7 N T U X L b4-6
(1996. 10. 17)

AT 5 7 EODSBRITE % AR < B8 % O (mn) BRI7 LT X 4

A¥E A, TR HH, KK BF
FEORSE LAnfseh BB THH=E
T 606-01 SUERTH /2 BUIX 3 HARHT

BB BERBOEESNI A s 270 k-IEKBENSEY 57 G = (V,E) P52 bRk
X, s \ZHART B 230 (s,u), (5,v) B 1 (u,) CESMIDBIEZREL (F5 7D k-084
e Rb%H0) s ZIMLAMSELMBEER 5, &E. n=|V|, m % G BV IO
ERTVLENOKE Lz E, ZOMBEL#EL O(n(m+nlogn)logn) B D7 L T X4
3BA% & 7z A% [H. Nagamochi and T. Ibaraki, Deterministic O(nm) time edge-splitting in
undirected graphs, Proceedings 28th ACM Symposium on Theory of Computing, 1996, pp.
64-73], DT NT) X LIIRRHHETH 5, REETIL, FL O(n(m + nlogn)logn) Dt
BRFEAEO L VHELT VT XL RRET 5,

A Simple O(nm) Time Edge-Splitting Algorithm
in Undirected Graphs

Hiroshi NAGAMOCHI, Shinya NAKAMURA and Toshihide IBARAKI

Department of Applied Mathematics and Physics
Graduate School of Engineering
Kyoto University
Kyoto,‘ Japan 606-01

Abstract This paper presents a deterministic O(n(m + nlogn)logn) = O(nm) time
algorithm for splitting off all edges incident to a vertex s of even degree in a multigraph G,
where 7 is the number of vertices in G and and m is the number of vertex pairs between which
G has an edge. The algorithm is much simpler than the previous O(n(m + nlogn)logn)
time edge-splitting algorithm due to [H. Nagamochi and T. Ibaraki, Deterministic O(nm)
time edge-splitting in undirected graphs, Proceedings 28th ACM Symposium on Theory of
Computing, 1996, pp. 64-73].

._.41._

1 Introduction

Let G = (V, E) stand for an undirected multigraph
with a set V of vertices and a set E of edges, where an
edge with end vertices u and v is denoted by (u,v).
For two disjoint subsets X,Y C V, we denote by
Eg(X,Y) the set of edges, one of whose end ver-
tices is in X and the other is in Y, and by c¢(X,Y)
the number of edges in Eg(X,Y). In particular,
cc(u,v) = |Eg(u,v)|. Throughout the paper, the set
of edges Eg(u,v) may alternatively be represented
by a single link (u,v) with multiplicity cg(u,v). In
this way, we also represent a multigraph G = (V, E)
by an edge-weighted simple graph N = (V, Lg,cc)
with a set V of vertices and a set L of links weighted
by ¢c¢ : Lg — Z*, where Z* is the set of non-
negative integers. We denote n = |V|, e = |E| and
m = |Lg|. A cutis defined as a subset X of V with
0 # X # V, and the size of cut X is defined by
cg(X,V — X), which may also be written as cq(X).
If X = {z}, cg(z) denotes the degree of vertex z.
For a subset X C V, define its inner-connectivity by
Ag(X) = min{ce(X’) | @ # X' C X}. In particular,
A (V) (i-e., the size of a minimum cut in G) is called
the edge-connectivity of G.

Let s € V be a designated vertez in V. A
cut X is called s-proper if @ # X C V —s.
de(V — s) (i.e., the size of a minimum s-proper
cut) is called the s-based-connectivity of G. Hence
Ae(V) = min{Ag(V — s),cs(s)}. Given neighbors
u,v of s (possibly u = v) and a non-negative integer
§ < min{cg(s,u),cq(s,v)} in G = (V, E), we denote
by G/(u,v;8) the graph obtained from G by split-
ting & pairs of edges (s,u) and (s,v) (ie., delete §
edges from Eg(s,u) and Eg(s,v), respectively, and
add & edges to Eg(u,v)). A set of splitting opera-
tions, each of which splits a pair of edges incident
to s is called a splitting at s. A splitting is feasible
(with respect to k) if Ag/(V — s) > k holds for the
resulting graph G’, and is complete if G' does not
have any edge incident to s. Lovdsz [6] showed an
important property.

