7 N I U X 4L 05
(1996. 3. 15)

FELADOEXT I OA FO K FHICEWEL KD S

HRHE e
HksE THRFR ST K

W RfT
WRARL RS RS HFHE

ARBTIR, T hOA FOERFERTIEELVCOPRET 2. RET HEZTTHIE
FAMEE, BEIEE O(B(T+r?) BEERE O() Thb, 1L, f oML, r
B2 rad FoS5vs, OT+r)dd =%y bA T 7 VOFERTH L, EADETIOAF
LTI, EYBEAQEVIRICHIST 2 HEORERTR). JOHETK FHICEVE
23R B DL ERBFHEMERE O(n2+ K(T+r?+logn)) ThYH . LEREERE O(Krn)
Thbo LELnIBEEDORELSTHE, FILEAPSTERD L ST, #H -T2z
AT ECk by, BRMEERE OK(T +ri+logW)) &7) ZRMEHERIE O(logW + Krn) &
Do 1272l W HEADHEIMMEDTERKDETH %,

K Best Bases of a Weighted Matroid

Tomomi Matsui
Department of Mathematical Engineering and Information Physics,
Faculty of Engineering, University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan. tomomi@misojiro.t.u-tokyo.ac.jp

Yasuko Matsui
Department of Mathematics,
Faculty of Science, Tokyo Metropolitan University,
Minami-Ohsawa, Hachioji, Tokyo 192-03, Japan. yasuko@math.metro-u.ac.jp

In this paper, we propose an algorithm which generates the bases of matroids. The
enumeration algorithm requires O(B(T +r?)) time and O(r®) space where 3 is the number
of bases, r is the rank of a given matroid and O(T + r) is the time complexity of circuit
oracle. In the last section, we describe a ranking algorithm which generates all the bases in
order of nonincreasing order of weight. The algorithm requires O(n? + K(T + r? + logn))
time and O(K'rn) space for finding K best bases. When the weight vector is integer valued,
time complexity becomes O(K(T + r? + log W)) time and the space complexity becomes
O(log W + Krn) space by employing the radix heap structure where W is the maximum
absolute value of weights.

1 Introduction

In this paper, we propose an algorithm which generates the bases of matroids. The
enumeration algorithm requires O(8(T + r?)) time where f is the number of bases, r is
the rank of a given matroid and O(T + r) is the time complexity of circuit oracle. In
the last section, we describe a ranking algorithm which generates all the bases in order
of nonincreasing order of weight. If we employ the Kapoor and Ramesh’s data structure
[4], then the algorithm requires O(n? + K (T + r? + logn)) time and O(Krn) space for
finding K best bases. When the weight vector is integer valued, time complexity becomes
O(K(T + r* 4 log W)) time and the space complexity becomes O(log W + Krn) space
by employing the radix heap structure [1,2] where W is the maximum absolute value of

weights.

2 Main Framework

In this section, we give some definitions and describe the main framework of our algo-
rithm.

Let us consider a matroid M = (E,B) with a finite set F and a collection of bases B.
We denote |E| by n and |B| by 8. The rank of the matroid M is denoted by r. For any
base B of M and for any element e ¢ B, C(B|e) C E denotes the unique circuit contained
in B +e. For any element e € B, the unique cocircuit contained in (E\ B) + e is denoted
by co-C(Ble).

Throughout this paper, we assign a linear ordering on the set E by setting E =
{e1,€2,...,em}. For any element e;, we say that the indez of e; is j. We denote the index
of an element e by index(e). Given a subset E' C E, the element in E' with the smallest
index is called the top element of E’ and denoted by top(&'). Similarly, we call the element
in B’ with the largest index the bottom element of E' and denote the element by btm(E').
For any pair of subsets E' and E”, we say E' is lexicographically greater than E”, denoted
by E' >14 E" or E" <joy E', when there exists an integer j satisfying that (1) for any k
with0 <k <j<m,e € Eifand only if e, € E” and (2) E' D ¢; ¢ E".

In this paper, we assume that the following property holds

Assumption 1 There ezists a sequence of integers (jo, jy, - . .,J.) satisfying that (1) 0 =
Jo < j1 < - < jo = m, and (2) the partition (F\, F;,...,F) of E where the subset
Fy = {ej,_,+1,€js_142,- - -1 €j, }, satisfies the conditions that Fy is a base of M and:

Vs € {2,...,r}, Fy 1s a mazimal independent set in E \(FAUFR U - UF_,).

