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Let S be a set of n points in the plane and C H(S) be the convex hull of S. We introduce
a new concept of strongly convex approximate hulls called e-strongly convez §-superhull, which
is a convex polygon P satisfying the following conditions: (1) P has at most n vertices, (2) P
contains all the points of S, (3) no vertex of P lies farther than § outside the convex hull of S,
and (4) P remains convex even if its vertices are perturbed by as much as €. In this paper, we
present the first method for solving such a generalized convex hull problem. We show that an
e-strongly convex 4e-superhull can be constructed in O(nlogn) time for any € > 0.



1 Introduction

Given a set S of n points in the plane, the convex hull of S is the smallest convex polygon
containing all the points of S. The convex hull problem is one of the simplest and the oldest
problem in computational geometry and many algorithms about it have been developed [1-
5,8,9]. Since the properties from the convexity usually make efficient algorithms, computing
the convex hull problem is often used as a subroutine in many applications. It is natural that we
may desire that the solution has strong convexity so that many properties from the convexity
can be preserved in some fashion even if they are tested with imprecise computations such as
ordinary floating point arithmetic.

The concept of strongly convex approximate hulls first appeared in the problem of con-
structing an e-strongly convex §-hull of a set S of points in the plane [11], which is a convex
polygon P satisfying the following conditions:

(i) the vertices of P are taken from S,

(ii) no point of S lies farther than § (§ > 0) outside P and

(iii) P remains convex even if the vertices of P are perturbed by as much as € (¢ > 0).
According to the definition, the ordinary convex hull is the O-strongly convex 0-hull. It is
easily understood that given an €, the smaller the value of § is, the higher the accuracy of
the resulting e-strongly convex é-hull is. Li and Milenkovic present the first algorithm for the
problem which computes an e-strongly convex (12¢ + 228v/2u)-hull in O(nlogn) time [11].
Guibas, Salesin and Stolfi give an algorithm which computes an (6¢ + 7a)-hull in O(n3logn)
time [10]. And recently, Chen, Wada and Kawaguchi show a parallel algorithm which computes
an (6€ + 168)-hull in O(log®n) time using n processors [6]. Note that u, o and 3 are the error
units of the primitive operations defined in their algorithms, respectively. The error units are
equal to 0 when using exact arithmetic (the arithmetic causes no numeric errors).

One drawback of the above strongly convex approximate hulls is that the points of S may
locate outside of the resulting hull. However, in many applications, the hulls which contain all
the points of S are requested. It is easily understood that if € is positive there may not exist any
e-strongly convex §-hull which contains all the points of S, therefore, a new concept of strongly
convex approximate hulls is necessary. In this paper, we consider the hulls which contain all
the points of S. An e-strongly convez §-superhull of S is a convex polygon P satisfying the
following conditions:

(i) P has at most n vertices,

(ii) P contains all the points of S,

(iii) no vertex of P lies farther than 6 outside the convex hull of S, and

(iv) P remains convex even if its vertices are perturbed by as much as e.

Note that in the above definition, the vertices of P are not requested to take from S and by
this property P can contain all the points of S. Tt is seen that the ordinary convex hull of
S is the O-strongly convex O-superhull. Let A be an e-strongly convex é-hull of S and let B
be an e-strongly convex §-superhull of S. When using exact arithmetic, B can be obtained
from A by expanding the boundary of A with size §. Therefore, when using exact arithmetic,
Li and Milenkovic’s algorithm, Guibas, Salesin and Stolfi’s algorithm and Chen, Wada and
Kawaguchi’s algorithm can construct an e-strongly convex §-superhull, where § is 12¢, 6¢ and
6¢, and running time is O(nlogn) O(ndlogn) and O(nlogd n), respectively. But when using
imprecise arithmetic, B can not be obtained from A easily since the numerical errors caused
in the expansion may make the result even not convex. In this paper, we compute an -
strongly convex 4e-superhull of S in O(nlogn) time with exact arithmetic. We expect that
our method can be generalized to one for imprecise computation (we are going to prepare it in



the forth coming paper [7]). Comparing with the above three algorithms, it is easily seen that
(1) when using exact arithmetic, our algorithm constructs a more accurate e-strongly convex
approximate superhull and runs fastest, and (2) our method can be generalized to imprecise
computation, on the other hand, it seems to be difficult for the other known algorithms.

2 Definitions and Lemmas
In this section, we give some definitions.

Definition 1 (6-superhull) A simple polygon P is a 6-superhull of a set S of points (6 > 0),
if P contains all the points of S, and no vertex of P lies farther than § outside the convex hull

of S. |

Definition 2 (e-strongly convex) A simple polygon P is e-strongly convexr (¢ > 0), if P is
conver and remains conver even after each vertex of P is perturbed as far as e. s

Definition 3 (the e-strongly convex §-superhull) A simple polygon P is a ¢-strongly con-
vex §-hull of a set S of points (e > 0), if P is a §-superhull of S, P has at most n vertices and
P is e-strongly convex. »

A spacial case is that S consists of the vertices of a polygon P. In this case, we use the
items like: a §-superhull of polygon P and a e-strongly convex §-superhull of polygon P.

