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Abstract

A graph G is called an n-channel graph at vertex r if there are n independent spanning trees
rooted at r. A graph G is called an n-channel graph if for every vertex u, G is an n-channel graph
at u. Independent spanning trees of a graph play an important role in fault-tolerant broadcasting
in the graph. A graph G is said to be well-formed if G satisfy a certain condition about its
independent spanning trees. In this paper we show that if G is a well-formed n;-channel graph
and Gs is a well-formed ng-channel graph, then G X G4 is a well-formed (nj +n2)-channel graph.
We prove this fact by constructing n; + ng independent spanning trees of G| x G5 satisfying the
condition from n; independent spanning trees of G; and ng independent spanning trees of Ga.

key words broadcasts , channel graphs , fault-tolerance , independent spanning trees ,
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1 Introduction

For a pair of graphs G} = (V1, E1) and G2 = (V3, Ey), the product of G; and Ga, denoted
by Gi x Gg, is a graph with the vertex set V; x Vo = {(z,y) |z € Vi,y € V2} and the edge
set such that two vertices (uj,us) and (vi,vq) are adjacent in G; X Gs if and only if either
u1 = v; and ugvg € Es, or ug = vy and ujv; € F1. The definition of the product of two graphs
can be generalized to the product of n graphs in the natural way. That is, Gy x G2 X G3 is
(G1 xG2) X G3 or G} x (G2 x G3). Note that (G] x G2) X G3 and G| X (G2 x G3) are isomorphic.
The product of n graphs G; x G2 X -+ X G, means (G X -+ X Gg) X (Ggg1 X -+ X Gyp) for
some k (1 <k <n-1). Each G; (1 €1 < n) is called a component of G; x Gg X -+ x Gj.

Some of popular interconnection networks are product graphs. For example, the n-
dimensional hypercube @, is Qn-1 X Ko = Qo X Ko x Ko =---= Ky Xx K9 X --- X K3, and an
n-dimensional generalized hypercube Qf, is Q% _1 xK; = Q!, ;XK\ xK; = -+- = K;x KX+ - x K,
where K, is the complete graph of order t. The (m; X -+ x m,)-mesh is Ly, X -+ X L, , and
the (my X --- X my)-torus is Ry, X -++ X Ry,,, where L; and R; are a linearly linked graph of
order i and a ring of order %, respectively. The hyper de Bruijn graph HD(m,n) is Qp X Dy,
and the hyper Petersen graph HP, is Q,—_3 X P, where D, and P are the binary de Bruijn graph
of order 2" and the Petersen graph, respectively.

Denote by dg(z, y) the distance between  and y in G, by D(G) the diameter of G, by dgyg(G)
the average distance between vertices in G, and by ¢(G) the vertex connectivity. Youssef [4]
showed that for a pair of graphs G1 and G2, dg, x6, ((z1,72), (11, ¥2)) = dg, (z1, 1) +dg, (%2, ¥2),
D(G1 x G2) = D(G1) + D(G2), davg(G1 % G2) = davg(G1) + dayg(G2), and (G x Gg) =
c(G1) + c(G2).

Two spanning trees of a graph G = (V, E) are called independent if they are rooted at the
same root r, and for each vertex v in V, the two paths from r to v, one path in each tree, are
internally vertex disjoint. A graph G is called an n-channel graph at vertex r if there are n
independent spanning trees of G rooted at r. If G is an n-channel graph at every vertex of G,
we call G an n-channel graph. For example, R3 X R3 is an 4-channel graph, and 4 independent
spanning trees of R3 x R3 are shown in Figure 1. Itai and Rodeh [3] gave a linear time algorithm

Figure 1: 4 Independent spanning trees of R3 X Rj.

for finding two independent spanning trees in a biconnected graph. Cheriyan and Maheshwari [2]
showed how to find three independent spanning trees of G = (V, E) in O(|V||E|) time. Zehavi
and Itai [5] also showed that for any 3-connected graph G and any vertex r there are three
independent spanning trees rooted at r. They conjectured in [5] that any k-vertex connected
graph has k independent spanning trees rooted at an arbitrary vertex . This conjecture is still
open for any k > 3.