We denote the base F; by B*. Clearly, B* is the lexicographically maximum base of M.
The partition (F,. .., F}) defined in Assumption 1 is called greedy partition of E and each
subset in the greedy partition is called greedy set.

For any base B’ different from B*, ¢(B’) denotes the base B'— f +¢ where f = btm(B")
and g = top(co-C(B'|f)).

Lemma 1 Let B’ be a base different from B*. If $(B') =B’ — f + g, then g € B* ¥ f.

It is clear from Assumption 1. and so proof is omitted. The above lemma implies that
for any base B’ # B*, ¢(B') >, B’ and there exists a positive integer ¢ satisfying
¢'(B") = B*.

Given a base B'(# B*), we say B’ is a child of #(B’) and ¢(B’) is the parent of B'.
Then, we can construct a tree structure, denoted by (B, ¢), with the node set B and the
arc set {(B,B') € Bx (B\ {B*})| B = ¢(B')}. Clearly, the base B* corresponds to the
root of this tree structure. Our algorithm traverses this tree structure by using a suitable

tree search rule and outputs all the bases of M.

3 Finding All the Bases of a Matroid

In this section, we propose a procedure for finding all the bases of a matroid.

Let B be a base of M. We say that an element f is a child pivot element of B, if there
exists a child B’ of B such that B’ > f ¢ B. An element g in B is called a parent pivot
element of B, if there exists a child B’ of B such that B # g € B'. Let B'=B — g+ f be
a child of B.

From’ the definition of the parent-children relation, the parent pivot element g is the
top edge of co-C(B’|f). Since co-C(B'|f) = co-C(Bl|g), ¢ is also the top edge of co-C(B|g).
We denote the edge-subset {¢’ € B | ¢’ is the top edge of co-C(B|e’)} by Bst(B).

Claim 2 Any parent pivot element of a base B is contained in Bst(B).
Next, we give an essential characterization of the child pivot element.

Lemma 3 Let B be a base M. An element f is a child pivot element of B if and only
if (1) index(bim(B)) < index(f) and (2) there exzists an element g € Bsi(B) such that
B — g+ f 13 a base.

The following lemma characterizes the set of children.
Lemma 4 Let B be a base M. The subset B' = B — g+ f is a child of B if and only if B’

satisfies the following conditions; (1) B' 1s a base, (2) g € Bst(B), (8) index(btm(B)) <
index(f).

Now we introduce the matroid tableau. For any base B of M = (E,B) and a subset
F of E, the (matroid) tableau Tbl(B|F) is a 0-1 valued matrix X = (z;,) satisfying that

rows are indexed by B, columns are indexed by F' and each component z;, satisfies;

1. if B— f+ gis a base,
Tfg = .
0 otherwise.

For any element e € E, we denote the tableau Tbl(B|{e}) by Tbl(Ble). Clearly from
the definition, for any element e ¢ B), Tbl(B|e) is the characteristic vector of the subset
C(Ble) — e indexed by B.

Then, Lemma 4 is equivalent to the following.

Theorem 5 Let B be a base M and X be the submatriz of Tbl(B|E) satisfying that rows
are indezed by Bst(B) and columns are indezed by {f € Elindex(btm(B)) < index(f)}.
Then, subset B' = B — g+ f is a child of B if and only if the element of X indezed by
(g,f) is equal to 1.

The above theorem give an idea for generating all the children of the current base B.
Let ex be the bottom edge of B. For each element f such as index(f) > k, we check
whether Tbl(B|f) is the zero vector or not. If it is not the zero vector, we generate the
base B — g + f for each non-zero element of Tbl(B|f).

Although the above algorithm finds all the children exactly, it is not so efficient. In the
worst case, the algorithm checks O(n — r) column vectors and and finds that the current
base B has no child. In the following, we give an idea for finding all the pivot elements
efficiently.

Assumption 1 implies the following lemma.

Lemma 6 Any cocircuit C* of M satisfies the property that if C*NF,yy # 0, then C*NF, #
0, where F, and Fy,; are greedy scts .

From the above, we can show the following.