Theorem 1 [6, 3| Let G = (V,E) be a multigraph
with a designated vertez s € V with even cg(s), and
k be an integer with 2 < k < Ag(V — s). Then for
each u € Tg(s) there is a vertez v € I'g(s) such that
splitting one pair of edges (u,s) and (s,v) is feasible.
=]

For a vertex s with even degree in a muiltigraph
G and an integer k with 2 < k < Ag(V — s), there
always exists a pair of edges (s,u) and (s,v) whose
splitting is feasible (with respect to k). By repeat-
edly applying this property, we see that, for such s
and k, there always exists a complete feasible split-
ting. Since a complete feasible splitting reduces the
number of vertices in a graph while preserving its
s-based-connectivity, it is widely used as a powerful
tool in inductive proofs of various edge-connectivity
problems.

Recently, a deterministic O(n(m + nlogn)logn)
time algorithm for finding a complete feasible split-
ting is proposed in [8]. Reference (8] first designed an
O(n(m + nlogn)logn) time algorithm for finding a
complete feasible splitting in an Eulerian graph, and
then modified it for general graphs. Although the
algorithm for Eulerian graphs is fairly simple, the al-
gorithm modified for general graphs is considerably
complicated.

This paper first shows that the same algorithm
designed for Eulerian graphs in [8] (with a slight
modification) works for finding a complete feasible
splitting in a general graph with respect to an even
integer k. Then based on this, we present a new sim-
ple O(n(m+nlogn)logn) time algorithm for general
graphs in case of odd k.

2 Preliminaries

For a multigraph G = (V, E), its vertex set V and
edge set E may be denoted by V[G] and E[G], re-
spectively. For a subset X C V in G, G[X] denotes
the subgraph induced by X. For a vertex v € V,
a vertex u # v adjacent to v by an edge is called a
neighbor of v in G. Let Tg(v) = {w € V | (v,w) €
E} denote the set of neighbors of v in G. T'g(v) al-
ways satisfies |[I'g(v)| = O(n). We say that a cut
X separates two disjoint subsets Y and Y’ of V if
YCXandY CV~-X(orY €V —-X and
Y’ € X) hold. In particular, a cut X separates z
and yifz € Xandy € V- X (ory € X and
z € V — X). We say that a cut X divides a subset
ZoAVIEZNX#0#Z0(V—X) holds. A cut
X crosses another cut Y if none of subsets X NY,
X-Y,Y—Xand V- (XUY) is empty.

The local edge-connectivity Ag(z,y) for two ver-
tices z,y € V is defined to be the minimum size
of a cut in G that separates z and y. An order-
ing wvy,vg,...,vs of all vertices in V is called le-
gal in G if it satisfies cg({v1,v2,...,vi},vip1) 2
cg({v1,vs,...,v:},v5), 1 <1< j <n.

Lemma 1 [7,9,11] Let G = (V, E) be a multigraph.
(i) A legal ordering v1,v2,..., v, of vertices in G
can be found in O{m+nlogn) time (if a weight func-
tion cg : Lg — RY is given as input) or in O(e+n)
time (if a set E is given as input).
(ii) The following property holds for the last two
vertices Un_1 and vn, Ag(Vn-1,Vn) = ca(vn). m]

The next property is already observed in [8].

Lemma 2 [8] Given o multigraph G = (V, E) with
o designated verter s € V with even cg(s) >
0, let Tg(s) = {z1,72,...,Tp}, and let Trus €
Ta(s) satisfy cg(s,Tmaez) = max{ce(s,z:) | i =
1,2,...,p}. Then deleting max{0, cg(s,Zmaez) ~
S e G (5,3:)} edges from Eg(s, Tmaz) never de-
creases the s-based-connectivity of G, and the result-

ing graph G’ has even cg:(s) and satisfies p > 2 and

1
él%xpcc'(sy)< 5

Z cor (s, z;). (1)

1<i<p

0

Throughout this paper, we assume without loss
of generality that a given multigraph G = (V,E)
satisfies (1).

Finally we introduce the converse of an edge-
splitting operation. Given a graph G = (V,E), a
designated vertex s € V, two adjacent vertices u,v €
V — s (possibly v = v) and a non-negative integer
§ < cg(u,v), we construct the graph G# = (V, E#)
from G by deleting § edges in Eg(u,v), and adding
new § edges to Eg(s,u) and Eg(s,v), respectively.
In this case, we say that G¥ is obtained from G by
hooking up 6 edges (u,v) at s.