It has been shown that broadcasting through independent spanning trees are efficient and
reliable [1] [3]. In fact, if G is an n-channel graph and the source vertex is not faulty, then



there exists a broadcasting scheme that tolerates up to n — 1 faults of fail-stop type and up
to |(n — 1)/2] faults of Byzantine type even in the worst case. All transmissions by such a
broadcasting scheme contribute to the majority voting to obtain the correct message, and its
communication complexity is optimal to tolerate up to [(n — 1)/2] faults of Byzantine type [1].

A set of independent spanning trees rooted at the same vertex is said to be well-formed if
for each pair of distinct independent spanning trees in the set, T1 and T5, any son of the root in
T is a leaf of T, and any son of the root in T is a leaf of T3. If for each vertex u of G there are
n well-formed independent spanning trees, G is called a well-formed n-channel graph. It is open
whether for any pair of an nj-channel graph and an ng- channel graph, the product of these two
graphs is an (n; + n9)-channel graph.

In this paper we show that if Gy is a well-formed nj-channel graph and G is a well-formed
na-channel graph, then Gi X Gy is a well-formed (n; +n2)-channel graph. The proof of this fact is
by constructing n; +ne well-formed independent spanning trees of G1 x G from n; well-formed
independent spanning trees of G; and ng well-formed independent spanning trees of Ga. It is also
not known whether any n-channel graph is a well-formed n-channel graph. That is, we do not
know far whether the problem solved in this paper is equivalent to the open problem mentioned
above. From the result solved in this paper we can say that if for each component graph G;
(1 € < n), the vertex connectivity of G; coincides with the number of well-formed independent
spanning trees rooted at the same vertex of G;, then the vertex connectivity and the number
of well-formed independent spanning trees rooted at the same vertex of G1 X Gg X -+ X Gp
coincide.

2 Well-Formed Independent Spanning Trees

A graph G is n-regular, or regular of degree n, if every vertex of G has degree n. A rooted tree
is called a broom if its root has just one son.

Theorem 1 Independent spanning trees at the same root of a graph are well-formed, if each of
the independent spanning trees is a broom.

Proof: Let 77 and T3 be independent spanning trees rooted at r of G. Suppose that both Tj
and T are brooms. Assume, to the contrary, that the son s of r in T} is not a leaf of 7%. Then
there is a son v of s in T5. The path from 7 to v in T} and the path from r to v in T} have a
common internal vertex s. This is contrary to the assumption that T and T, are independent.
Hence, both T} and T should be well-formed. 0

If an n-regular graph is n-channel, then for any set of n independent spanning trees at the
same root of the graph, each tree of the set should be a broom. We therefore have the next
theorem.

Theorem 2 If G is n-regular and n-channel, then G is a well-formed n-channel graph.

We show some independent spanning trees of Ly x L3 in Figure 2, where trees shown in (a)
are independent spanning trees but they are not well-formed, trees shown in (b) are well-formed
independent spanning trees but they are not brooms, and trees shown in (c) are well-formed
independent spanning trees and they are brooms. So far we cannot find any example such that
a graph G is n-channel but there are no n well-formed independent spanning trees rooted at the
same vertex of G. However, we do not know at present whether any n-channel graph is well-
formed. In the following section, the condition that independent spanning trees of component
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Figure 2: Some independent spanning trees of Ly X L3.

graphs are well-formed, is required for the construction of n; + ng independent spanning trees
of a product graph from n; independent spanning trees and ny independent spanning trees of
its component graphs.

3 Construction of Independent Spanning Trees

An interesting question is whether G = G| X - -- X Gy, is an (ny +ng+ -+ - 4 ny,)-channel graph if
for each i (1 €4 < n), G; is an n;-channel graph. To solve this problem, it is sufficient, to show
that for any pair of an n;-channel graph G; and an ng-channel graph Ga, G = G x Gz is an
(ny + ng)-channel graph. Unfortunately we have not succeeded yet in solving this problem. In
this section we show how to construct n; + ng well-formed independent spanning trees rooted
at (r1,72) of G from n; well-formed independent spanning trees rooted at r; of G1 and na
well-formed independent spanning trees rooted at r2 of Gs.

