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Abstract : The subject of paper is the vertex cover prbblem (‘VCP) and the connected vertex
cover problem (CVCP) for 3-connected graphs. More specifically, VCP and CVCP for the
two classes of 3-connected graphs, called quasi-wheels and super-wheels, are considered. First
we prove that VCP for super-wheels is NP-complete. This result, combined with the known
result on the relationship between VCP and CVCP for super-wheels, implies that CVCP for
super-wheels is NP-complete. By reducing CVCP for quasi-wheels to a linear matroid matching
problem, it is shown that a minimum connected vertex cover for any given quasi-wheel can be
obtained in polynomial time.
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1 Introduction

In this paper we consider the vertex cover problem and
the connected vertex cover problem for 3-connected
graphs. A vertez cover of a graph G = (V| E) is a set
N C V such that each element of £ is incident upon
some element of V, where V and F are the sets of ver-
tices and edges, respectively, of G. A connected vertex
cover of G is a vertex cover N of G such that the sub-
graph G{:V] induced by N is a connected graph. The
vertez cover problem (VCP for short) is the problem
of finding a vertex cover of minimum cardinality, and
the connected vertez cover problem (CVCP for short)
is similarly defined. The recognition problem (RP for
short) of a class of graphs is the problem of deciding
whether or not a given graph is in the class. For ex-
ample, RP for 3-connected graphs is solvable in time
oIVl +|El) [8]-

VCP is one of basic :VP~complete problems [10]. It
is also known to remain NP-complete under various
restrictions on graphs, e.g., for cubic planar graphs
{18] and for cubic planar 3-connected graphs [17].
On the other hand polynomially solvable classes of
graphs include series—parallel graphs (in time O(|V| +
|E|) {1, 14]), bipartite graphs (in time O(]E} \ﬂl'_'[) [7)
by graph matching), and perfect graphs [3].

CVCP is also known to be NP—complete and re-
mains so for planar graphs with maximum vertex de-
gree at most 4 {3], and for 3-connected planar graphs
[20]. When maximum degree is bounded by 3, how-
ever, CVCP becomes polynomially solvable [16]. For
further details. refer to {9].

Tutte gave a complete characterization of 3-
connected graphs [13] : any 3-connected graph can
be constructed from a wheel by repeating edge ad-
dition and/or vertex splitting operations (the details
will be given later). Two subclasses of 3-connected
graphs, called quasi-wheels and super-wheels, were in-
troduced in [19, 20|, based on the characterization
above of 3-connected graphs. These are our target
subclasses of 3—connected graphs for which we consider
VCP, CVCP, and RP. It is already known that VCP
is solvable in time O(|V]) when quasi-wheels are pla-
nat {2| (which are called Halin graphs), and that RP
for super-wheels is :VP-complete [19]. We prove in this
paper that RP for quasi-wheels and VCP for super~
wheels are both VP-complete. The NP-completeness
of CVCP for super~wheels is also obtained using the re-
sults in f19]. As a sole positive result CVCP for quasi-
wheels is shown to be solvable in time O(]V|®). Thus,

quasi~wheels form a rare subclass of graphs for which,
in spite of /VP-completeness of RP, CVCP is solvable
in polynomial time. Table 1 summarizes known results
along with our results to be given in the paper.

2 Preliminaries

2.1 Basic definitions

We suppose that G = (V| E) is a graph with a vertex
set V' and an edge set E. For any vertex set S C V,
G' = (S,E’) is called a subgraph of G induced by S
and is denoted as G[S], where £’ = ENS x S. The
degree 6c(v) of a vertex v is a total number of edges
(v,v"), v' # v, incident upon v in G.

A vertex set S C V is an independent set of G =
(V,E) if for any vertex pair {v,w} C S, e = (v,w) ¢
E. S is a nonseparating independent set of G if it is an
independent set whose removal does not increase the
number of connected components. The nonseparating
independent set problem (NISP for short) is the prob-
lem of finding a nonseparating independent set of max-
imum cardinality. Note that for any connected graph
S C V is a nonseparating independent set if and only
if V' — S is a connected vertex cover.

