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A Linear-Time Algorithm for Four-Partitioning
Four-Connected Planar Graphs
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Graduate School of Information Sciences, Tohoku University

Given a graph G = (V, E), four distinct vertices uy,u3,u3,u4 € V and four natural numbers
ny,ng, N3, ng such that 334, n; = |V, we wish to find a partition V4, V3, V3, Vy of the vertex set
V such that u; € V;, |Vi| = n; and V; induces a connected subgraph of G for each 7,1 <7 < 4.
In this paper we give a simple linear-time algorithm to find such a 4-partition of G if G is a
4-connected planar graph and wu;,ug, 43, u4 are located on the same face of G. Our algorithm is
based on a “4-canonical decomposition” of G, which is a generalization of an st-numbering and

a “canonical 4-ordering” known in the area of graph drawings.
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1 Introduction

Given a graph G = (V,E), k distinct vertices uy,us,---,ux € V and k natural numbers
ny,nq,---,n such that Zf___l n; = |V/|, we wish to find a partition V1, Va, -+, V}, of the ver-
tex set V such that u; € V;, [V;| = n,, and V; induces a connected subgraph of G for each 1,
1 < i < k. Such a partition is called a k-partition of G. The problem of finding a k-partition of a
given graph often appears in fault-tolerant routings [WK94, WTK95]. The problem is NP-hard
in general [DF85], and hence it is very unlikely that there is a polynomial-time algorithm to
solve the problem. Although not every graph has a k-partition, Gyori and Lovasz independently
proved that every k-connected graph has a k-partition for any ug,us,---,ux and ny,ng,--+, 7k
[G78, L77]. However, their proofs do not yield any polynomial-time algorithm for actually find-
ing a k-partition of a k-connected graph. For the case k¥ = 2 and 3, the following algorithms

have been known:

(i) a linear-time algorithm to find a bipartition of a biconnected graph [STN90, STNMU90};
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(ii) an algorithm to find a tripartition of a triconnected graph in O(n?) time, where n is
the number of vertices of a graph [STNMU90]; and

(iii) a linear-time algorithm to find a tripartition of a triconnected planar graph [JSN94].

On the other hand, polynomial-time algorithms have not been known for the case k > 4. 1

In this paper we give a linear-time algorithm to find a 4-partition of a 4-connected planar
graph G in case uy, U3, u3, u4 are located on the same face of G. Our algorithm first bipartitions
the 4-connected graph G into two biconnected graphs having about ny + n, and nz + ny vertices
respectively, then bipartitions each of them to two connected graphs, and, by adjusting the
numbers of vertices in the resulting four graphs, we finally obtain a required 4-partition of
G. To bipartition G into two biconnected graphs, we will newly define and use a “4-canonical
decomposition” of G, which is a generalization of an st-numbering and a “canonical 4-ordering”
known in the area of graph drawings [E79, K94, KH94].

The rest of the paper is organized as follows. In Section 2 we introduce our notations and
give a linear-time algorithm to find a 4-canonical decomposition of a 4-connected planar graph.
In Section 3 we present a linear-time algorithm to find a 4-partition of a 4-connected planar

graph. Finally we put our discussions in Section 4.

2 4-Canonical Decomposition

In this section we introduce some definitions and prove that every 4-connected plane graph has
a 4-canonical decomposition and it can be found in linear time.

Let G = (V,E) be a connected graph with vertex set V and edge set E. Throughout the
paper we denote by n the number of vertices in G, that is, n = |V|. An edge joining vertices u
and v is denoted by (u,v). The degree of a vertex v is the number of neighbors of v in G. The
connectivity k(G) of a graph G is the minimum number of vertices whose removal results in a
disconnected or single-vertex graph K;. G is called a k-connected graph if x(G) > k. We call
a vertex of G' a cut vertez if its removal results in a disconnected or single-vertex graph. For
W C V, we denote by G — W the graph obtained from G by deleting all vertices in W and all
edges incident to them.

