoatLlop _
. Now we show that m = min{ ;7o simtazr) zi¥eat -For } reaches max
imum when Lzi =z + Lag=---=x1 + -+ 51 + Lzy. Here we let
Lz Ty + Lzo zi+---+zp1+ Lz
= m+t17 = m+t2a DY = m+tL
r1+z2+ -+ 1 +z2+---+2zL T +T2 4+

where t1,---,tz > 0. On the other hand, there exist positive constants ci,---,cr such that
ci(Lzy) + co(zy + Lag) + - +ep(zr + -+ zp1+ Lag) = Lz +z2+ -+ +zL).

L
L-); iti .
Hence, we have m = —Zg—=4i— So m reaches maximum when t; = tp = --- =ty = 0. m]

P O

Note that if we let L = n and repeat the greedy algorithm [Inn] + 1 time, the number of
uncovered elements becomes 0 since n(l — 9’;—1)““ nl+l < 1. It matches Inn + 1 performance
ratio of the greedy algorithm for original SET COVER ([8, 11]. Thus we can see that the ratio
of the number of uncovered elements steadly decreases by the greedy algorithm.

Next we consider SET COVER-IIL Since the performance ratio can become oo if the
number of uncovered elements in an optimal solution is 0, we consider the case where the
number of uncovered elements in an optimal solution is at least 1.

Theorem 2.3 SET COVER-III can not be approzimated within o factor of n® in polynomial

time for any constant 0 < € < 1 unless P = NP.

Proof We use a similar technique as in [9] although an additional technique is introduced.
Let 8’ = {s1,--+,sm} over U' = {z1,---,zn} be an instance of SET COVER. We consider

the problem of deciding whether or not the size of a cover is at most K. From this instance,

we construct an instance S of SET COVER-III making H copies of 3-SET COVER in the

following way where H = N* for some integer k > 0:

S={sf: 1<i<M,1<j<H}, U={zl: 1<i<N,1<j<H}U{zo}and
L = HK, where zg is a new element not appeared in U’ and s} = {z}, : x € s;}.

Then it is easy to see that the following claim holds.
Claim. If §' does not have a cover of size K, the number of uncovered elements in U 1s at
least H + 1.

If we let opt(S, L) be the minimum number of uncovered elements in SET COVER-III, the
following relation holds: opt(S,L) = 1 if S’ has a cover of size K, opt(S,L) > H otherwise.
Therefore, if SET COVER-III can be approximated within a factor of H, then SET COVER
can be solved. Here note that n = N¥*! +1 and H = (n — 1)’7iT since H = N*. Given any

0<e<l, (n— 1)’7"42T > nf can hold for sufficiently large n by choosing an appropriate integer
k > 0. Thus the theorem is proved. 0O

Note that, using a similar discussion, we can show that MIN 3NON-TAUTOLOGY can
not be approximated within a factor of n¢ for any 0 < € < 1 unless P = NP [9]. This result
suggests that the same lower bound holds for many minimization problems [9].

3 Minimum cardinality’ key

Two problems are considered for finding minimum cardinality keys. In one problem, an input
is given in the form of a set of functional dependencies. In the other problem, an input is given
in the form of a set of tuples. First we consider the former problem.

Theorem 3.1 MINIMUM KEY can not be approzimated within a factor of clogn in polyno-
mial time for some constant ¢ unless NPCDTIME(nPolvios(n)),

Proof. We show an approximation preserving reduction from SET COVER. Let § = {s1,--,sum}
over U = {1,---, N} be an instance of SET COVER, where we assume M = O(poly(N)) holds.
4 log N lower bound was derived for such a case [13].

From this instance, we construct an instance of MINIMUM KEY in the following way:

A={Ay,--, Ay}U{A4;]1<j<N,1<h < HY,
F:{Ai-—)AjyhleSi,lShSH}U{Alyln'An'H—-)Ai‘ISiSM},

where H is an integer satisfying H = ¢/ M for some large fixed constant ¢’. Then the following
property holds: a key K must contain at least H elements of F if K N {A;,---, Ay} is not a

key. Thus each key K such that |K| < H corresponds to a set cover. Since logn = log |4]| =
log(M + M N) = O(log N), the theorem holds. a

Next we consider MINIMUM KEY-II in which an input is given in the form of a set of
tuples.