2.2 3-connected graphs

The connectivity x(G) of a graph G is the minimum
number of vertices whose deletion from G disconnected
it or result in a single vertex. A graph G is called a
k-connected graph if and only if kK(G) > k. We denote
an elementary cycle of length n by C,.. A wheel of
order n+ 1 (n > 3), is the graph formed by a cycle C,
and one new vertex v, joined to each vertex of C, with
an edge. We denote this wheel by W, ., = K; + C..
We refer to C, and vy as the rim and the hubof W, .,
respectively. The edges joining vy and vertices of C,
are called the spokes. Fig.l (a) shows a wheel Ws. A
graph G is a 3-connected graph if and only if G is
either a wheel or a graph obtained from a wheel by
repeating the following operation 1 and/or 2 (Tutte's
theorem [13]):

Operation 1 : Join non-adjacent vertices u,v with
an edge. (Fig.l (b))
(This operation is called an edge addition.)
Operation 2 : For a vertex v with §g(v) > 4, replace

v with a pair of adjacent vertices v',v” and join
each vertex that was adjacent to v to exactly one



of v and v”, by means an edge in such a way that
be(v') > 3 and b (v") 2> 3, where G’ is a graph
constructed by this operation. (Fig.1 (c))

(This operation is called a vertez splitting.)

Note that each of an edge addition and a vertex split-
ting can break planarity of graphs. A graph obtained
from a wheel by repeated application of only vertex
splittings is called a quasi-wheel [20]. We call a graph
obtained from a wheel by repeated application of only
edge additions a super-wheel

2.3 2-polymatroids

A pair M* = (S,r*) of a set S and a function r* is
called a 2-polymatroid if r* associates a nonnegative
integer to each subset of S and satisfies the following
conditions.

(P1) r*(0) =0;

(P2) r(X") < r(X7)
X".,.X.. g S,

(P3) r(XTUX™)+r (X" NX") < r(X") +r(X")
for any X*, X" C S;

(P4) r'({z}) <2 foreveryz € S.

if X" ¢ X,

for any

S and r* are called the underlying set and the rank
function of M*, respectively. X* C S is a matching of
M if r*(X*) = 2|X"|. The matroid matching problem
for a 2-polymatroid M* is the problem of finding a
maximum cardinality matching of M*.

It is easy to seen that a 2-polymatroid is a proper
generalization of a matroid. In fact M = (S, r) is a ma-
troid if r : 25 — Z* satisfies the conditions P1,P2,P3
and that r({z}) < 1 for each z € S, instead of P4.
X C S is called independent if r(X) = |X|, and oth-
erwise it is called dependent. A maximal independent
set of a matroid is called a base.

For a graph G = (V,E) an edge set X C E is a
cutset if the number of connected components of G’ =
(V, E - X) is more than that of G. An edgeset X C £
is cutset-free if X' contains no cutset of G. A matroid
M(G) = (E,r) is called a cographic matroid of G if
r{.X) is the size of a largest cutset-free subset of X for
any .X C E. In other words X is an independent set
of M(G) if and only if X is cutset-free.

From-a matroid M = (S, r), we can construct a 2-
polymatroid M* = (T*,r"), where T~ is a set of pairs
of elements from S, and r* is an extension of + to T*
s.t. r°(X") = r(U,zx-€) for X* C T°.

3 Characterization

3.1 Quasi-wheels

Let G = (V, E) be a quasi-wheel. We denote sets of
vertices and edges of C,, by V(C.) and E(C,), respec-
tively. If G is derived from a wheel W, = K, + C,
then C, remains in G and it is called the rim of G. Its
vertices V' is partitioned into two sets Vg = V(C,) and
Vr = V = Vi, where V7 consists of vertices introduced
by vertex splittings. G[Vr] is a tree and is called the
hub tree. A subgraph G — E(C,) is a tree and is called
the inner tree. Vertices in Vg are called rim vertices
and those in V7 are called inner vertices. We can easily
prove the following proposition.

Proposition 3.1.1 G is a quasi~wheel if and only if
G has a spanning tree T' such that

(i) any non-leaf v of T has degree 67(v) = dg(v) (>
3),
and

(if) E(G)— E(T) form a cycle containing all leaves of
T.