A graph is planar if it can be embedded in the plane so that no two edges intersect geomet-
rically except at a vertex to which they are both incident. A plane graph is a planar graph with
a fixed embedding. The contour C(G) of a biconnected plane graph G is the clockwise (simple)
cycle on the boundary of the external face. We write C(G) = wy,wq,- -+, wp,w; if the vertices
wy, W2, -+, wy, on C(G) appear in this order. A chord in a biconnected plane graph G is a path

which connects two inconsecutive vertices w, and wg, p < ¢, on C(G) without passing through

A polynomial-time algorithm for any k is claimed in [MM94], but is not correct [G96).



any other vertices on C(G) and lies on an internal face. Thus the definition of a chord depends
on which vertex is considered as the starting vertex w; of C(G) . The vertices w, and w, are
called the ends of the chord. The chord is said to be minimal if none of wpi1, wWpi2,-++,we_1
is an end of a chord. Let {v1,vs,-,vp-1,v,} be a set of three or more consecutive vertices on
C(G) such that the degrees of the first and the last vertices are at least three and the degrees of
all intermediate vertices vy, 3, -, v,_; are two. Then we call the set {v3,vs, -, vp_1} a handle
of G. For a cycle C in a plane graph G, we denote by I{(C,G) the subgraph of G inside C, that
is, the plane subgraph of G induced by the set of vertices inside (or on) the cycle C. Clearly
I(C,G) is biconnected if G is biconnected. We have the following lemma.

Lemma 2.1 Assume that G is a 4-connected plane graph and that C = wy,wy, -, ws, w; i5 a
cycie in G such that I1(C,G) is not a cycle. If I(C,G) has a chord, then let w, and w, be the
two ends of any minimal chord, otherwise let w, = wy and wy, = wy. Then the following (a)

and (b) hold.

(a) If W = {wp41,Wp42,++,we—1} is a handle of I(C,G), then I(C,G) — W is a biconnected
graph.

(b) Otherwise, there is a set W = {wp, wpr41,++, Wy} of one or more consecutive vertices on

C such that

() p<p' <q¢<gq and
(i) none of the vertices in W except the first vertez wy and the last one wy has a neighbor

in the proper outside of C.

Moreover I(C,G) — W is a biconnected graph for any such set W.

Proof.  Since (a) is obvious, we give only a proof of (b). Clearly a singleton set W = {w,}
for any p’, p < p' < g, satisfies (i) and (ii). We now prove that I(C,G) — W is a biconnected
graph for any set W satisfying (i) and (ii).

Suppose for a contradiction that G’ = I(C,G)— W is not a biconnected graph and hence G’
has a cut vertex v. If v is in the proper inside of C, then G is not 4-connected, a contradiction.
If v is on C, then either a vertex in W is an end of a chord in I(C,G), or W is included in a

handle, or G is not 4-connected, a contradiction. Q.E.D.

Let G = (V,E) be a connected graph, and let (s,t) € E. We say that an ordering © =

V1,%g,- -, Uy Of the vertices of G is an st-numbering of G if the following conditions are satisfied:
(stl) v; = s and v, = t; and

(st2) each v; € V — {v1,v,} has two neighbors v, and v, such that p < i < q.



Not every connected graph has an st-numbering, but the following lemma holds.

Lemma 2.2 [E79] Let G be a biconnected graph, and let (s,t) be any edge of G. Then G has
an st-numbering © = vy,vy, -+, v, such that vi = s and v, = t, and 7 can be found in linesr

time.

A bipartition of a biconnected graph can be found by an st-numbering as follows [STNMU90,
STN90]. Let G = (V,E) be a biconnected graph, let uy,us € V be two designated distinct
vertices and let n1,ny be two natural numbers such that ny + ny = n. Add an edge (u,u3) to
G if (u1,u3) € E, and let G’ be the resulting graph. Since G’ is biconnected, by Lemma 2.2 G’

has an st-numbering v, (= u;),v2,* "+, vs(= uz). Clearly the following fact holds:

(st3) both {v1,vz,++-,v;} and {vit1,vi42, "+, v} induce connected subgraphs of G for each i,

1<i< n.

Thus, choosing i = n,, one can find a required bipartition of G in linear time.

Generalizing an st-numbering in a sense, we define a “4-canonical decomposition” of a 4-
connected planar graph G and in the succeeding section we give an algorithm to find a 4-partition
of G by using the “4-canonical decomposition.” We now give the definition of a 4-canonical
decomposition.

