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MAX SAT (the maximum satisfiability problem) is : given a set of clauses with weights, find a truth
assignment that maximizes the sum of the weights of the satisfied clauses. In this paper, we present an
approximation algorithm for MAX SAT which is a refinement of Yannakakis’s algorithm. This algorithm
leads to a better approximation algorithm with performance guarantee 0.767 if it is combined with the
previous algorithms for MAX SAT.

MAX SAT-34¥ % Yannakakis D7 /L TV XLy
D¥EEAL
RE R A N EE- PHER
RS ETEE WRIEN -~ HEEAY T8

MAX SAT(FERMRALRIE) & 13, HiORELEHOEANGR ONI-L &, TET AHOEADBI % &
KRIZTB L) REBE YU CERODMETH S, TORLTHMAX SAT 1283 % Yannakakis @ 0.75-3F
PTFNT) XA EEFL TN T L2522, BELEINEZOPLT) A RRERO TV LA

LHAELED I L THEMEO0.767 D L D EHIBEUT VT L AESL D,

1 Introduction

MAX SAT (the maximum satisfiability problem)
is: given a set of clauses with weights, find a truth
assignment that maximizes the sum of the weights
of the satisfied clauses. MAX 2SAT, the restricted
version of MAX SAT where each clause has at most
2 literals, is well known to be NP-hard even if the
weights of the clauses are identical, and thus MAX
SAT is also NP-hard. Thus, many researchers
have proposed approximation algorithms for MAX
SAT. Yannakakis [4] and Goemans-Williamson [2]
proposed 0.75-approximation algorithms. Later
Goeman-Williamson improved the bound 0.75 to
0.7584 based on semidefinite programming [3]. Re-
cently, Asano-Ono-Hirata also improved the bound
and the best approximation algorithm for MAX
SAT has the performance guarantee 0.765 [1].

In this paper, we first present a refinement of

the 0.75 approximation algorithm of Yannakakis for
MAX SAT based on network flows. Then we show

that it leads to a 0.767-approximation algorithm if
it is combined with the algorithm proposed in [1].

2 Preliminaries

An instance of MAX SAT is defined by (C,w),
where C is a collection of boolean clauses such that
each clause C' € C is a disjunction of literals and
has a nonnegative weight w(C) (a literal is either a
variable z; or its negation Z;). We sometimes write
an instance C instead of (C, w) if the weight function
w is clear from the context. Let X = {z1,...,2,}
be the set of variables in the weighted clauses of
(C,w). We assume that no variable appears more
than once in a clause in C, that is, we do not allow a
clause like 21 V2, Vzy. For each variable z; € X, we
consider z; = 1 (z; = 0, resp.) if z; is true (false,
resp.). Then, Z; = 1 — z; and a clause C; € C can
be considered to be a function of & = (z1,...,20)
as follows:



CA = C(m) =1- H::;EX;'(l - ‘T") Hz‘GXj' Ti,
where X} (X}

g resp.) denotes the set of vari-
ables appearmg unnegated (negated, resp.) in Cj.
Thus, C; = Cj(x) = 0or 1 for any truth assign-
ment ¢ € {0,1}" (i.e., an assignment of 0 or 1 to
each z; € X), and C; is satisified (not satisfied,
resp.) if C;(z) = 1 (Cj(z) = 0, resp.). The value
of a truth assignment « is defined to be

Fe(@) = Tc,ec w(C5)C5(®)-

That is, the va.fue of @ is the sum of the weights of
the clauses in C satisfied by @. Thus, MAX SAT is
to find a truth assignment of maximum value.

Let A be an algorithm for MAX SAT and let

Fe(24(C)) be the value of a truth a551gnment z4(C)
produced by A for an instance C. If Fc(z4(C)) is
at least o times the value F¢(z*(C)) of an optimal
truth assignment z*(C) for any instance C, then A
is called an approximation algorithm with perfor-
mance guarantee a. A polynomial time approxima-
tion algorithm A with performance guarantee o is
called an a-approzimation algorithm.

The 0.75-approximation algorithm of Yannakakis
is based on the probabilistic method proposed by
Johnson [?]. Let z” be a random truth assignment
with 0 < zP = p; < 1, that is, 2P is obtained by
setting independently each variable z; € X to be
true with probability p;. Then the probability of a
clause C; € C satisified by the assignment z? is

Ci(zP) =1-1T1,, ex+(1 )Hz.ex pi-

Thus, the expected value of the random truth as-
signment x? is

Fe(a) = Ec, e w(C))C;(2P).

The probablhstlc method assures that there is a
truth assignment 9 € {0, 1}" such that its value is
at least Fe(xP). Such a truth assignment =7 can be
obtained by the method of conditional probability
[21,4].

Yannakakis introduced equivalent instances for
MAX SAT [4]: two sets (C,w), (C',w’) of weighted
clauses over the same set of variables are called
equivalent if, for every truth assignment, (C,w)
and (C’',w’) have the same value. In this pa-
per, we call (C,w),(C’,w') are strongly equivalent
if, for every random truth assignment, (C,w) and
(€', w'") have the same expected value. Note that, if
(C,w),(C’, w') are strongly equivalent then they are
also equivalent since a truth assignment is always a
random truth assignment (the converse is not true).
Our notion of equivalence will be required when we
try to obtain an improved bound 0.767. The fol-
lowing lemma plays a central role throughout this
paper.