The proposition is restated as follows. (Note that
such a cycle C is a rim of G if G is a quasi-wheel.)

Corollary 3.1 G is a quasi-wheel if and only if G has
a cycle C such that i

(i) any vertez v of C has 6c(v) = 3,
and

(ii) E(G) — E(C) form a spanning tree whose leaves
are those of V(C).

We define the rim identification problem (RIP for
short) as the problem of identifying the rim of a given
quasi-wheel (or a given super-wheel). We can identyfy
the rim of a planar quasi~wheel in time O(|V]?) [20].
We propose the procedure MQW(G) that constructs
a graph G' = (V', £') from any given cubic graph G
with |E] > 4.

MQW(G) : (Make Quasi Wheel)
Stepl. Let G = (V, £) be any given graph and v,
be a new vertex. Set V' — VU {v}, E' — 0.
Step2. Construct a graph G’ = (V’, £') by re-

peating the following (1),(2) for each e; =

(v,w) € E.



(1) V'« V'U{z}, where z, is a new vertex.

2) B ~ E'U {(v,a:;),(z.,w),(a:,-,vg)},
where (v, z,),{(zi, w),(zi to) are new
edges.

Note that §g(ty) = |V| and ég-(v) = 3 for any other
vertex v € V. (See Fig.2 for examples of G and G'.)
We obtain the following two lemmas concerning the
NP-completeness of RP and RIP for quasi-wheels.

Lemma 3.1 Let G be any cubic graph, and G’ be
constructed from G by MQW(G). Then G contains a
Hamilton cycle if and only if G' is a quasi-wheel.

Proof. Suppose G contains a2 Hamilton cycle C. Let
Y = {(v.z.),(zi,w) € E' | & = (v,w) € E(C)}. Then
Y forms a cycle C’ in G'. It is easy to see that C’
satisfies Corollary 3.1. That is, G’ is a quasi-wheel
and C'is a rim of G'.

Suppose that G’ is a quasi-wheel. Then G' has
a cvcle C' satisfying Corollary 3.1. Hence C' does
not conta.m vo. That is, for any ¢; = (u w) € E,
{(v, ), (2o, w)} N E(C) = 0 or {(v,z:),( a:,, w)} €
E(C’ ). Let Z = {e; = (v,w) € E | {(v, ), (zi,w)} €

E(C")}. Clearly, C' is arim of G’ and Z form a simple
cycle C of G. Suppose that there is y € V(G) - V(C).
Then G’ — E(C') has a simple cycle consisting of four
vertices Lvo,y;:ci,z,-, where e;, ¢; € E both of which are
incident upon vy in G. (Fig.3) This contradicts Corol-
lary 3.1, showing that C is a Hamilton cycle of G. O

Theorem 3.1 RP and RIP for quasi-wheels are NP-
complete.

Proof. The problem of deciding whether or not a given
cubic graph contains 2 Hamilton cycle is NP-complete
{4]. The proof of Lemma 3.1 shown that RP and RIP
for quasi-wheels are NVP-hard.

We can verify that a simple cycle C satisfies Corol-
lary 3.1 in polynomial time. Therefore both RP and
RIP for quasi-wheels belong to VP, ) a

3.2 Super—wheels

Let G = (V, E) be a super-wheel. If a super-wheel G
is derived from a wheel W, = Ky + C, then V- =
V(C.) U {to}, where vy is the hub of W,;;. We also
call yy the hub of G. C, remains in G and it is called
a rimof G. Put Vi = V(C.), and vertices in V' are
called rim vertices. G — vo contains a Hamilton cycle
C such that C = C,. We prove following corollary and
lemma.

Proposition 3.2.1 We can identify a hub of a given
super-wheel G = (V, E) in time O(|E]).

Proof We can assume that G = (V, E) is a super-
wheel without multiple edges. Any hub is a vertex
of degree |V| — 1. Suppose that G has at least two
vertices vo and v of degree |V| — 1. Suppose that vg
is a hub of G. There is a simple cyde C such that
V(C) = V = vp.- And there is a simple cycle C" in
G - v such that V(C') = V — {v} since v is adjacent
to any vertex of V — vp. -G is a super-wheel with the
hub v and the rim C’, since v is adjacent to any vertex
of V — v. Hence, any vertex of degree [V]| — 1 of a
super-wheel can be its hub. S

" Hence, we can identify a hub of a given super-wheel
G = (V, E)in time O(|E]). . a

4 Vertex covers of

wheels

super-—

We first prove the next lemma. A graph is ca.lléd
Hamiltonian if and only if it has a Hamilton cycle.