3 Splitting for Even k&

We first consider how to find a compete feasible split-
ting with respect to an even integer k.

3.1 (k,s)-semi-critical collections and

X-astride splitting

For a multigraph G = (V,E) and s € V, a family
X = {X),X3,...,Xp} of disjoint subsets X; C V —s
is called a collection in V — s. A collection X may
be empty. If }-7_, eg(s,X;) = cg(s) holds, then X
is called covering (i.e., either every neighbor of s is
contained in some subset X; € X if [g(s) # 0, or
X =0 if Tg(s) = 0). An s-proper cut X is called
(k, 5)-semi-critical in G if it satisfies

cg(5,X) >0, k<cg(X)<k+1 and Ag(X)>k.

A collection X in V — s is called (k, s)-semi-critical
in G either if X = P or if all X; € X are (k,s)-
semi-critical. For a collection X = {X;, X3,..., X, }
in G, splitting a pair of edges (s,u) and (s,v) for
neighbors u,v of s is called X -astride if there is no
X; with u,v € X;.

Lemma 3 For a multigraph G = (V,E), a des-
ignated vertex s € V with a positive even integer
cg(s) and o positive integer k < Ag(V —), let

X = {X1,Xo,...,X;} be a (k,s)-semi-critical -couv-
ering collection in G. Then
(i) p>2 and

1
lxg;jzécpcc(s,Xi) < 5 Z CG(S,X:‘)- (2)

1<i<p
cg(s,X1) = cg(s, Xz) forp=|X] =2

(i) Any feasible splitting of a pair of edges (s,u)
and (s,v) is X -astride.

(i) Any subset X; € X satisfies Agi(X;) =
Ag(X,)(Z k) and Cg!(.Xi) = CG(X,')(= k) af-
ter an X -astride splitting.

Proof: Omitted. O

Note that (ii) of this lemma says that a complete
feasible splitting at s is a complete X'-astride split-
ting at s, though being A-astride does not mean fea-
sibility in general.

3.2 Finding a complete X-astride
splitting

Given a (k, s)-semi-critical covering collection X in
a multigraph G' = (V, E’) with a designated vertex
s € V, it is known in [8] that a complete X-astride
splitting at s can be found by an O(nm) time al-
gorithm, called C-SPLIT. The description of algo-
rithm C-SPLIT is omitted due to space limitation.
The idea is that we basically repeat choosing a pair
of edges (s,u) € Eg(s,X;) and (s,v) € Eg/(s, X;)
for distinct X;, X; € X and split these edges, where
a pair of edges is chosen so that condition (2) of
Lemma 3 is maintained after splitting the pair of
edges (since |X'| # 1 holds as long as (2) holds).

Lemma 4 [8] Given a multigraph G’ = (V,E'), a
designated vertez s € V with even cg:(s), and a cov-
ering collection X which satisfies (1), a multigraph
G obtained by a complete X-astride splitting at s is
found in O(nm) time (if weight function ce is given
as input) or in O(n(e+n)) time (if set E' is given as
input), where e = |E'|, and creates O(|T'¢:(s)]) new
links.]

3.3 Hooking up the edges generated
by infeasible splittings

Given a multigraph G' = (V, E') with a designated
vertex s € V and an positive integer k < Ag/(V — 3),
suppose that graph G= (v, E) is obtained from G’
by a complete splitting at s, which is not necessarily
feasible with respect to k. Let B C FE be the set
of edges created by the complete splitting. Then it
is known in [8] that the following algorithm finds
a minimal subset B’ C B such that hooking up the
edges in B’ recovers the s-based-connectivity of G up

to k (“minimal” means that no proper subset B” C
B’ can do this).

Algorithm HOOK-UP

Input: A multigraph G = (V, E), a designated ver-
tex s € V with c4(s) =0, B C E, and an positive
integer k. (It is assumed that the graph G’ obtained

from G by hooking up all the edges in B satisfies
Aa(V —s) > k)

— 43—

Output: A minimal subset B’ C B such that the
multigraph G# = (V, E#) obtained from G by hook-
ing up the edges in B’ satisfies Ag#(V —s) > k, and
a (k, s)-semi-critical covering collection Y in G#.