Lemma 1 Let all clauses below have the same
wetght.

1. A= {& Vel = 1,.,k} aond A’ =
{z; V Zigali = 1,...,k} are strongly equivalent (we
consider k+1=1).

2. B = {Zl} U {i‘,‘ \ IH,]Ii = 1,...,[} and
B' = {z;V Fipa1li = 1,...4} U {ze51} are strongly
equivalent.

Proof. We can assume weights are all equal
to 1. For a random truth assignment xP with
P = p;, let Fp(aP) = Y ocpC(xP) be the ex-
pected value of zP for D (D = A, A, B,B’). Then,
by k+ 1 = 1, we have FA(mP) 2,_1(1 -pi(1-
pi+1)) =k~ E _1P1 + E 1P1P1+1, FA’(:BP) =
Ef:l(l_Pi—H(l pz)) =k- 21—1 P=+Z._1P iDi+1s
Fa(z?) = p1 + imy(1 = pi(l = pin1)) = £~
Ef—zpi + Zz 1 Pipi+1 and FB’(mp) = pet1 +
E, 1(1=pita(1=pi)) = £~ 21 2P1+2,—1P1Pz+1
Thus, Fa(zP) = Fa(zP) and Fp(xP) = Fp (zF)
for any random truth assignment «? and we have
the lemma. DO

3 Refinement

The 0.75-approximation algorithm of Yannakakis
[4] is based on the probabilistic method and divides
the variables X = {z1,...,2,} of a given instance
(C,w) into three groups P/, (P — P')U Q@ and Z
based on maximum network flows. Then it sets
independently each variable z; € X to be true with
probability p; such that p; = 3/4if z; € P/, p; =
5/9ifz; € (P-P)UQand p; = 1/2ifz; € Z.
The expected value Fe(xP) of this random truth
assignment =7 = (p1, P2, ..., Pn) is shown to satisfy

Fe(xP) > 3wy + 3w + 3W3

+22W4 + T (1= (D)Wi 2 $Fe(z),
where Cy, is the set of clauses in C with k literals and
Wi = Ece w(C)C(z*) for an optimal truth as-
signment z* ( ") = ¥p>1 Wi). The probabilis-
tic method assures that a truth assignment =¥ €
{0,1}™ with value Fe(z¥) > Fe(xP) > 0.75Fc(z”)
can be obtained in polynomial time. Thus, Yan-
nakakis’s algorithm is a 0.75-approximation algo-
rithm. In this section, we will refine Yannakakis’s
algorithm and find a random truth assignment

mP = (PI,P2,-~,Pn) With value
3 101
Fe(zP) > —Wl W2 + W3 128W4
1037 .
+1280 5 +§: (- ) Wi (1)



To divide the variables X of a given instance
(C,w) into three groups P/, (P — P'YUQ and Z,
Yannakakis transformed (C,w) into an equivalent
instance (C’,w’) of the weighted clauses with some
nice property by using network flows. Our algo-
rithm is also based on network flows and consists
of five steps three of which are almost similar to
Steps 1-3 of Yannakakis. Let C;2 = C; UCs (the
set of clauses in C with one or two literals). As
Yannakakis did, we first construct a network N(C)
which represents the weighted clauses in (C; 2, w)
as follows. The set of nodes of N(C) consists of
the set of literals in C and two new nodes s and ¢
which represent true (T") and false (F) respectively.
The (directed) arcs of N(C) are corresponding to
the clauses in C; . Each clause C =z Vy €
corresponds to two arcs (Z,y) and (§,z) with ca-
pacity cap(Z,y) = cap(§,z) = w(C)/2 (Z = z).
Similarly, each clause C' = z € C; corresponds to
two arcs (s,z) and (Z,t) with capacity cap(s,z) =
cap(z,t) = w(C)/2. Thus, we can regard a clause
C =z € C; as z V F when considering a network
as above. Note that N(C) is a naturally defined
network since tVy=Z - y=9 — 2.

Two arcs (Z,y) and (7, 2) are called correspond-
ing arcs. If each corresponding two arcs in a net-
work are of the same capacity, then the network
is called symmetric. By the above correspondence
of a clause and two corresponding arcs, a symmet-
ric network N exactly corresponds to a set C(INV)
of weighted clauses with one or two literals. In
the case of N = N(C) defined above, we have
C(N(C)) = (Ci2,w). Thus, we can always con-
struct the set C(IN) of weighted clauses with one
or two literals from a symmetric network N and we
sometimes use the term “the set of weighted clauses
of a symmetric network”.

Then we consider a symmetric flow f of max-
imum value v(f) in Ny = N(C) from source
node s to sink node t (flow f is called symmet-
ric if f(Z,y) = f(7, z) for each corresponding arcs
(%,¥),(7,2)). Let My be the network obtained from
the residual network Ny(f) of Ny with respect to f
by deleting all arcs into s and all arcs from t. Then
M, is clearly symmetric since Np is a symmetric
network and f is a symmetric flow.