Theorem 7 Let B be a base of M and e the béttom element of B.

If a greedy set Fy contains a child pivot edgé of B, then F,_; contains the bottom element
of B or a child pivot element of B.

Corollary 8 Let B be a base of M and f be a child pivot element of B. Then index(f) <
index(btm(B)) + 2r — 1 or there exzists a child pivot element f' of B such that index(f) —
(2r — 1) < index(f’) < index(f).

The above property gives an algorithm for finding all the child pivot clements efficiently.
Denote the bottom element of B by e;. In our algorithm, we check each element in
(exs1,---,€n) in this order whether it is a child pivot element or not. When a consecutive
2r — 1 elements are not child pivot element, we can stop scanning the element.

Now we have an algorithm for finding all the bases.

Algorithm A

input: a base B
output: family of bases {B’ € B|¢(B') = B}

Al: begin

A2: construct the subset H = Bst(B) from Tbl(B|B*);

A3: let e; be the bottom element of B;

A4: set n’ = min{k + 2r — 1,n};

A5: construct the matroid tableau Tbi(B|F') where F' = {ek41, €kt2y-- - En'};
A6: let X be the submatrix of Tbl(B|F) whose rows are indexed by Bst(B);

AT: set Q be the sequence of column vectors of X which is arranged in increasing
order of column indices;

A8: set ¢ be the number of non-zero (column) vectors of X;
A9: while ¢ #0do
A10: begin

All: remove the first vector v of Q;

Al2: if v is not the zero vector then

A1l3: begin

Al4: set g:=q—1;

A1l5: for each nonzero element v, of v do output the base B — g + f;
Al6: end;

AlT: set ex be the index of the vector v;

Al8: if k¥ +2r—1<nthen

A19: begin

A20: construct the vector Tbl(B|exr yar-1);

A21: set v’ be the subvector of Tbl(B|ex42,-1) indexed by Bst(B);
A22: add v’ to the last of Q;

A23: if v’ is not the zero vector then set ¢ :=q +1;

A24: end;

A25: end,

A26: end

Now we discuss the time complexity of Algorithm A. For any base B and an element
f & B, we assume that the tableau Tbl(B|f) is obtained in O(T + r). Then the above

algorithm requires O(r? + (8(B) + 1)(T + r)) where B(B) is the number of children of B.
The memory complexity is O(r?).

By using Algorithm A as a subprocedure, we can construct a base enumeration algo-
rithm which traverses the tree structure (7, ¢) by using a tree search rule, e.g., depth-first
search rule or breadth-first search rule. Thus, the overall time complexity of the enumer-

ation algorithm becomes

O(Y(r® + (B(B) + 1)(T + 1)) = O(BIr* + (IB] - 1) + [B)(T + r)) = O(BI(T +1*).
Bes
When we call Algorithm A recursively, it corresponds to a base enumeration algorithm
which traverses the tree structure by using the depth-first search rule. Since the height of

the tree structure is r, the depth-first search rule saves the memory space to O(r?).

4 Algorithm for Generating K best bases of a weighted matroid

Let M = (E,B) be a matroid and w : E — Z be an integer weight vector indexed by
E. For any subset E' C E, the weight of E, denoted by w(E’), is the value 3,5 w(e). In
the rest of this paper, we assume that for any pair of bases B, B’ of M, w(B) # w(B) if
B # B’. This assumption holds by breaking ties lexicographically.

A base of M which maximizes the weight is called maximum base of M. It is well
known that the greedy algorithm solves the problem for finding a maximum base. Here,
we discuss the problem for generating K best bases of a weighted matroid.

In this section, we assume the following.

Assumption 2 There ezists a sequence of integers (jo, j1,--.,7:) satisfying that (1) 0 =
Jo < Jj1 < < jy=m,and (2) the partition (Fy, Fy, ..., F}) of E where Fy = {€j,_, 41, €jy_142,- - -» €,
satisfies the conditions that (a) Fy is a mazimum base of M and (b) Vs € {2,...,r}, F, is
a mazimal independent set in E\ (F{UF,U---UF,_;) which mazimizes the weight w(F,).

The following properties gives an idea for the problem.
Lemma 9 For any base B and its child B', w(B) < w(B').