Theorem 3.2 MINIMUM KEY-II can not be approzimated within a factor of % log n in poly-
nomial time unless NPCDTIM E(npelvlos(n))

Proof. As in Thm. 3.1, we prove it by means of an approximation preserving reduction from
SET COVER. From an instance S = {s1, --,8n} over U = {1,---,n} of SET COVER, we
construct a set of tuples r = {t1,--,t,} over A= {A1,---, A} in the following way:

AL _ 7, iGSj,
tild; = {O, otherwise.

In this case, a key corresponds to a set cover in a one-to-one way and the theorem follows. O

Theorem 3.3 MINIMUM KEY-II can be approrimated within a factor of 2Inn + 1 in
polynomial time.

Proof. We reduce MINIMUM KEY-II to SET COVER. Let r = {t1,-++,%,} over 4 =
{A1, -+, Am} be an instance of MINIMUM KEY-II. Remember that K is a key if and only if
(Vi # j)(3Ar € K)(ti|]Ax # tj|Ax) holds. Then we construct an instance of SET COVER in
the following way:

S = {81,'~',sm}, U= {(t,',tj) t 1<]}, S = {(t,',tj) : t,'[Ak # tlek}.

In this case, a set cover corresponds to a key in a one-to-one way. Since In|U|+1 < Inn?+1 =
2lnn + 1, the theorem holds.]

4 Optimal substructure screen

In this section we consider optimal substructure screen problems. First we consider the worst-
case performance ratios as usual. Since a very high lower bound is proved for OPTIMAL
SCREEN-II, we next consider the average-case performance ratios. The average-case analysis
is important since it seems that the worst case seldom occurs in a practical case.

4.1 Worst case performance ratio

Note that OPTIMAL SCREEN can be considered as a special case of MINIMUM KEY-II
where a value of each item is restricted to 0 or 1. Thus the following corollary immediately
holds.

Corollary 4.1 OPTIMAL SCREEN can be approzimated within a factor of 2lnn + 1 in
polynomial time.

Although a slight modification (omitted here) is required, the following hardness result holds
as in Thm. 3.2.

Theorem 4.2 OPTIMAL SCREEN can not be approzimated within a factor of clogn in
polynomial time for some constant ¢ unless NPCDTIM E(npolvlos(n)y,

For OPTIMAL SCREEN-II, a very strong lower bound can be proved as in Thm. 2.3.
Theorem 4.3 OPTIMAL SCREEN-II can not be approzimated within a factor of n¢ in poly-

nomial time for any constant 0 < € < 1 unless P = NP.

4.2 Average case performance ratio

Reference [7] is the first paper to analyze the average performance ratio of approximation
problem with Kolmogorov complexity. Here we give a similar average case analysis on both
OPTIMAL SCREEN and OPTIMAL SCREEN-II. We show that the former can be approxi-
mated within 2 + ¢ on average and the latter can be approximated within log!*¢n on average.

Let T be the alphabet {0,1}. Fix a universal Turing machine U with input and output
alphabet £. The Kolmogorov complexity of a string z € £* is defined as the length of the
minimum program of U which outputs z, i.e., K(z) = min{|p| : U(p) = z}. Let f(n) be a
positive function. For any binary string z of length n, z is called Kolmogorov f-random if
K(z) 2 n— f(n). The number of Kolmogorov f-random strings in £" is at least 27 —2"—/(") 41
[10].

For convenience, we suppose m < n. Our results are valid for the case m = O(poly(n)).

Theorem 4.4 For any constante > 0, OPTIMAL SCREEN can be approzimated within 2+
on average.

Proof. Consider an instance of OPTIMAL SCREEN, a set of binary vectors B = {b1,b2, -+, bn},
where each b; consists of m bits. We also treat B as a binary string of length nm, bibg - - - b,,. It
can be dlstmgulshed whether B is a set of vectors or a binary string from the context. Let bs be
a subset of {1,2,---,m}. Define dup(B,bs) = |{i : there exist j < i such that b;|bs = b;|bs}|.
Apparently, wzdth(B bs) = 1 if and only if dup(B, bs) = 0. In the following, we use bs(k) to
denote the first k bit positions, i.e., bs(k) = {1,2,--,k}. And logn denotes the length of the
binary form of n. ‘

Lemma 4.5 Letc > 0 be any constant. For sufficiently large n, if dup(B,bs((2 +c)logn)) >
4. then we have Kolmogorov complezity K(B) < nm — logn.