Let (C1 2, w') be the set of weighted clauses of the
symmetric network My ((C] 5, w’) = C(Mo)) and let
(C', w") be the set of weighted clauses obtained from
(C,w) by replacing (C1,2, w) with (C] 5, w"). Then,
for each truth assignment z,

Fe(z) =Y w(C)C(x) = Fer(x) +v(f).  (2)

cec

(Fer(z) = Yoge w'(C')C'(z)). Note that (2)
holds even if = is a random truth assignment.
This can be obtained by Lemma 1 using an obser-
vation similar to the one in [4]. Note also that,
for A, A’,B,B' in Lemma 1, A corresponds to a
cycle and A’ corresponds to the reverse cycle. Sim-
ilarly, B corresponds to a path from z; to z4+ (plus
(s, z1)) and B’ corresponds to the reverse path from
Tyl to 1 (plllS (S,Zg+1)).

Since f is a maximum flow, there is no path from
s to tin My. Let R be the set of nodes that are
reachable from s in My and let ¥ = {gly € Y} for
Y C X. Then, there is no arc from a node in R to
a node not in R and the set of nodes that can reach
tis R (in a symmetric network, z1,2,...,Tx~1, Tk
is a path if and only if Zj, Zx—1,..., 2, T1 is a path)
and R does not contain any complementary liter-
als, since My is a symmetric network and f is a
maximum flow (z,& € R implies that there is a
path from s to t since My is symmetric and there
are paths from s to z (by z € R) and z to ¢t (by
Z € R), which contradicts the maximality of f).
This implies that every clause of form Z V y with
z € R satisfies y € R. Thus, we can set all liter-
als of R to be true consistently and, for each truth
assignment « in which all literals of R are true, ev-
ery clause in C] , that contains a literal in RU Ris
satisfied. From now on we assume that all literals
in R are unnegated (R C X and thus all literals in
R are negated).

By the argument above we can summarize Step
0 of our algorithm as follows.

Step 0. Find R and (C’,w’) from (C,w) using the
network Ny, a symmetric flow f of Ny of maximum
value and the network M, defined above.

Note that, by (2), if we have an a-approximation
algorithm for (C',w’), then it will also be an a-
approximation algorithm for (C,w). Thus, for sim-
plicity, we can assume from now on (C’,w’) = (C, w)
(and thus, f = 0 and My = N,) and have the fol-
lowing assumption.

Assumption. C and Ny = N(C) satisfy:

(2) RC X and z € R for each C = z € C (there
are arcs (s, z), (Z,t)).

(b)ye Rforeach C=z2VyeCwithz € R
(there is no arc going outside from a node in R).

To obtain a 0.75-approximation algorithm, Yan-
nakakis tried to set each variable in R to be true
with probability 3/4 and each variable in X ~ R
to be true with probability 1/2. Then the proba-
bility of a clause in C; ; being satisfied is at least



3/4. Similarly, the probability of a clause in C
with five or more literals being satisfied is at least
3/4. Clauses satisfied with probability less than
3/4 have 3 or 4 literals and are of form ZV gV z
with z,y,z € R or of form ZV §V 2V @ with
z,y,z,u € R or of form £V §Va with 2,y € R
and a € (XU X) - (RUR). Let A be the set
of clauses C of form C = Z, VI V --+ V I} with
21,&3,...,2 € R (k= 3,4,5).

To split off such clauses in A3z U Ay U As, we
consider the network /V; obtained from My = N,
as follows (we split off clauses in As too for later
use, although Yannakakis split off the clauses in
Az U Ay and did not split off the clauses in Aj).
For each clause C = Z; V33 V--- V I, € Ay with
Zy,Z3,..., 2k € R (k = 3,4,5), we add two nodes
C,C and 2k + 2 arcs (z1,C), (22,C), ..., (xk, C),
(C,71),(C,%2),...,(C, Z), (5,C),(C,t). Further-
more, we set, for k = 3,4, all arcs of forms (z;, C)
and (C,%;) to have capacity w(C)/(2k) and arcs
(5,C),(C,t) to have capacity w(C)/2. If k = 5,
we set all arcs of forms (z;, C) and (C, ;) to have
capacity w(C)/12 and arcs (s, C), (C,t) to have ca-
pacity 5w(C)/12.

Then, we find a symmetric flow g of maximum
value from s to ¢t in N; such that g(z,,C) =
g9(zq,C) = -+ = g(xg,C) for each clause C =
I V.’Eg Ve Vik S .Ak with Z1,To,..., T € R
(k = 3,4,5). Let M; be the network obtained
from the residual network Ni(g) of Ny with re-
spect to g by deleting all arcs into s, all arcs
from t and all nodes C,C (and incident arcs) with
Ce A3 UALUA;.