Definition 4 (distance) Let A, B and C be three points in the plane. Define d(B, AC) to be
the signed distance from point B to segment AC, where d(B,AC) > 0 if A, B and C are in
counter-clockwise, d(B, AC) < 0 if they are in clockwise, or d(B, AC) = 0 if they are collinear.

Definition 5 (e-convex vertex) Let P be a convezr polygon and A, B and C be three con-
tiguous vertices of P. B ts said to be e-convez if distance d(B, AC) > 2e.

Lemma 1 ([11]) Let P be o convez polygon. If each vertex of P is e-convex, then P is e-
strongly convex.

Finally, given two points p and g, let [(p, ¢) be the straight line passing through p and gq.

3 Sweep-and-Expansion Technique

Let S be a set of n points in the plane and CH(S) be the convex hull of S. We construct
an e-strongly convex 4e-superhull of S in two steps: (I) we construct CH(S), the convex hull
of S, (I) we construct an e-strongly convex 4e-superhull of CH(S). Since (I) can be done by
any known O(nlogn) time convex hull algorithm, in the rest of the paper, we show how to
construct an e-strongly convex 4e-superhull of a convex polygon with n vertices. Qur algorithm
runs in O(n) time.

Let P be a convex polygon with n vertices. From Lemma 1, P is e-strongly convex, if all
the vertices of P are e-convex. Therefore, to construct an e-strongly convex 4¢-superhull of P,
we scan the vertices of P one by one in counter-clockwise order and revise them if necessary so
that each vertex of the resulting P is e-convex and lies not farther than § outside the original P.
In the process, we call the vertex being visited active and denote the convex polygon obtained



by then as P’. Suppose vertex B is active, and vertice A and C are the vertices directly before
B and after B in P/, respectively. Obviously, A is e-convex if B is not the first visited vertex
of P. We deal with B as follows. If distance d(B, AC) > 2¢, vertex B is e-convex. We leave it
and handle the next vertex. If D(B, AC) < 2¢, we revise P’ by deleting vertex B and adding
a new vertex B’ which is e-convex. Since the new P’ must contain the old P’ and each vertex
of the new P’ must lie within 2¢ from P, in general, B’ is not easily be found. In order to
find B’, we scan the vertices of P’ one by one from B until we arrive vertex D such that the
distance from the intersection of lines [(A, B) and (D, E) to segment AD is at least 2¢ (see
Fig. 1), where E is the vertex directly after D. Then, we find point B’ on line (4, B) such
that the distance of B’ to segment AD is equal 2¢. Finally, we delete the vertices between A
and D in P/, and add B’ to P'. It is easily seen that the resulting new P’ satisfies the required
properties. We call this process sweep-and-ezpansion.

Figure 1: Expansion happened when scaning vertex B

4 Outline of The Algorithm

Algorithm
Input: Convex polygon P with n vertices represented by a sequence of vertices listing in
counter-clockwise order.
Output: An e-strongly convex 4e-superhull of P.
method: Use the sweep-and-expansion technique. Sweep the active vertex and make the
revision when necessary in counter-clockwise order. Let p; be the active vertex and P’ = (p1,p2,

.., pm) be the polygon obtained until arriving p; (at the beginning, we let P’ = P and let the
active vertex be the first one of P). We process p; as follows.
(Phase I) If p; = pn, i.e., p; is the last vertex of P, execute Phase II. otherwise, determine
whether d(p;, pi—1pi1) > 2¢. If d(pi,pi—1pi41) > 2¢, sweep the next vertex piti, else do the
following.

Compute g, the intersection of lines [(pi_1, p;) and [(pi1, pi42) (if {(pi-1,p:) and I(pit1,Pit2)

are parallel, ¢ is a infinite point), and compute d(g, pipi+1). Determine whether d(q,pipi+1) <
0.

If d(g,pipiz1) < 0 (Fig. 2), find a point ¢’ such that ¢’ is on line I(pi_1,pi) and
d(q', pi—1pi+1) = 2¢. Obviously, ¢’ exists. Delete p; from P’ and add ¢’ to P’ between



Figure 2: The intersection of lines !(pi—1,pi) and I(pit1,Pit2)

pi—1 and p;;1 (this can be executed in constant time if let P’ be a list linked by pointers).
Then, sweep pit1.