Assume that G = (V, E) is a 4-connected planar graph with four designated distinct vertices
1, Uz, U, Ug on the same face of G. We may assume that uq,uy, us, u4 lie on the contour C(G)
of G, since, for any face F of G, we can re-embed G so that F becomes the external face. We
may furthermore assume that the four vertices uy,us, u3, us appear on C(G) of G in this order.
Moreover we may assume that (u1,u2),(us,us) € E; otherwise, consider as G' the new graph
obtained from G by adding edges (u1,us) and (us,us). For a set Wy, Wy, .-, W; of pairwise
disjoint subsets of V, we denote by G; the subgraph of G induced by Wy UW,U---UW;, and by
G; the subgraph of G induced by V — Wy UW,U---UW;, that is, Gi=G-WiuW,u---UW,.
We'say that a partition II = Wy, Ws,---, W, of V is a §-canonical decomposition of G if the

following three conditions (col)—(co3) are satisfied:
(col) both G; and G; are biconnected for each i, 1 < i < {;

(co2) Wi is the set of vertices on the inner face containing edge (u1,uz), and W; is the set of

vertices on the inner face containing edge (us, u4); and
(co3) one of the following three conditions holds for each i, 1 < i < I:

(a) W; is a handle of G;_q;
(b) W; consists of exactly one vertex v on both C(G;) and C(Gi-1);
(c) W; is a handle of G;.
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We have the following two lemmas.

Lemma 2.3 Let G = (V,E) be a 4-connected plane graph with four designated distinct vertices
u1, Uz, U3, Uy appearing on C(G) in this order. Then G has a {-canonical decomposition Il =

W1, Wy, -« ,W,. Furthermore Il can be computed in linear time.
Proof. Omitted.

Lemma 2.4 Let Wy, Wy, , W, be a {-canonical decomposition of a 4-connected plane graph
G. Then the following (a) and (b) hold for any i, 1 < i< I:

(a) If W; satisfies (a) of (co3), then, for any W! C W;, G; — W/ is biconnected.

(b) If W; satisfies (c) of (co3), then, for any W/ C W;, G,_y — W/ is biconnected.

1

Proof.  We give only a proof for (a) since the proof for (b) is similar. Let W; be a handle of
Gi-1. Then each vertex w; € W; has at least two neighbors in G;—1. Let W/ be any subset of W;.
Since the graph G;_, is biconnected, the graph G;— W/ induced by W,uW,uU- - UW;_q u(W;-w/)

is also biconnected. i Q.£.D.

3 4-Partition of 4-Connected Plane Graph

In this section we give our algorithm to find a 4-partition of a 4-connected plane graph G.
Assume that the four designated distinct vertices uy,uy, 13, u4 appear on C(G) in this order and

ny,Ny, N3, N4 are natural numbers such that Zfﬂ n; = n.

Algorithm Four-Partition

Find a 4-canonical decomposition Il = Wy, W, ..., W, of G;

Let 7 be the minimﬁm integer such that Ej~=1 [W;| > ny + ng;

Let r = S, Wl — (1 + na);

There are the following two cases (1) r = 0, and (2) r > 1;

Case 1: r = 0.

{In this case, G; contains n; + ny vertices, and G; contains n3 + 14 vertices.}

Find a bipartition V;,V; of the biconnected graph G; such that u; € Vi, ug € V2, V3| = ny,
[Va| = ng, and both V; and V; induce connected subgraphs;

Find a bipartition V3,V of the biconnected graph G; such that us € Vs, ug € Vg, |V3| = ns,
|V4] = n4, and both V3 and V; induce connected subgraphs;

Return V4, V;, V3,V as a 4-partition of G.

Case 2: r > 1.

{ In this case, G; contains n;+ny+7 vertices, and G; contains nz+nys—r vertices. G; = G;—1—W;.



Since r > 1, |W;| > 2 and hence W, is a handle of either G;_; or G;.}

Assume that W; is a handle of G;_, as illustrated in Fig 2(a), otherwise, interchange the roles
of uy,uy and uz, ug;

Let C(G;_1) = w1, Wwa,...,wy, w; Where wy = uy;

Let Wi = {wp+1, Wpt2,° -, Wg-1};

Find an st-numbering v1,v2," * , Vnytng—r of G; such that s = u4 and t = ug;

Let wy = vy and wy = vy;

Assume that p’ < ¢, otherwise, interchange the roles of uz and uy;

There are the following three subcases (a) ny < p', (b) p' + 7 < ng,and (c) p' < ng < p' + 1
Subcase 2(a): nq < p'.