Now we can split off clauses in A3 U Ay U As.
For each C = 2, VI V-V T, € Ay with
21,22,...,T, € R (k = 3,4,5), let Qk(C) =
{z1,22,...,7k,C}. The weights of the clauses in
G*(C) are defined as follows: Let g(C) = g(z;,C).
Then, wi(21) = wy(xz) = --- = wyi(xx) = 29(C)
and if £ = 3,4 then w,(C) = 2kg(C) else (i.e.,
k = 5) wi(C) = 129(C). Let G% = Ucea,G3(C),
G* = Ucea,G*(C) and G° = Uce,G°(C).

Let (D12,w1) = C(My) (ie., (D12, w1) is the
set of weighted clauses of the symmetric network
M) and let (D,w;) be the set of clauses with
weight function w; obtained from (C, w) by replac-
ing (Cy 2, w) with (D; 5, w;) and by replacing the
weight w(C) of each clause C € A3 U A4 U A5 with

w(C) —6g9(C) (C e A3)
wi(C)=¢ w(C)—-8g(C) (CeA)
w(C) —12¢9(C) (C € As)

(note that w,(C) > 0 and we assume clauses with

weight 0 are not included in D).

Then (C,w) and (C} = DUG3UG* UG, w;) are
shown to be strongly equivalent based on Lemma
1 (note that a clause C' € Ci with k = 3,4, 5 may
be split off and appear in two groups of C!, for ex-
ample, in D and G%, but the total weight of C is
not changed). Let R; be the set of nodes reachable
from s in M;. Clearly, Ry C R (R, C R). Further-
more, there are no clauses in D with k (k = 3,4, 5)
literals all contained in R; by the maximality of g.

By the argument above, we can summarize Step
1 of our algorithm and have a lemma as follows.

Step 1. Find Ry and (C',w;) (C! =DUG UG*U
G®) using the network N;, a symmetric flow g of
N, of maximum value and the network M; defined
above.

Lemma 2 (C,w) and (C!,w;) are strongly equiv-
alent. Furthermore, the following statements hold.
(a) z € Ry for each C =z € D.
(b) y € Ry for eachC=ZVy €D withz € Ry.
(c) there are no clauses in D with 3,4 or 5 literals
all contained in R;.
(d) R, C R.

Next we will split off clauses C € D such that
C=3%V§Vawithz,y € Rianda € Z;UZ;
(Z; = X — Ry). Let B; be the set of such clauses in
D. Let M; be the network obtained from M;j by
deleting all arcs from X UZ; to R; and all arcs from
Ry to Z, U Zy. Let (D] g, w1) = C(M7 ) (the set of
weighted clauses of the symmetric network M ).
Let N, be the network obtained from M, as fol- .
lows. For each clause C = IV§Va € B;, we add two
nodes C,C and 8 arcs (z,C),(y,C),(C,a),(C,t),
(C_', j)» (éa 17)» ((_1, C)v (S, C) all with ca-
pacity wi(C)/4. Then, we find a symmetric flow
h of maximum value such that h(z,C) = h(y,C) =
h{C,a) = h(C,t) for each clause C = ZV§Va € B;.
Let M5 be the network obtained from the residual
network Nz (h) with respect to h by deleting all arcs
into s, all arcs from ¢ and all nodes C,C (and inci-
dent arcs) with C=zZVgVae€ B;.

Now we can split off clauses C' € B;. For each
C =2zZVFVa € Bs, using h{(C) = h(z,C), let
H(C) = {z,y,8a,C,xo, To} with weights wy(z) =
wa(y) = wa(@) = 2h(C), we(C) = 4h(C) and
wa{Zo) = wa(Zo) = —h(C) (o is any variable in X
and the negative weights are accepted in this case).
Let H = Ucep, H(C). Let (&] 5, w2) = C(Ma) (the
set of weighted clauses of the symmetric network
M>) and let (£,w;) be the set of weighted clauses
obtained from (D, w:) by replacing (D] 5, w;) with



(&1 2, w2) and by replacing the weight w; (C) of each
clause C € Bs with wy(C) = wi1(C) —4h{(C) > 0
(we assume clauses with weight 0 are not included
in £).

Then, by the same argument as before, (D, w)
and (EUH, wsy) are shown to be strongly equivalent
based on Lemma 1. Let Ry be the set of nodes
reachable from s in M. Clearly, R» C R, (R2 C
R)). Anodea € Z; UZ, U (R, — Ry) is called
uncovered if there is a clause C = 2V §Va € &
such that z,y € Ry (w2(C) > 0). Let @4 be the set
of nodes in Z; U Z; U (R; — Ry) that are reachable
from an uncovered node by a path in M;. Let R’
be the set of nodes a € Ry — Ry such that there
is a clause C = 2V a € & with z € Q) — (B —
R;) (note that such arcs from Q5 — (R; — Ry) to
(R1 — Ry) are deleted in M; ) and let R} be the
set of nodes in (R, — Ry) that are reachable from
a node in R’ by a path in M,. Let Q» = R, U Q5.
Then, by the symmetry and maximality of h, Q)
and ()2 contain no complementary literals and we
can assume all literals in @2 are unnegated. Note
that some variable in R — R; will be in Q, and
we have to correct the previous assumption that
R C X. It suffices to assume that R; C X (not
R C X) in the argument below.