Else (i.e., d(q, pipi+1) > 0) scan the vertices of P’ from one by one from p; until we meet a
vertex py, such that the distance from the intersection of lines I(pi—1,pi) and {(p, Pr+1) to
segment p;_1p is at least 2¢. Let ¢’ be the intersection of lines l(p;i-1,p:) and l(pr—1,Pk)-
According to whether d(g',pi—1pr) > 2¢ (note that the sweep until now only guarantees
d(q',pr_1pi-1) < 2€), we consider the following two cases.

(Case 1) d(¢,pi—1pk) < 2¢ (Fig. 3). Find a point w between ¢ and ¢ on line
I(pi_1,pi) such that d(w,pgpi—1) = 2¢. Delete the vertices pi, pit1, - .- Pr-1 from
P’ and add w between p;_; and py to P’. Then Sweep pi.

In new P, w is e-convex and lies within 2¢ from input P since the convex chain
consisting of p;, pi+1, .., Pk—1 are contiguous vertices of P and w lies within 2e
from this chain by the method of finding w.

pk+1

Figure 3: Expansion: case 1



(Case 2) d(¢',pi—1pr) > 2¢ (Fig. 4). Find point w’ between pr_; and pi on line
I(pr—1,pr) such that the distance from the intersection w of lines I(p;_1,p;) and
Hpr—1,pk) to l(pi—1,w') is eaual to 2¢ (obviously, w' exsits). Delete the vertices p;,
Pitl, -+ - Pk—1 from P’, and add w and w' to P’ such that p;_1, w, w', p; are listed
contiguously in P’. Then Sweep w'.

It is also easily seen that in new P', w is e-convex and w lies within 2¢ from P.

Figure 4: Expansion: case 2

(Phase II) p; is the last vertex of P. In this case, all the vertices of P were scanned except p;.
If p; is e-convex in P’, terminate the algorithm. Else do the following. Let H be a line passing
through p; and parallel to line I(p;+1,pi-1) (Fig. 5). Compute the intersection u of lines H
and l(piy1,pi+2) and the intersection v of lines H and I(p;—2,pi—1), delete p;_1, pi, and piyy
from P’ and add u and v to P’ such that p;_g, v, u, pi42 are listed contiguously in P'.

It is easily seen that vertices p;—2, v, u and p;,2 are all e-convex in new P’ and new vertices
u and v lie within 2¢ from P’ (we omit the proof here). Note that the expansion at p; does not
affect any other veritices of P'. 1

P i+2 P,

Figure 5: Expansion at the last vertex



Theorem 1 Let P be a convez polygon with n vertices. An e-strongly convez 4e-superhull of
P can be computed in O(n) time.

(Proof) In the algorithm, each vertex of P is scanned exactly once and finally each vertex of
the resulting convex polygon is e-convex. Each of Phase I and Phase II expand the polygon
within 2¢. Therefore, the resulting convex hull is 4e-superhull. It is easily seen that the number
of the vertices in the resulting convex polygon is not larger than n. We omit the details of the
proof here. 1

5 Implementation And Experiment

We show that our algorithm has very good average performance. Let the size of the input
(a point set) be 612. The inputs are taken from three distributions. The points of the first
kind of inputs are uniformly distributed inside a square, the points of the second kind are
uniformly distributed inside a disk, and the points of the third kind of the inputs are uniformly
distributed on the boundary of a disk. The results of the experiments are listed in the following
table, where the data of (I), (II) and (III) corresponding to the first, the second and the third
distributions, respectively.

requested actual theoretical actual

@ 1) (I1I) @ an (1)
0.0200 0.0200 0.0365 0.0213 0.0800 0.0074 0.0000 0.0070
0.0800 0.0800 0.0800 0.0891 0.3200 0.0374 0.0731 0.0300
0.3240 0.3263 0.3294 0.4565 1.2960 0.0966 0.0506 0.1350
0.5600 0.5863 0.7190 0.7249 2.2400 0.2448 0.2186 0.2379
0.9700 1.0343 1.1714 1.4130 3.8800 0.5113 0.3396 0.2748
1.6300 1.6344 2.0273 2.1700 6.5200 0.5383 0.4839 0.4040
2.0460 2.0530 2.2143 3.0188 8.1840 1.1901 0.4400 1.0460

In Section 4, we proved that our algorithm can construct an e-strongly convex 4e-hull. From
the above table, we see that our algorithm computes an ¢'-strongly convex §'-superhull of S,
where € is at least € and §' is much smaller that 4e. Thus, our algorithm is shown to be fairly
good performance.

6 Conclusion

In this paper, we introduced a new concept of strongly convex approximate hulls called e-
strongly convez 6-superhull and gave the first method for solving such a generalized convex hull
problem. We showed that an e-strongly convex 4e-superhull of a set S of n points in the plane
can be constructed in O(nlogn) time for any € > 0 with exact arithmetic.

When using imprecise computation, the work is expected more difficult. First, we must
find a convex approximate superhull of S and then make it to a strongly convex approximate
superhull with the method of this paper. We are going to prepare it in the forth coming paper.
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