We first define two operations “-” and on spanning trees. We can regard these operations
as constructions of spanning trees of a product network. Let Gi and G be two graphs, r, be
a vertex of G1, and r3 be a vertex of G. Let T1 and T% be spanning trees rooted at r; of G
and rooted at ro of Go, respectively. Let s be a son of r; in Tj. We construct a spanning tree
rooted at (r1,72) of G1 x G3, denoted by Ty - Tu(s) as follows:

[
(o]

(1) From (ry,r2) we develop the first component along T7. That is, we connect
(z,72) and (y,72) by an edge if there is an edge between z and y in T7. Note
“that by this construction all the vertices in {(z,r2)|z € V(G1)} are connected.

(2) For any z € V(G1) — {r1}, from (z,r2) we develop the second component along
Ty. That is, for each z € V(G;) — {r1} we connect (z,y) and (z, z) by an edge
if there is an edge between y and z in T». Note that by the construction of (1)
and (2), all the vertices in Gy x Go — {(r1,y)|y € Ga —{r2}} are now connected.

(3) For each y € V(G3) — {r2}, we connect (s,y) and (r1,y) by an edge.

It is not difficult to verify that T} - Th(s) constructed above is a spanning tree of Gy x Go.
This is the natural way to construct a spanning tree from T} and T5. That is, we first develop the
first component, and then develop the second component. The only exception is the connection
from (r1,72) to (r1,y) for each y € V(G2) — {r2}. This path in T - Ta(s) is exhibited by
(r1,m9) = (s,79) —7T2 (s,9) = (r1,y) instead of (r1,72) —2 (r1,y). For a vertex (z,y) €
(V(G1) — {r1}) x (V(Ga2) — {r2}), the path from (r1,79) to (z,y) in T; - Ty(s) is exhibited by
(7‘1,7‘2) —h (1, 72) —T (xv y)

- We can symmetrically construct a spanning tree Tj - Ty(t) rooted at (r1,72) of G1 x Go as
follows:



(1) From (r1,r2) we develop the second component along T5.

(2) For each y € V(G3) — {ra}, from (r1,y) we develop the first component along
T;.

(3) For each z € V(G1) — {r1}, we connect (z,t) and (z,r2) by an edge, where t is
a son of r9 in Th.

From the construction described above the next lemma is immediate.

Lemma 1 Fori:=1,2, let r; be a vertez of Gi’ T; be a spanning tree rooted at r; of G;, and s;
be a son of rj in T;. Then Ty -T(s1) and T} - Ta(s2) are well-formed independent spanning trees
rooted at (ry,r2) of G1 X Ga.

We next define another way of constructing a spanning tree T o Ty(s) rooted at (r1,r2) of
G x G9 from spanning trees T} and T» rooted at r; of G and rooted at rg of Gy, respectively,
where s is a son of 71 in T1.

Suppose that sq, s9,- -, s are all the sons of 1 in Tl. Denote the subtree rooted at s; of Ty
by STI for i = 1,2,...,k. We let s be any one of s1,s2,---,sk. Without loss of generality, we
may assume that s = s;. The construction of T1 o T»(s1) is as follows:

(1) For any 1 < ¢ < k, we connect (r1,72) and (s;,72) by an edge.

(2) For 1 < i < k, from (s;,r2) we develop the second component along T5.
From the construction of (1) and (2) all the vertices of {(r1,r2)} U {(si,¥)|i =
1,2,--, k and y € G2} are now connected,

(3) For any y € V(G2) and 1 < ¢ < k, we develop the first component from (s;,y)
along ST}. At this stage only the vertices of {(r1,y)|ly € G2 — {r2}} are not
connected.

(4) For each y € V(G2) — {r2}, we connect (s1,y) and (r1,y) by an edge.

It is not difficult to verify that Ty o Th(s;) constructed above is a spanning tree of Gy X Ga.
The strategy of the construction of 77 o Th(s;) can be described as follows: We develop one
step along first component, then develop the second component, and then develop the first
component. Let (z,y) € V(G1 x G2), z # r1, y # 2 and z be a vertex in STi. The difference
between T1 -Ty(s1) and Ty 0 Ty(s;) is clear from the following contrast. The path from (ry,r3) to
(z,y) in T} - Ta(s1) is exhibited by (ry,72) — T (z,ry) —T2 (z,y) while the path from (ry, r2)
to (x,y) in T} o Ta(s1) is exhibited by (ri,r2) = (si,72) —12 (s5,y) —7T (z,y).