By the argument above we can summarize Step
2 of our algorithm and have a lemma as follows.

Step 2. Find Ry, Q3 and (EUH, w;) from (D, w,)
using the network M , Ny, a symmetric flow A of
N, of maximum value and the network M, defined
above.

Lemma 3 LetC? =EUHUGRUG*UG® and let
the weight function we be generalized to be the same
as wy for G2U G UGS, Then (C,w) and (C?,w;)
are strongly equivalent. Furthermore, the following
statements hold.

(a) z € Ry for edchC =z € E£.

(b) y € Ry for each C=2Vy€E withz € Ry.

(c) y € Q2U Ry for each C = 2 V'y € £ with
T e Qz.

(d) there are no clauses in & with 8,4 or § literals
all contained in R;. .

(e) a € QaU Ry for each C =ZV§Va € E with
z,y € Ry. ‘

(f) R C Ry and Q2 C X = R,.

Now we would like to set each variable in R3 to
be true with probability 3/4, each variable in @, to
be true with probability 3/5 and each variable in
Z; = X —(Q2UR:) to be true with probability 1/2.
Then, each clause in £ except for a clause C of form

C =3I VIV ZE; with 1 € Ry and z9,23 € Q2 or
of form C = Ty V&9 V I3 V T4 with r1,%2,x3 € Ry
and T4 € ()7 is satisfied with probability at least
3/4.

Thus, we will try to split off such clauses. Let A}
be the set of clauses C € £ of form C = T, VZ2 VI3
with z; € Ry and 3,23 € Q4. Similarly, let 4} be
the set of clauses C € £ of form C' = Z; VI VI3 VI,
with z1, 22,23 € Ry and x4 € Q3. Let B} be the
set of clauses C € &€ of form C = Z; V I3 V a with
1,22 € Ry and a € Qz.

Let M; be the network obtained from N(&)
by deleting all arcs from X U Q; U Zy to Rs,
all arcs from X U Z; to Q, and their symmet-
ric arcs. Let (£f'5,w2) = C(M;) (the set of
weighted clauses of the symmetric network M)
and let N3 be the network obtained from M
as follows. For each clause C = Z; VI3 Va €
By with z,,z; € R; and a € @, we add two
nodes C, C and 8 arcs (z;,C), (22, C), (C,a), (C,1),
(C,71),(C,22),(a,C),(5,C) all with capacity
w9 (C)/4. For each clause C = Z; V Iy V I3 €
Ay with 23 € R; and z3,73 € (2, we add
two nodes C,C, 6 arcs (z;,C),(z,C),(z3,C),
(C,%1),(C, Z2),(C, T3) all with capacity w(C)/6
and two arcs (5,C),(C,t) each with capacity
wo(C)/2. For each clause C = Z; Vi, V I3 V
Iy € Ai with T1,T2,T3 € Ry and z4 € Qz,
we add two nodes C,C, 8 arcs (z1,C), (z2,C),
(1‘3, C)a (134,0), (Cy El)a (C, i?)’ (Ca 23)7 (Q9 j4) all
with capacity w(C)/8 and two arcs (s,C),(C,t)
each with capacity w2(C)/2. Then, we find a
symmetric flow A’ of maximum value such that
h(z(,C) = b (zq9,C) = W' (C,a) = h'(C,t) for each
C=Z,VI:Va € B} with z1,z3 € R; and a €.Qs,
K (z1,C) = K (z9,C) = A (z3,C) = K'(C,t)/3 for
each clause C = & VI, V &3 € A} with z; € Ry
and 3,23 € @2 and that h'(z;,C) = h'(zy,C) =
k' (z3,C) = h'(z4,C) = K'(C,t)/4 for each clause
C=2Z,VI VI3 VT, € A} with 21,79,73 € R; and
z4 € (2. Let M; be the network obtained from
the residual network N3(h') with respect to A’ by
deleting all arcs into s, all arcs from ¢ and all nodes
C,C (and incident arcs) in By U A5 U A;.

Now we can split off clauses C € B U Aj U Aj.
For each C = I, VI, Va € B} with z1,22 € Ry
and ¢ € Q3, let H'(C) = {z1,22;8,C, 20,20}
with weights ws(zl) = wg(l‘g) = 'LU3((-I,) = 2h'(C),
w3(C) = 4h'(C) and ws(zo) = w3(Z) = —20'(C)
using A’'(C) = h'(z1,C) (zo is any variable in X).
Let H' = Ucep,H'(C). For each clause C' € &
of form C = Z, VI,V T3 € A} with z; € R,
and z3,z3 € Qo, let G5(C) = {z1,z2,23,C} with



weights w3(z1) = ws(z2) = ws(zs) = 2k/(C) and
w3(C) = 6K/ (C) using #'(C) = h'(z1,C). For each
clause C € £ of form C = 7, Vi, VI3V iy € A}
with z,,25,73 € Ry and z, € Qy, let G}H(C') =
{z1, %2, 23,24, C'} with weights w3 (z1) = ws(z2) =
wy(z3) = ws(zs) = 2A'(C’) and ws(C) = 8A'(C")
using &'(C") = k'(z1,C"). Let G = Ucea, §°(C)
and G = UCGAQQM‘(C).