1 begin
2 H:=G*=G;Yy:=0; B :=0;
3 while |V[H]|>4do
4 Find two vertices v,w € V[H] — s with
AH("Jy w) 2> k;
5 Contract v and w into a single vertex z*
and let H be the resulting graph,;

6 if cy(z*) < k then
7 Let X* CV — s be the set of all vertices
contracted so far into z*;
8 Choose a set A of [1(k — cqe(X*))]
edges arbitrarily from B N E[G#[X*]];
9 B:=B— A; B := B'U 4;
10 Let G# denote the graph obtained by
hooking up these edges in A at s in G¥#;
11 Let H denote the graph obtained by

adding new 2[%(k — cg#(X*)] edges
between s and z* in H;

12 Y =Y u {X*}, after discarding from Y
all X' € Y such that X' C X*

13 end {if }

14 end; { while }

15 Output B’ and Y

16 end. { HOOK-UP }

Lemma 5 [8] Let G = (V,E), s€ V, BC E and
k be the input of algorithm HOOK-UP, and let n =
[V, m = |Lgl|, e = |E|. Then HOOK-UP runs in
O(n(m+nlogn)) time (if weight function cg is given
as input) or in O(n(e + n)) time (if set E is given
as input). Let B’ and Y be the subset of B and the
collection obtained by HOOK-UP, and let G¥ denote
the graph obtained from G by hooking up all edges in
B'. Then:

() Age(V —) > k.

(ii) Y is a (k, s)-semi-critical covering collection
in G¥.

(iii) B’ is minimal in the sense that, for any proper
subset B" C B', graph G" obtained from G by hook-
ing up the edges in B" satisfies Agn(V — 5) < k.
]

3.4 [Initial (k, s)-semi-critical covering
collection

Given a graph G = (V,E) with a designated ver-
tex s € V and an even integer k < Ag(V — s), a
(k, s)-semi-critical covering collection can be found
as follows. As observed in Lemma 2, we can as-
sume that G and s satisfy condition (1). Therefore,
by letting X = {{z1},{z2},...,{zp}} for T'g(s) =
{z1,...,%p}, we can apply C-SPLIT to find an initial
complete splitting at s, since such X’ satisfies condi-
tion (2). Let G and B denote the resulting graph

and the set of edges created by these splittings, re-
spectively. Clearly I'4(s) = @ since cg(s) is even.

3.5 Entire algorithm for even k

We are now ready to describe the entire algorithm for
finding a complete feasible splitting at s with respect
to an even integer k in a multigraph.

Algorithm EVEN-SPLIT

Input: A multigraph G = (V, E) with a designated
vertex s, which satisfies (1), and a positive even in-
teger k < Ag(V — s).

Output: A multigraph G’ = (V| E’) obtained from G

by a complete feasible splitting (with respect to k)

at s.

1 begin
2 Let G = (V, E) be a graph obtained from G
by an initial complete splitting, and B C E
be the set of edges created by this complete
splitting;
3 Apply HOOK-UP to G and B to obtain
G# = (V, E#) that satisfies Agx (V — s) > k,
by hooking up some edges in B, and a (k, s)-
semi-critical covering collection Y in G¥;
4 G :=G* X:=),
5 while X # 0 do
6 Apply C-SPLIT to G’ and X to obtain the
graph G = (V, E) and the set B C E'
of created edges, resulting from a complete
X-astride splitting in G';
7 Apply HOOK-UP to G and B to obtain
G# = (V, E#) that satisfies Ag#(V — s) > k,
by hooking up some edges in B, and a (k, s5)-
semi-~critical covering collection) in the G#;
8 G =G*; x:=)
9 end; { while }
10 Output G'
11 end. { EVEN-SPLIT }

Before proving the correctness of this algorithm,
we introduce some more definitions. Two cuts X and
Y are called s-neighboring in G if X NY contains a
neighbor u € I'g(s) of s. Furthermore, two cuts X
and Y which are s-neighboring each other are called
s-crossing if they satisfy X —Y #0and Y — X # ¢

(i.e., X and Y are crossing each other).

Lemma 6 Let X,Y be the two collections X in
line 6 and Y obtained in line 7 in each iteration of

the while-loop in EVEN-SPLIT.