Proof Let L = (24 c)logn and k = %. Suppose dup(B, bs(L)) > k. There exist

J1 < 11,52 < dg,.., 5k < ik such that b;|bs(L) = b;|bs(L), b;,|bs(L) = b,zlbs(L)
bj.|bs(L) = b;,|bs(L). We can generate B by duplicating bj, [bs(L) to bi, |bs(L), h = 1,- k

provided that we are given k, j1,%1, - - -, jk, tk, L, n, m and the binary string obtained by remov-
ing by, |bs(L), bi,|bs(L),- - -, by, |bs(L) from B. (we denote this string by B(L; -1y, -+, —4))
by i iy g, i

1 o# I R A A R A T N # 8

PRI A B 2L B B T A AN

L o# # # 4 L # #OH W # 4

#o# R N A A # I A IR A

LI A 2R 2 I I R T N B R L L S RPN

Figure 2: B(L;~1iy,---,—1%) is the substring of B composed of #.
Encoding k, 51,21, -, J, %, L, n, m in self- dehmltmg version, we can prove K(B) < nm —

kclogn + 2logn + O(kloglogn). Since k = c, we have K(B) < nm — logn for sufficiently
large n.

In this proof we imply that both 4 z and (2 + ¢)logn are integers. The proof is valid by
taking their integer parts if they are not integers. o

Consider the following naive algorithm: c-algorithm

Let bs = bs((2 + ¢)logn). If b;|bs = bj|bs for some i # j, add a bit position h
(h € {1,2,---,m}) to bs (i.e. bs:=bs\U {h}) such that bi|bs # bj|bs. Repeat until
(Vi # 5)(bilbs # bj|bs).

For any instance B, denote the bs obtained by applying c-algorithm to B by c-algorithm(B).
From Lemma 4.5, we have |{B : |c-algorithm(B)| > (2+ c)logn + 4 < L Since b; must
be different from the other b;’s, it is apparent that |opt(B)| > logn and lc-algorithm(B)| < m
for any instance B. The number of all possible instances is 2™(2™ — 1) - - (2™ —n+1). Since
m > 2log n(otherwise the approximation ratio can never exceed 2), we have 2™ —n > (1 —%)2’",
oam(2m —1).-- (2™ —n+1) > (1 - LHzm)n > -}4-2'""‘ Hence, the average approximation ratio
of OPTIMAL SCREEN is less than ‘

lonm _ gnm 2 ! 4/c) + (2"™ 1 1
(2 /M 1+C) ogn +4/9) + @T/Mm gy oy L2410
lonmlogn logn" n c

It is less than 2 + 2c for sufficiently large n (m < n). a

Using a similar technique, we can prove the following theorem, where we omit the proof.

Theorem 4.6 For any constant € > 0, OPTIMAL SCREEN-II can be approzimated within

log!*t€n on average.

Acknowledgement

Tatsuya Akutsu is partially supported by the Grant-in-Aid for Scientific Research on Priority Areas,
" Genome Informatics”, of the Ministry of Education, Science and Culture of Japan.

References

[1] S. Anderson. Graphical representation of molecules and substructure-search queries in MACCS. J.
Molecular Graphics, 2:83-89, 1984.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification and hardness of
approximation algorithms. Proc. FOCS’92, 14-23.

[3] C. Beeri, M. Dowd, R. Fagin and R. Statman. On the structure of armstrong relations for functional
dependencies. J. ACM, 31:30-46, 1984.

[4] P. Crescenzi and V. Kann. A compendium of NP optimization problems, Manuscript, 1995.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[6] M. M. Halldérsson. Approximating discrete collections via local improvement. Proc. SODA’95.

[7} T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common
subsequences. Proc. ICALP’94, LNCS, Springer-Verlag, 191-202.

[8] D.S. Johnson. Approximation algorithms for combinatorial problems. JCSS, 9:256-278, 1974.

[9] P. G. Kolaitis and M. N. Thakur. Logical definability of NP optimization problems. Information
and Computation, 115:321-353, 1994.

[10] M. Li and P.M.B. Vitanyi. Kolmogorov complexity and its application. Handbook of Theoretical
Computer Science, Vol. A, 187-254, Elsevier/MIT Press, 1990.

[11] L. Lovész. On the ratio of optimal integral and fractional covers. Disc. Math., 13:383-390, 1975.

[12] C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. JCSS, 17:270-279, 1978.

[13] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM,
41:960-981, 1994.

[14] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
JCSS, 43:425-440, 1991.

[15] R. E. Stobaugh. Chemical substructure searching. J. Chemical Information and Computer Sci-
ences, 25:271-275, 1985.