Let (Fj,,ws) = C(Ms) (the set of weighted
clauses of the symmetric network M3) and let
(F,ws) be the set of weighted clauses obtained
from (£, ws) by replacing (£7',, wz) with (F7 5, w3)
and by replacing the weight wy(C) of each clause
C € By U Ay U A} with ws(C) = we(C) — 30/ (C)
(C € Ay) or w3(C) = w2 (C)—4h'(C) (C € ByUAY)
(w3(C) > 0 and we assume clauses with weight 0
are not included in F).

Then, by the same argument as before, we have
(C,w) and (C?,w3) (C*=FUGUG*UGUHU
GRUG"HUH, ws = w for GPUG*UG® and w3 = w,y
for H) are strongly equivalent based on Lemma 1.
Let R3 be the set of nodes reachable from s in M3.
Clearly, Rs C Ry (B3 C R;). Wecallanodea € Q,
an entrance if there is a clause C =, ViyVa € F
such that z,,75 € R3 (w2(C) > 0). Let Q3 be
the set of nodes reachable from entrances in Mj.
Clearly, Q3 C Q2 (Qs € Q2).

By the argument above, we can summarize Step
3 of our algorithm and a lemma as follows.

Step 3. Find Rs, Qs and (FUG® UG UH', ws)
from (€, w;) using the network M, N3, a symmet-
ric flow b’ of N3 of maximum value and the network
M3 defined above.

Lemma 4 (C,w) and (C3,ws) (C* = FUG*U
G*UGSUHUGRUGHUH, ws = w; for GFUGHU
G5 and wy = w, for H) are strongly equivalent.
Furthermore, the following statements hold.

(a) z € Ry for eachC =z € F.

() y € R3 for each C =z Vy € F withz € Rs.

(c)y € Ry for each C = EVy € F withz €
R, — R;.

(d) y € Q3 U Ry for each C = IV y € F with
T € Q;.

(e) there are no clauses in F with 3, 4 or 5 literals
all contained in R;.

(f) a € Q3 U R, for each C=ZV§Vae€F with
z,y € R3-

(g) there are no clauses C € F of form C =
F,VIo VI3 with zy € R3 and z2,23 € Q3U(R2—-R3)
or of form C = T, VI VI3V I, withxy,72,73 € R3
and z4 € Qs U (R2 - Rg)

(h) R3 C R; and Q3 C Q-.

Now we are ready to set the probabilities of vari-
ables to be true.

Step 4. Obtain a random truth assignment x? by
setting independently each variable z; to be true
with probability p; as follows:

|

Then find a truth assignment z4 € {0,1}"
with value Fg(z4) > Fe(xP) by the probabilistic
method.

(.’L‘i € R3)
(z; €Q3U (R — Ra))
(J}i €Z;:=X- (Rz U Q3))

LTS TR (X

4 Analysis

In this section we consider the expected value
Fc(xP) of the random truth assignment x” ob-
tained by Step 4. Let * be an optimal solution
to (C,w). Then, the random truth assignment x?
satisfies (1), which can be shown below.

We have only to consider Fga(xP), since (C,w)
and (C3,ws) are strongly equivalent by Lemma
4 and thus Fe(aP) = Fes(@P). Furthermore, we
have Fea(aP) = Fg(zP) + Fga(xP) + Fos(2P) +
Fgs(@P) + Fu(x?) + Fgn (xF) + Fgu (2P) + Fr0: (2P),
since C° = FUGP UG UG UHUGR UG UH.
Thus, it suffices to show that each group Z satisfies
(1) (T = F,63,6%,G65 H,G"%,¢", H'). Similarly, if
each Z(C) with C € J satisfies (1) then T satis-
fies (1) since Fr(aP) = Yoz Fr(C)(2P) for each
pair (Z,J) = (G%, Ax), (M, By), (6%, Ay), (H', By).
Thus, for simplicity, we assume the following (in
fact, we can always assume so without loss of gen-
erality in our argument below):

g3 = {$1,22,$3,1_31V3_32V523} with Z1,T2,23 € R
of weight K, and % V Z; V I3 of weight 3K,

G* ={y1,¥2,¥3, ¥, 1 VT VI Vis} withy, € R
of weight K¢, (k=1,2,3,4)and 1 VH Vi VU
of weight 4K¢,,

G® = {z1,20, 23,24, 25, 1 V 22 V Z3 V 5, V Z5 } with
2 € R of weight Kg, (k=1,2,3,4,5) and z; VZV
Z3 \ Z4 V Zs of weight GKG“

H = {xhl,zhz,iha,i‘hl V Zh, V zhs,zo,io} with
Thy,ZTh, € Ry, xp, € 24 U21 (Z] =X —Rl) of
weight 2Ky, Ip, V Tn, V @, of weight 4Ky and
Zo, To of weight =K g (2o is any variable in X),

G? = {z|,zh, 25,3 V Th V T3} with z} € Ry,
zh,23 € Qa of weight Kg, and 27 V 33 V T3 of
weight 3Kg;,



g"* = {y/lvyéayéayrhgi \ gé v 37115 v i’i} with
yi,yé,ys € Ry, yy € Q2 of weight K¢, 77 V 5 V
75V gy of welght 456/