(i) For each Y € Y, X contains at least two cuts
X, X' € X which are s-neighboring to Y .

(ii) Let two cuts X € X and Y € Y be s-crossing
each other. Then cou(X) = cgu(Y) =k +1,
cg#(X —Y)=cgue(Y = X) =k, and cgz(X 0
Y,V - (XUY)) = 1.

(ii1) LetY € Y s-cross each of two cuts X1, X5 € X.
If k is an even integer, then at most one of X,
and X, can s-cross some other cut in ¥ — {V'}.

Proof: (i) For each Y €), G[Y] contains an edge
{u,v) € B that is hooked up in G¥. Since any edge
(u,v) € B is created by an X-astride splitting of
edges (s,u) and (s,v), there are two cuts X, X' € X
such that v € X and v € X’. Since both u and
v are neighbor of s in G¥, each of X and X' is s-
neighboring to Y.

(i1) Since X and Y are crossing each other, they
satisfy

cg#(X) +cqx(Y)
= CG#(X — Y) =+ Cg#(Y - X)
+2c6#(X NY,V — (X UY)). (3)
We see that

cor(X)<k+1, cou(Y)<k+1, (4)
CG#(X - Y) 2 k7 CG#(Y - X) 2 k? (5)
cor(XNY,V = (XUY)) > 1 (©)

hold, because X and Y is (k, s)-semi-critical covert-
ing, Ag#(V) > k holds, and X and Y are s-crossing
each other. From (3), inequalites (4), (5}, and (6)
hold only by equation.

(iii) Assuming that both X, and X3 s-cross some
other cuts ¥1,Y; € Y — {Y'}, respectively (possibly
Y: =Y3). By applying Lemma 6 (ii) to X; and Y,
we have cg#(Y — X1) = cgo(X1 —Y) = k. From
this, we see Y — X; — X3 = 0, because otherwise
Y - X, - X, #0) Y — X; would s-cross X, and
cg#(Y — X1) = k+1 would hold by applying Lemma
6 (11) toY — X1 and Xg. From Y —Xl - Xz = 0,
cg#(YNX3) = cge(Y —X;) = k holds. Similarly for
YN X, we obtain cg» (Y NX;) = k. By applying the
above argument to three cuts X;,Y and Y;, where
X, s-crosses each of Y and Y7, we also see X; — Y —
Y1 =0 and cg# (Y1 N X;) = cge(X; —Y) = k holds.

Let cg#(X1NY, X2NY) =a and cg# (X, NY, XN
Y1) = b. Then
CG# (Xl N Y)

= cer(XiNY,Y — X)) + e (X1NY, X1 - Y)

tegr (X1 NY,V — (X, UY))
where cg#(X; NY,V — (X, UY)) =1 from Lemma
6 (ii). From X; —Y — ¥; = 0, we have cge(X1) =
a+1+1+cgs(X.NYy,Y; —X;) =k+1by Lemma
6 (ii), from which cg# (X1 NY;, V1 - X)) =k—-a—-1.
Then

CG#(XlnYi)‘—:(k—ll—*l)-"b-{'-l-—-k (8)

Therefore, a = b from (8), and this implies 2a = k+1
from (7). This however contradicts the evenness of
k, proving the lemma. m}

The next lemma is easily derived from the previous
lemma.

Lemma 7 The two collections X in line 6 and Y
obtained in line 7 in each iteration of the while-loop
in EVEN-SPLIT satisfy V] < 2|X|.

Proof: By Lemma 6(i), each Y € Y has two cuts in
X which are s-neighboring to it. Let Xy, X} € X
denote such two cuts for a Y €). Since at most
one of Xy, Xy € X can s-cross some other cut in
Y — {Y} by Lemma 6(iii), we have [X]| > 3|)|. O

By this lemma, EVEN-SPLIT terminates after at
most [log, 5 |Xo]] = O(log|T'¢(s)]) iterations of the
while-loop, where Xj is the initial collection X in
line 4. Since X = 0 in the last iteration of the while-
loop means that G¥ = G holds in the same iteration,
the output G’ satisfies A/ (V —s) > k and ¢ (s) = 0.
This shows the correctness of EVEN-SPLIT.