From the above lemma, if we traverse the tree structure by using best first search rule,
we can generate all the bases in decreasing order of weight. More precisely, the ranking
algorithm maintains all the scanned bases by a set Q. At the entrance of the algorithm,
we insert the maximum base to Q. In each iteration, we remove and output the maximum
weight base B in @ and insert all the children of B to Q. If we maintain the set Q
by an ordinary heap structure, the algorithm requires O(|B|(T + 7% + rlogn)) time and
O(|B|+7?) space. By applying the radix heap structure [1,2], which is proposed for shortest
path problem, it requires O(|B|(T'+7*+r log W)) time and O(|B|+7?+log W) space where
W = max{|w(e)| | e € E}. If we use the Kapoor and Ramesh’s data structure for K best

spanning tree problem [4], the time complexity becomes O(|B|(T + r% + logn)) and space
complexity becomes O(|B| + r?).

Now we consider the problem for finding K best bases.

Lemma 10 Let B be a base of M. If B' = B — g + f is the mazimum weight child of B,
then index(f) < index(btm({B)) + 2r — 1.

Lemma 11 Let B be a base of M. and B{, B), ..., B be the set of children of B satisfying
that w(By) < w(B,) < -+ < w(By). Then, index(btm(Byy1)) < index(bim(By)+2r —1)
forallk=1,2,...,k—1.

The above lemmas imply an algorithm for generating K best bases of a matroid.

For any base B of M, we denote the tableau Tbl(B|X) where X = {e € E | 1 <
index(e) < j} by Tbl[BJi, j).
Algorithm B

B1: begin
B2: set Qg be the empty queue for (¢, f) € BX E\ B ;
B3: output B* as the maximum base;
B4: set r’:=min{3r + 1,n};
B5: construct the tableau Tbl[B*|r + 1,7'];
B6: insert (B*, Tbl(B*|B*) = I, Tbl[B*|r + 1,7']) to Qout;
B7: generate the children B’ = {B' = B—g+f € B| g € Bst(B), r+1 < index(f) <r'};
B8: set Qscan = B';
B9: while Qgscan # 0 do
B10: begin

Bi1: set B be the base in Qscan which minimizes the weight;

B12: remove the base B from Qscan; output B;

B13: set k := index(btm(B));

B14: set k' := min{k + 2r — 1,n};

B1s: find the triplet P = (¢(B), Tbl(¢(B)|B*), Tbl[¢(B):, ;]) in Qout;

B16: if j < ¥ then

B17: begin

B18: construct the tableau Tbl[¢(B)}7 + 1,k’);

B19: generate B' = {B'=B —g+ f € B|g € Bst(B), j + 1 < index(f) < k'};
B20: - set Qscan = Qscan U B';

B21: replace the triplet P by P = (¢(B), Tbl(¢(B)|B"), Tbl[¢(B)|:, k']) ;
B22: end,;

B23: construct the tableau Tbl{B|B*);

B24: construct the tableau Tbl[B|k + 1, k'};

B2s: insert (B, Tbl(B|B*), Tbl[Blk + 1,k'] to Qoyut;

B26: end;

B27: end

In Algorithm B, we maintain all the bases in Qscan by the pointer to the triplet of
its parent base and the pivoting pair. Then it requires O(1) space. If we employ the
Kapoor and Ramesh’s data structure [4] for maintaining Qq¢, then Algorithm B requires
O(n® + K(T + r* + logn)) time O(Krn) space for finding K best bases. By using radix
heap structure [1,2], time complexity becomes O(K (T + r? + log W)) time and the space
complexity becomes O{log W + K'rn) space.

References

(1] R.K. Axuia, K. MEHLHORN, J.B. ORLIN AND R.E. TARIAN, Faster algorithms for
the shortest path problem, J. of ACM 37 (1990), pp.213-223.

[2] R.K. AHUJA, T.L. MAGNANTI AND J.B. ORLIN, Network Flows: Theory, Algorithm
and Applications, Prentice Hall, 1993.

[3] D. Avis AND K. FUKUDA, Reverse search for enumeration, research report 92-5,
Graduate School of Systems Management, The University of Tsukuba, 1992.

[4] S. KaAPOOR AND H. RAMESH, Algorithms for enumerating all spanning trees of undi-
rected and weighted graphs, SIAM J. Computing 24 (1995), pp.247-265.