We can symmetrically construct a spanning tree 77 o T‘z(t) rooted at (r1,7r2) of G1 x G2,
where t is a son of 79 in T5. ,

From the construction of the spanning trees described above we have the following two
lemmas.

Lemma 2 Let T},T5, -, Tk be k well-formed independent spanning trees rooted at r1 of Gi,
and let 51,82, -+, 5, be sons of 1y inTy, Ty, -, Tk, respectively. Let S be a spanning tree rooted
at ro of Go. Then Ty o S(s1), Ty 0 S(s2), ---, Tr 0 S(sx) are well-formed independent spanning
trees rooted at (r1,72) of G X Ga. »

Lemma 3 Let T} and Ty be well-formed independent spanning trees rooted at r1 of G1, and let
St ar}d Sy be well-formed independent spanning trees rooted at 9 of Go. Then TioS1 (t1) and
T 0 So(s9) are well-formed independent spanning trees rooted at (ri,72) of G1 X G2, where t1 is
a son of ry in Ty and s9 15 a son of Ty in So.



We are now ready to describe how we can construct (n; + ng) well-formed independent
spanning trees in G1 x Gy from nj well-formed independent spanning trees of G; and ng well-
formed independent spanning trees of Ga. Let Ty, Ty, -, T,,, be n; well-formed independent
spanning trees rooted at r; of Gy, and let Sy, Sy, - - -, Sp,; be ng well-formed independent spanning
trees rooted at rg of Go. Let A; be the set of sons of 7, in T} (1 < i < my), and let B; be the
set of sons of 73 in §; (1 € ¢ £ ng). Since we assume that the n; independent spanning trees of
Gi and the n2 independent spanning trees of G2 are well-formed, for each ¢ (2 < ¢ € n;) any
element of A; is a leaf of T}, and for each ¢ (2 < i < ng) any element of B; is a leaf of S;. We
choose one element, say t;, from each A; (1 < i1 < n1), and one element, say s;, from each B;
(1 <1< ny).

Let Ti[A2,- -, An,] denote the tree obtained by removing all the vertices in Ao U+ U Ay,
and their induced edges from 7. Remember that every vertex in ApU:-- U Ay, is a leaf of T7.
Similarly, let S1[Bg,- - -, By, ] denote the tree obtained by removing all the vertices in BaU-: - -\UBy,
and their induced edges from S;. Furthermore, let var(T}) denote the spanning tree obtained
by adding every edge rit and vertex t to T1{A2, -, A,,] such that tisin Ao U---U A,,. Note
that T is different from var(T}). That is, every t in AgU---U Ay, is directly connected to r; in
var (T}). Similarly, let var(S;) denote the spanning tree obtained by adding every edge r2s and
vertex s to S1[Bsg,- -, Bp,] such that s is in BaU---U B,,. Consider the following n; + ny trees:

T][A2,"‘,A,”] "Ua,'l‘(Sl)(tl) 3 T201)(17'(Sl)(t2) ) R Tnx O’UO.T(SI)(tnl),

’UG/I‘(T})'gl[BQ,"',anl(Sl), var(Tl)o.§2(32), e, var(Tl)oS’nz(snz).

Among the trees listed above, T} o var(S)(t;) and var(T}) 05']-(3_,-) (2<t<n;,2<7< ny) are
spanning trees of G x G2. However, T} [Ag2,- -, Ap,]-var(S;1)(t;) and var(Tl)-S'l[Bz, -+, Bp,l(s1)
are not spanning trees of G x G2 since some vertices are missing. For example, vertices in
{(ti,z2)]2 € i £ n; and z3 € G2} are not contained in the vertex set of T][Ag,---,Anl] .
var(S1)(¢1). For 2 < i < ny, let f(¢;) be the father of ¢; in 7). We add the vertices and the
edges in

5 = { vertex (t;,z2), edge (f(t:),z2)(ti,x2) | 2 < i < ny and z3 € Ga}
to Ti[Ag, -+, An,] - var(S1)(t1). Then we can obtain a spanning tree of G X Gg, denoted by
18 « TllAg,"',An]] - var(S1)(t1). Similarly, we add the vertices and the edges in T to
var(T}) - S'I[Bz, -++,By,](s1) to make a spanning tree of G; x G2, denoted by T®) x var(T}) -
SI[B21 - 1B112](31), where

T©) = { vertex (z1,s;), edge (z1, f(5:))(z1,5:) | 2 < i < ny and 21 € G1}.