Lemma 4.1 VCP for Hamiltonian graphs is' NP-
complete.

Proof Let G = (V,E) be a given connected graph,
where V = {v(1), v(2), ¥(3), ..., »(n=1),v(n)} and n 2
4, Put v(n+ 1) = ¥(1), and let

Vi=VU{z,yzli=1..,n}
Ey=EUErVUE,,

where z;,y;, z; are new vertices.
Er = {(zou) (g 5) (ziz) | i=1,n},

E; = {(zi,v()), (yv(i + 1)) | i = 1,....n}.
We denote J(v(i),v(i + 1)) = {zi, s} i=1,...,n
Let G, = (Vi, Ex) be the vraph constructed from
G (Fig.4). Note that G contains a Hamilton cycle.
Clearly VCP for Hamiltonian graphs belongs to NP.
First suppose that V C V' is a vertex cover of G with
|4\ll < k. Let

N=NU{z,pli=1..,n}

Then N is a vertek cover of Gy and [NVa| < |V| +
2n < k + 2n. Conversely, suppose that Ny € Vi be
a vertex cover of G, with |Na| < k + 2n. Then there
is a vertex cover Nj C Vi with |Vi| < | V| such that



{zi, i} C Njand z € Ny for i = 1,..,n. Put N' =
N —{z,yi}i=1,...,n}. Then N'is a vertex cover of
G with |N'| < k. Since VCP for connected graphs is
NP-complete, so is VCP for Hamiltonian graphs. O

We obtain the following theorem.
Theorem 4.1 VCP for super-wheelsis NP-complete.

Proof. Let G, be the Hamiltonian graph constructed
in the proof of Lemma 4.1. Let G' = (V',E’) be a
graph defined by .

V’ = ‘/h V] ‘{UQ},
E' = EyU {(vg,v) | vE Wi},

where v, is a new vertex. Clearly, G’ is a super-wheel
with a hub vy. Suppose that IV is a vertex cover of
G with {V| < k. Define N as above, and let N' =
NiwU{w}. Then N'is a vertex cover of G’ with |N'| =
|Va] +1 £ k+2n + 1. Conversely, suppose N’ is
a vertex cover of G’ with |V < k+2n + 1. The
assumption v ¢ N’ means that |N'| = 4n > |V'|, 2
contradiction. Hence vy € N’ and, therefore, there is
a vertex cover N of G’ with |N”| < |N'| such that
{zi,4i} € V" and z; ¢ N" for i = 1,...,n. That is,
N" = {zi.yi | i = 1,..,n} is a vertex cover of G and
its cardirality is no greater than n, and the theorem
follows. . . ) a

5 Connected vertex covers of
" quasi—wheels

5.1 Standard connected vertex covers
of quasi-wheels

Let G = (V| E) be a quasi-wheel with a rim C, (a sim-
ple cycle of n vertices) and NV C V' be a connected ver-
tex cover of G. For simplicity, let V(C,) = {1,...,n},
where numbering in clockwise. An edge e = (v, w) €
E(C.) is called a B-edge if and only if v,w € N.
We denote the set of B-edges of vV by B(.V). Let
H = (Vg Ey) and I = (V;, Er) be the hub tree and
the inner tree with respect to C,, respectively. V is a
standard connected vertez cover of G (Fig.5 (a)) if and
only it V' = Vi U Ve, where V¢, is defined as in (i)
or (i) :

(i) Veu={2i]1<i<n/2}

if nis even ;

(ii) Nea={2i|1<i < (n-1)/2} U {n} .
otherwise.

Lemma 5.1 Let N be any connected vertex cover of
a quasi-wheel G, and C, be a mim of G. Put [N N
V(C.)| — [n/2] = z. Then

2z - if n is even;
22+ 1 ifn is odd.