H = {z}, 7} VB By V E, V xha,zo,zo} with
T, 2, € Rz, T}, € Q2 of weight 2Ky, 3}, VT, V
z of weight 4Ky and x4, T of weight —2KH;.

ha g &

Let W (Z) be the value of z* for weighted clauses
in (Z,w3) with k literals. Now we will find a
lower bound on the expected value of Fr(aF) for
each (Z,w3). We first consider the expected value
Fga(zP) for (G3 = {21, 29, %3, %1 VZ2VZ3},w3). Let
p = ¥P1p2ps and f(G%) = 3K, (p+(1—-p®)). Then
Fgs(aP) = Kg,(p1+p2+p3s+3(1—p1paps)) > F(G%)
by the arithmetic/geometric mean inequality. Here,
;€ By (1 =1,2,3), s1nce:c,€Rand:L,¢R2CR
(i = 1,2,3). Thus, p,#i-and <p,_§ This
implies p € [2,3] and, in thlS mterval F(G?) takes
a minimum value at p = ~ . Thus,

F(6%) 2 3Kg, (3 + 1~ ( )?) = 3.984375K,.
On the other hand, Fga(m*) =Wy (G®) + W3 (G®%),
Wi(G%) = Kay(a + o3 + 23) and Wi(G°) =
3Ke,(1 — zizjzl). Note that 1 — [[* a7 <
min{1,k — Zle z}} for ¥ = 0,1 (this holds even
for 0 < z7 < 1). Thus, §W1 (6% + 8wz (%)
< Koy(3(ai + 5 + 25) + B@)min{1, 3~ (5 +
2 +23)}) € Koy(3(2) + 8(3)) = 3.825Ka, and
we have

3 * 3 31 * (3
Foe(a?) > SW7 (0% + I (0. ()

Similarly, the expected value Fgi(zP) =
Kg,(p1 + p2 + pa + ps + 4(1 — p1papaps)) for
(94 = {11,1‘2713,Z4,i1 VZIygVZzV i‘4},‘UJ3) sat-
isfies Fgs(2P) > f(G*), where p = ¢/p1P2Psps and
F(G*) = 4Kg,(p+ (1 — p*)) (we assume y; = z,)
For the same reason as above, we have p € [5, 2]
and f(G*) takes a minimum value at p = g. Thus,

f(g4) 2 4I"G4(5 +1- ( )4) =35. 4976KG4
On the other hand, Fg4(m") = Wp(G*) + W (G%),
Wi(G*) = Kg, (2] + a5 + 1'3 + zj) and Wi (G*) =
4K, (1—-ziz3z3x]). Thus, —Wl (g“)+}°1W4 (64
<Ke,(3 (z1+1:2+:c3+a:4) ]ﬁ 1(4) min{1,4—(z]+
zz+x3+:c4))) < Kg,(3(3)+15(4)) = 5.40625K,

and we have
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The expected value Fgs(x?) = Kg,(p1 + p2 +
Ps + pa + ps + 6(1 — pipapspeps)) for (G5 =
{x1,72,23,T4,75,Z1 VT2 VI3V T4V I5},ws) satis-
fies Fgs(zP) > f(G®), where p = ¥/P1p2pspaps and
F(G®) = Kg,(5p + 6(1 — p°)) (we assume z; = z;).

Fou(a?) 2 JWI(0Y) + 1 Wi(G).  (8)

For the same reason as above, we have p € [%,2—

and f(G®) takes a minimum value at p = £. Thus,
£(%) 2 e, (5(2)+6(1 - (2)%)) 2 7.93856 K,

On the other hand, Fgs(z*) = Wy(G°) +
W5 (G°), Wy (G°) = Ka, (a5 + 23 + 25 + 2} + 23)
and W (G%) = 6Kg,(1 — x1x2z3z4zs) Thus,

3VV1 (gs)+}3§§W‘(gs) < KGs( (zi+z3+as+ai+
%)+ igag 6) min{1,5 — (2} + =} + 23 + z; + z2)))
< Kg,(3(4) + 132(6)) = 7.8609375Kg,, and we

have

3 .
ZWI (G°)+

1037

Py >
Fos(a") 2 1280

= WE(G%). (9)

The expected value Fy(z?) = Kg(2(p1+p2+1-
p3)—14+4(1=p1p2(1-p3))) for (K = {21, 22,73, 21V
Ty V z3},w3) satisfies Fy(xP) > f(H), where p =
VPiP2 and f(H)= Ku(4p+2(1 —ps) -1+ 4(1 -

p2(1 - p3))) (we assume Zp, = z;). Here, 21,23 €
Rl, z3 € Zy U Z; and thus, P,p2,pP € [274] and
ps € [%,1] and f(H) takes a minimum value at
p= l and p3 = % Thus,