Theorem 3 Let T, -+, Ty, be well-formed independent spanning trees rooted at ry of G1, and
let S1,-++,8n, be well-formed independent spanning trees rooted at ro of Ga. The following
ny + ng trees are well-formed independent spanning trees rooted at (r1,72) of G1 X Ga:

8« T[4z, -, An,] - var(S1)(t1) , Trovar(S1)(ta) , -+, Ty 0var(S1)(tn),
T s var(Ty) - $1[Ba, -+, Bny)(s1) , var(Ti1)oSa(sa) , -+, var(Ti)o Sny(sn,)-

Proof: Let (z1,z2) be an arbitrary vertex of G; X G3. We prove that the n; + ng paths from
(r1,79) to (z1,%2), each in one of the n; + ng spanning trees listed above, are internally vertex
disjoint.
Case 1: ) =r1),19 # 79 or Ty # 71,29 = T9.

Due to the symmetry, it is sufficient to consider only the case where z; = 71,z2 # 7.
The paths from (r1,72) to (z1,z2) in S * ’fl[Az,---,An,] - var(S)(t1), T o var(S1)(ta), - -,



Tn1 ovar(S1)(tn, ), TG xvar(Ty) -S'l[Bg, -+« B, ](51), var(Ty)oSa(s2), - -, var(Tl)ognz(snz) are
(ri,72) = (t1,r2) —*75) (1, 39) = (r1,32), (r1,72) = (t2,m2) — ) (82, 29) = (r1,22),
ey (r1,m2) = (tng,r2) —PE) (tn,m9) = (r1,32), (r1,m2) —5 (r1,32), (r1,m2) —*
(r1,22), + -, (r1,79) =52 (r1,x2), respectively. These paths are internally vertex disjoint.
Case 2: 71 € V(G1) — {r1,t1,t2, ", tn, } and 2o € V(G2) — {ra, 51,52, *,8n, }-

We can see that the paths from (r;,72) to (z1,z2) in the nj +ng spanning trees are internally
vertex disjoint from Lemma 1, Lemma 2, Lemma 3 and the following facts:

The path from (r1,72) to (z1,z9) in WS % T [A2,: -+, An] - var(S1)(t1), i.e., (r1,72) —T
(z1,79) —5t (21, z2), is internally vertex disjoint with the path from (r1,72) to (z;,2) in
T o var(8y)(t:), i.e., (r1,72) = (ti,r2) —5' (4;,22) —7T¢ (z1,22), for 2 < i < ny, and it is
also internally vertex disjoint with the path in var(T}) o Si(s), i.e., (r1,r2) = (r1,8:) —7T!
(z1,8;) —5 (x1,79), for 2 < i < ny. Symmetrically, the path from (r},79) to (z1,22) in
T) xvar(Ty) - $1[Ba, -+ -, Bn,)(s1) is internally vertex disjoint with the paths in var(T}) o Si(s:)
and T; o var(S1)(%:).

Case 3: Either z1 € {t1,%2,--*,tn, } Or 22 € {51,582, "+, 5n, }-

This case is more complicated than the previous two cases. Due to the symmetry, it is
sufficient to consider only the case where =1 € {t1,%2, - -,tn, } and z2 € V(G2) — {r2}. For the
following four subcases we can verify the fact that path from (r1,72) to (z1,22) in the ny + no
spanning trees S * Ty[Ag,- -, An,] - var(S1)(t1), T; o var(Sy)(t;) for each i (2 < i < ny),
T % var(Ty) - Sy [Ba, -, Bn,](s1), var(Ti) o Si(s;) for each i (2 < i < ny), are internally vertex
disjoint.