{In this subcase, the last r vertices in the handle W; are added to G| as the deficient r vertices.}
Let V4 = {vy,v2,- -+, v, } be the first ny vertices in the st-numbering of G;

Let V4 = {41, Une42, " * » Ung4na—r } De the remaining ng — 7 vertices in G;;

{By the fact (st3) of an st-numbering both V4 and V{ induce connected graphs.}

Let W! = {wg—1,wg—2,+,Wq—r} be the set of the last r vertices in W;;

Let V3 = V§ U W/;

{Since wy—, is adjacent to w, in V3, V3 induces a connected graph of n3 vertices.}

Let Gip = G; — W};

{ G132 is biconnected by Lemma 2.4(a), and has ny + ng vertices.}

Find a bipartition V;,V; of Gy3 such that u; € V4, us € V3, |V§| = m, |V2| = nq, and both V;
and V; induce connected subgraphs;

Return V3, Vs, V3,V as a 4-partition of G.

Subcase 2(b): p' + r < n4.

{In this subcase, the first r vertices in W; are added to G; as the deficient r vertices.}

Let V = {v1,v2,+*+,vn,—r} be the set of the first nqy — r vertices of G;, where w, = vy € V{;
Let Va = {Un,—r41)Unyrt2s ' *» Uny+ng—r} be the remaining n3 vertices of G;;

Let W/ = {wp41, W42, Wpsr };

Let Vy = VJuW/;

{Vs and V; induce connected graphs having nz and n4 vertices, respectively.}

Let Gi3 = G — W;

Find a bipartition V;,V, of the biconnected graph Gj2 such that u; € Vi, us € V3, |Vi| = ny,
|V2] = nq, and both V; and V; induce connected subgraphs;

Return V3, V3, Va, V4 as a 4-partition of G.

Subcase 2(c): P <ny<p' +7T.

{In this subcase, the first ng — p’ and the last p’ 4+ r — ny vertices in W; are added to G; as the
deficient 7 vertices.}

Let W/, = {wp41,Wp42,° -, Wpyn,—p} be the set of the first ny — p’ vertices in W;;



Let W5 = {wg-1,wq—2,"--, Wy_(p'+r—ny)} De the set of the last p’ + r — ny vertices in W;;

{Wiyn W5 = ¢ since [Wjy| + [Wj| = r < [Wil. W/, uWj| = r);

i
Let V4 = {v1,vq,- -, vp } UW/y;

Let V3 = {vpr41,Vpr42s "+ s Ungbmg—r } U Wi;

{ V4| = ng4, |V3} = na, wp = vy € Vg, wy € V3, and hence both V; and V3 induce connected
graphs.}

Let Gy2 = Gy — W u Wi;

Find a bipgrtition V1, V2 of the biconnected graph Gy, such that uy € V4, uy € V3, |[V3| = ny,
[Va| = ng, and both V; and V; induce connected subgraphs;

Return V4, V4, V3, V, as a 4-partition of G.

a

Clearly the running time of the above algorithm is O(n). Thus we have the following theorem.

Theorem 3.1 A 4-partition of any 4-connected planar graph G can be found in linear time if

the four vertices uy,ug, us, us are located on the same face of G.
As a byproduct we have the following lemma.

Lemma 3.2 For any given internally triangulated 4-connected plane graph G = (V,E), two
distinct edges (u1,u3) and (us,u4) on C(G), and two numbers ny,ny such that ny + ny = n
and ny,ny > 3, there erists a partition V1,Va of V such that uj,u; € Vi, us,uq € Vo, || =

n1,|V2| = ny, and both Vi and V; induce biconnected subgraphs of G.

Proof. By Lemma 2.3, G has a 4-canonical decomposition Il = W;,W,,...,W,. Since G
is internally triangulated, neither (a) nor (c) of (c03) holds and hence (b) must hold for each
Wi,i =2,3,---,1 — 1. Thus all W;’s except Wy and W, are singleton sets, each of W; and W,
contains exactly three vertices, and hence / = n — 4. For j, 1 < j < [, the vertex in W; has
four or more neighbors, two of which are in Wy UW,U---U W;_; and other two of which are in
Wi 1UW, - -UW,. Thus, for j,1 < j < I, both W;uW,uU-- ‘UW; and V- (W UuW,aU- - -UW;)

induce biconnected graphs. Hence, it suffices to choose j = n; — 2. Q.ED.

4 Conclusion

In this paper we give a linear-time algorithm to find a 4-partition of a 4-connected planar graph
G in case four vertices uy,ug, uz, uq are located on the same face of G. It is remained as future
work to find efficient algorithms for finding a k-partition of a k-connected (not always planar)
graph for k > 4.
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