BV = {

Proof. |NNV(C.)} > [n/2] since IV is a vertex cover
of G. If INNV(C,)| = [n/2] then

0 if nis even;

IB(N)| = { 1 if nis odd.

We obtain following equations.

(IE(Ca)l = [B(N)) + 2| B(V)| = 2|8 0 V(Ca)l,

[B(N)] = 2N NV(Co)| -n
= 2N V(CH = [n/2]) +
= 2r +aq,
where
a=2{n/2] - n,

_J 0 ifniseven;
*= 11 ifnis odd.
a

Given a rim C, of G, let H = (Vy, Ey) be the hub
tree of G with respect to C,,, and let S(NV) ={v|v €
Vi and v ¢ N}. We can easily prove the following
lemma by induction on |S(:V}))].

Lemma 5.2 For any connected vertez cover N of G,
the induced subgraph [[N] of I contains at least 2k + 1
connected components, where k = |S(V)|.

We obtain the following theorem.

Theorem 5.1 A standard connected verter cover of a
quasi-wheel G is a minimum connected verter cover.

Proof. Let. N and Ns be any connected vertex cover
and a standard connected vertex cover of G, respec-
tively. We have [Ns| = [Vy| + [n/2], and by Lemma
5.2, I{N] contains at least 2k + 1 connected compo-
nents, where k = |S(V)|. Therefore B(V) contains at
least 2k edges, since N is a connected vertex cover of

G.




First suppose that n is even. By Lemma 5.1,

z=|NAV(C)| = [n/2] = [B(N)I/2 2k,

or
IV AV(C 2 k + [n/2].
since
l_'\l‘ N V'Hi = lVHI - k,
We have

IN = [N OV(COl +1N A Vil 2 Vil + [n/2] = [Ns].
Next suppose that n is odd. Then, by Lemma -5:.1,
21 =2 NAV(Cl = [n/2]) +12 2.
Since z is a nonnegative integer,
IV AV(C)| = [n/2] 2 k.
Therefore,

k+[n/2],

N av(c)l 2
= |Vil| -k,

|.’Vﬂ VH!
and
[N = [N OV(Ca)| + NN Vgl > Vil + [n/2] = |Ns|.

It follows that |.V| > |V,], and the theorem follows.
a

Corollary 5.1 For any quasi-wheel G, there is a maz-
imum nonseparating independent set consisting of only
vertices of degree 3.

Proof. Let N's be a standard connected vertex cover
of G = (V,E). Forany v € V — Ns, we have §g(v) =
3. Hence. by Theorem 5.1, V — Ns is a maximum
nonseparating independent set of G. a

5.2 Restricted nonseparating inde-

pendent sets of graphs

It was shown by Ueno et al. {16] that NISP for graphs
with maximum vertex degree at most 3 is polynomi-
ally solvable. We shall consider the following extension
of their problem and show analogously that it is also
polynomially solvable; namely, the problem of find-
ing a maximum cardinality nonseparating independent
set consisting of only degree 3 vertices in an arbitrary
graph (NISP-3 for short). As was done in [16] we

reduces this problem to the linear matroid matching
problem (in fact, to the cographic matroid matching
problem), for which some polynomial time algorithms
have been already proposed (6, 12, 13]. The cographic
matroid matching problem is a matroid matching prob-
lem where a 2-polymatroid is constructed from a co-
graphic matroid.

Let M(G) = (E,7) be a cographic matroid of G =
(V,E) and V3 = {v € V| §g(v) = 3}. From M(G) and
Vi, we construct a 2-polymatroid M3(G) = (V5,r") as
follows. For each v € V3, let v* be any one pair of edges
among those incident upon vin G. Let X* = {v* | v €
X} for X C V3. We denote V5 = {v* | v € V3} and
Ex.-={e,d € E}|v" = {e,e'} € X*} forany X C V;.
Define the rank function r* by r*(Y*) = r(Ey-) for any
Y* C Vy. Then it is easy to see that M35(G) = (V5,r")
is a 2-polymatroid. Fig.7 show an example of M;(G).
If G is the graph of Fig.7, then V5 = {v;,v2,v3,7%s} and
Vi = {v},v3,v3,v;}. For a maximum independent set
of G, we have X = {v;,v,} as 2 maximum independent
set of G consisting of only vertices of degree 3, and a
maximum matching X* = {v], vi} of M5(G).