70 2 Kn(4(h)+2(2) - 1+4(1- }2) = 54K,
On the other hand, Fy(z™) = Wy (H) + W3 (H),
Wi (H) = K (2(ai 2 +1-2)~1) and W () =
4Ky (1—z5z3(1—23)). Thus, 4W1 ('H) W3 (H)
<Kg(3(2(at+a3+1- :1:3) 1)+ 32(4) mm{l 3-
(zi + 23+ 1 -23))) < Ku(} (4—1)+ @) =
5.35Ky and we have

3. 31 .
Fu(?) 2 W5 (H) + 355 (). (6)

Similarly, the expected values Fgn(x?)
Kgy(pr + p2 + ps + 3(1 — pipeps)) for ("
{z1,22,23,21 V2,V 33}, w3), Fgn(a?) = Kg, (p1

P2 + p3 + ps + 41 — pipopaps)) for (M
{z1,%2,%3,24, 21 VE, VI3V T4}, ws) and Fyp (zP) =
Kp(2(p1+p2+1-p3) —2+4(1 —p1p2(1—p3))) for
(H' = {z1,%2,73,%1 V T2 V 23}, w;) can be shown
to satisfy

III+|III

Foo(a®) > SWI(0™) + W5 (G%). ()
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Fro(a?) 2 SWi(H) + Wi (W) (9)

Fou(a?) > SWI(0") + 1Wi(0%). )

Let Wk .F) ECET w3 C) Then Wk(]‘-)
Wi(F) = Eceﬂ w3(C‘3C(:€ ). Furthermore, by
Lemma 4, the expected value Fg,(2P) of z” for
(Fi,ws) satisfies

Fr, (xP) 2 6. Wi(F) > 6 Wi (F), (10)



where §; = 6§, = - , 03 = —— , 84 = %gé, b5 = iggg
and 6, =1- (3 )’" (k > 6) Note that (C,w) and
= fug“ug‘* UGSUHUG? UG UH, ws)
are strongly equivalent and a clause C € Cy, (k > 3)
appears in FrUGPUG* UG UHUGRUGHUNH'

with the total weight unchanged. Thus,

W3 (€) = W5(F)+W3(G") + Wi (H)
+ W3 (G°) + Ws (M)
Wi (€) = WI(F)+Wi(Gh)+ Wi
Wi(€) = Wi(F)+Wg ()
Wi€) = Wi(F) (k26). (11)

Furthermore, since Fe(z) = Fea(z) = Fr(z) +
Fgs(z) + Fga(xm) + Fgs(z) + Fr(x) + Fgu(x) +
Fgu(z) + Fu(x) for any random truth assign-
ment x (for example, ¢ = z*,zP) and Fr(z*) =
e WD) (T = F,G%,G% G5, H, GG H),
we have
Wi (C) + Wz (C)
= Wy (F) + W5 (F) + Wi (F) + Wi(G)
+WT(G*) + Wi (G®) + Wi (H) + Wi (67)
+Wy (™) + Wy (M), (12)
Thus, by (3) through (12), we have Fes(x?) of
z? satisfies (1).

Theorem 1 A truth assignment z# obtained by
the refinement algorithm in Section 3 has the value
Fe(a®) 2 3Wp+ 305 + W5 + Wi+ S50 +
Tixell- (2)9w;.

5 Formal Formulation

We consider the following MAX SAT formulation
(S) in 1] based on Goemans and Williamson [2],[3].

Maximize E w;jz;

C;ec
subject to:
> 1—%”31+ T 1“2—3""2zj YC;eC
zi€X} T €X]
24k D)2z VG e
Yii =1 Vi<i<n
0<z <1 vC;eC

Y = (yi,i;) is a symmetric, psd matrix.
(13)
Let (Y*,z*) be an optimal solution to (§). To
achieve the bound 0.767, we consider Algorithm B
consisting of the following four algorithms:

(1) set each variable z; true independently with
probability %;

(2) set z; true independently with probability
pi = H'—;jit using the optimal solution (Y*,z*) to
(S); '

(3) take a random (n + 1)-dimensional unit vec-
tor » and set z; true if and only if sgn(9] -
r)=sgn(%§ - v) using the optimal solution (¥Y'*, z*)
to (S) and (R') (3* = (¥5,9},...,Dy) is obtained
by Cholesky decomposition of ¥* = (7;,;,) and
Vi, = V50 V)

(4) set each variable z; in R3, Q3 U (R — R3)
or Z3 = X — (Rz U @s) true independently with
probability 3, 2 or I, respectively based on the
refinement algorithm in Section 3.

Suppose we use algorithm () with probability
pi, where py + p2 + p3 + ps = 1. If we choose
P1,P2, P3, P4 appropriately, then the expected value
can be shown to be at least 0.767F¢(xP*), where
Fe(zP*) > Zc,-e.ﬂ wjzj 2 Fe(z*) for any optimal
truth assignment z* and 2f" = ﬁzlﬁ.».

Thus, if we choose the best solution among the
solutions obtained by Algorithms (1) — (4) then its
value is at least 0.767 times the value of an optimal
solution, and we have the following theorem.

Theorem 2 A 0.767-approzimation algorithm
can be obtained based on the refinement of Yan-
nakakis’s algorithm in Section 3.
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