(1) zy = t1,22 € V(G2) ~ {r2,51, ", 8n, }.

The nj + n9 paths are
(r1,m2) = (t1,m2) —5 (t1,22), (r1,72) = (ti,r2) —5 (ti,32) —T (t1,72) for each i (2 <
1 < ny),

(T1,7‘2) —5 (1‘1,:]22) — (tl,.’l:g), (1‘1,7‘2) — (1'1,5,') - (t1, 8iy) —ySi (t1,z2) for each ¢z (2 <1 <
ng).

(2) T = t1,$2 € {sla"'7sng}-

The nj + ng paths are
(r1,m2) = (t1,72) = (41, 22), (r1,72) = (ti,72) = (8, x2) —7T (81, 22) for each i (2 < i < ny),
(r1,72) —51 (1, fi(z2)) = (81, fi(z2)) = (t1,2), where fi(z2) denotes the father of z in Si,
(r1,72) = (r1,8:) = (t1,8;) —5 (t1,z2) for each i satisfying s; # z2,

(r1,72) = (r1,8i) = (t1,8:) for s; = z2.

(3) ] € {t2a et ,tnl},$2 € V(G2) - {7'21 Sty Sn2}~

The n; + ny paths are
(r1,72) —T (fi(z1),72) —% (f1(z1),22) = (z1,Z2), where fi(z;) denotes the father of z; in
T11 )

(r1.72) = (ti,r2) —51 (ti,z2) —T (21, 22) for each i satisfying ¢; # x,
(r1,72) = (ti,72) —5 (ti, z2) for t; = 71,

(r1,72) —%1 (r1,22) = (21, 22),

(r1,72) = (r1,8:) = (z1, 5¢) —Si (z1,z2) for each 7 (2 <1 < ng).

(4) z; € {tg,-- ',t,.l},:l.‘z € {31,---,3,,2}.

The n; + ny paths are
(r1,r2) =T (fi(z1),m2) = (fi(m1),32) = (21,22), (r1,72) = (ti,72) = (ti,39) —7T (21,72)
for each i satisfying t; # 1,

(ri,m2) = (ti,r2) = (ti, z2) for t; = 2y,
(r1,r2) —5 (r1, fi(22)) = (21, fi(z2)) = (21, 72),
(r1,m2) = (r1,8:) = (z1,5:) — (z1,72) for s; # 79,



(r1,72) = (r1,8:) = (21, 8:) for si = z2.
From the construction described above, the set of these independent spanning trees rooted
at (ry,r2) of G; X Gy are well-formed. , 0

4 Concluding Remarks

We have shown how to construct (nj+ns) well-formed independent spanning trees in the product
graph of a well-formed n;-channel graph and a well-formed ng-channel graph. Hence, we can
construct (ny +ng+-+-+n,) well-formed independent spanning trees of G = G1 X G2 X -+ X Gy,
by successively applying the construction given in this section if G; is a well-formed n;-channel
graph for each 7 (1 <1 < m).

In practice shallow spanning trees are desirable. Generally speakmg, the maximum hight of
the n independent spanning trees of a product network by the construction given in this section
depends on the order of product as well as its component graphs. For example, the maximum
hight of the n independent spanning trees of the n-cube by our construction is 2n — 1 provided
we take the product in the order

(- (((G1 x G2) x G3) X G4) -+ X Gn_1) X Ghn.
If we take the product in the order
(G1 x G2) x (G3 X Gg) X - -+ X (Gn—3 X Gp—2) X (Gn1 X Gr),

then the maximum hight of the n independent spanning trees of the n-cube is about %n. This
is optimal in the sense that the smallest maximum hight of n independent spanning trees of the
n-cube can be constructed by the method given in this section.

For the construction of independent spanning trees of product graphs, we do not know at
present whether we can remove the condition that each component graph should be well-formed.
A more interesting problem is how we construct independent spanning trees of an arbitrarily
graph ? This is a very hard problem. In fact, it is open whether every m-connected graph
has n independent spanning trees with the same root. The problem has been solved only for
k-connected graphs, k < 3. Furthermore, even if we know the constructions of independent
spanning trees some graphs, it is still important how we can construct independent spanning
trees with good properties, for example with low hights and regular structures.
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