Lemma 5.3 X C V3 is a nonseparating independent
set of G if and only if Ex- is a matching of M3(G).

Proof. We can assume that G is connected. Note that
X* is a matching if and only if u* Nv* = @ for any
u*,v" € X* and that G remains connected even after
Ex-. is removed from G.

First suppose that X C V; is a nonseparating in-
dependent set of G. Since X is an independent set,
every edge incident to v € X connects v and a vertex
in a connected subgraph G[V — X]. Since é¢(v) =3 =
|v*|+1, (V, E—Ex.) is connected and contains a span-
ning tree of G, meaning that Ex- is an independent set
of M(G). Clearly u*Nv* = @ for any u*,v* € X, and
#(X*) = 2|X"|. That is, X* is a matching in M3(G).

Next suppose that .X C V; is not a nonseparating
independent set of G. Suppose that G has two adjacent
vertices v; and va in .X. Then there are three situations
shown in Fig.8 (a)-(c) : either v; Nv; # 0 (Fig.8 (a))
or removal of v; U v3 from G result in a disconnected
graph (Fig.8 (b),(c)). In either case, r*(X*) < 2|.X"|
and, therefore, .X* is not a matching. Now we assume
that X is an independent set of G such that G[V' - X]
contains twa connected components €, and C». Put
G' = (V,E - Ex.). Since §g(v) = L forany v € X, G
has no edges connecting C, and Ca. Hence Ex- is not
an independent set of M(G), implying that X* is not
a matching of ;5 (G). 0



Thus. NISP-3 can be reduced to solving the co-
graphic matroid matching problem for M3(G) (Fig.6).
Gabow and Stallmann's algorithm solves the graphic
and cographic matroid matching problems in time
O(|V|*|E|) [6]. Hence we obtain the following theo-
rem.

Theorem 5.2 NISP-3 solved in time
O(IVFIED).

can be

Hence, from Theorem 5.1, We have the following
corollary, since any quasi-wheel has O(]V]) edges.

Corollary 5.2 CVCP for quasi-wheels can be solved
in time O(|V]®).
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(b) A quasi-wheel.

@ the hub
~=-==- aedge on the hub tree

a spoke
e the fim C

(c) ‘A super-wheel.

Fig.1 Examples of a wheel, a quasi-wheel
and a super-wheel.

(a) A graph G=(V.E)
which contains constructed from G
a Hamilton cycle. by MOW(G).

Fig.2 An example of a cubic graph G and another
graph G' constructed from G by MQW(G).

(b) The G'=(V".E")

.

(a) The vertex y and the three  (b) The two vertices v( and

edges ej.ejek incidentupony y o 3 simple cycle (denoted
of G. as bold lines) of G'.

Flg 3 An vertex ye V(G)-V(C) of G’ and the vertex y of G.

Fig5 A quasi-whee'I and a standard connected
vertex cover (denoted as black vertices).

D ; g
> amatching -

(b) The corresponding

. mimimun connected -
vertex cover (denoted
as black vertices).

(a) A matching

{ Vl*'VZ*-V3*.V4*]
(denoted by four pairs

of bold edges) of a .
2-polymatroid \43*(\/3* )
constructed from a quasi-wheel G.

Fig.6 Connected vertex covers for a quasi- whecl

Fig.7 An example of a graph G from whichva :
cographic matroid M(G) and a 2-polymatroid
M3*(G) are constructed.
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Table.l A summary of results.
v4 v3 [ QUASI-WHEELS | SUPER-WHEELS
RP NP-complete NP-complete
: i i b) A Hamiltonian graph (this paper) (19]
(a) A graph G without Hamilton  (b) graph G, e VCP Sy BT
cycles, and a minimum vertex constructed from G, and a ) 9]
cover (denoted as black vertices). n;mmum vet;ax cover VCP Open NP-complete
(denoted as black vertices). (this paper)
Fig.4 Construction of a Hamiltonian graph Gy, ever | oM NP-complete
(this paper) {this paper) and {19]

from a given connected graph G.