Now let us consider the running time of EVEN-
SPLIT. Assume that G is given by an edge weight
function cg for links, where n = |V] and m = |Lg|.
Since the number of new links (including self-loop
type) created by an initial complete splitting in line 2
is O(|T¢(s)]) = O(n), and lines 2-3 can be carried
out in O(n(m + nlogn)) time by Lemma 5. In each
iteration of the while-loop, O(|T'¢(s)|) new links are
created by C-SPLIT in line 6 (see Lemma 4) and the
while-loops are iterated O(log|T'¢(s)]) times as dis-
cussed above, the number of links in each of these G
and G# constructed during the whole execution of
EVEN-SPLIT is O(m + |T'g(s)|log|T'c(s)|). Hence
each while-loop can be performed in O(n'(m' +
n'logn’)) time by Lemma 5, where ' = n and
m' = m+ L (s)| 108 [P (s)] = O(m+ nlog|Ta(s)]).
Therefore, the entire running time becomes O(n(m+
nlog) log [(s))).

When G is given by an edge set E, the number
of edges in G or G* is always at most |E|. Then
by Lemma 5 and the above discussion on the num-
ber of iterations, the entire running time in this case
becomes O(n(e + n)log|I'¢(s)|). Consequently, we
have the next theorem.

Theorem 2 A complete feasible splitting.in a multi-
graph G = (V, E) with a designated vertez s € V and
a positive even integer k < Ag(V —s) can be found in
O(n(m+nlogn)log|Te(s)|) time (if weight function
cg 1s given as input) or in O(n(e + n)log|Ta(s)|)
time (if set E is given as input), where n = [V|,
e=|E| and m = |Lg|. a

4 Splitting for Odd &
4.1 Sketch of Algorithm

We first outline our algorithm to find a complete
feasible splitting at s for a given multigraph G’ =
(V,E',ce') with a designated vertex s € V, and an
odd positive integer k < Ag(V —). Let k' be k— 1.
Our algorithm consists of the following two phases.

Phase 1: Let k' = k — 1. We divide the set of edges
incident to s Eg(s) into two set Fj and Eg(s)— Ep/
such that Ej/ is minimal subject to the property that
the resulting multigraph Gy = (V, (E—Eg(s))UEy)
satisfies Ag,,(V — s) > k. If |Ep| is odd, let
Ey := Ej U {é} by choosing an arbitrarily edge &
from Eg(s) — Eys. Since k'(= k — 1) is even, apply
EVEN-SPLIT to G = (V,(E — Eg(s))UEy), s and
k' to obtain G* = (V — s, Eg(s) U B) from Gy by
a complete feasible splitting with respect to k' at s,
where B is the set of edges created by this splitting.

Phase 2: We split the edges in Eg(s) — Ex to find
a complete feasible splitting with respect to k at s.
For this purpose, we first construct a compact rep-
resentation of all minimum cut in G*. Based on a
structural information from this representation, we
find a feasible splitting with respect to k at s.

4.2 Finding a minimal set of edges Ej

Given a multigraph G = (V, E) with a designated
vertex s € V and an odd positive integer k <
Ae(V = s), let G, = (V,E — Eg(s)) be a graph ob-
tained from G by deleting all edges in Eg(s). We can
easily modify algorithm HOOK-UP to obtain an al-
gorithm, called MINIMAL that computes a minimal
subset B C E such that Ag, (V — s) > k, where G,
denotes the graph obtained from G, by putting back
the edges in Ej (“minimal” means that no proper
subset E' C Ej can do this). Although the descrip-
tion of algorithm MINIMAL is omitted due to space
limitation, we can obtain the next.

Lemma 8 Let G = (V,E) be a multigraph with a
designated vertex s, which satisfies (1), and a positive
integer k with k < Ag(V — s), where n = |V| and
m = |Lg|. Then there is an O(n(m + nlogn)) time
algorithm that computes a multigraph G = (V, (E—
Ec(3))UEL) such that Mg, (V —s) > k, Ex € Eg(s),

and Ej is minimal subject to these properties. 0

4.3 Structure in G},

Given a multigraph G = (V, E) with a designated
vertex s € V and an odd positive integer k < Ag(V —
s), let G, = (V, E— Eg(s)) be a graph obtained from
G by deleting all edges in Eg(s), and k' be k—1. We
partition Eg(s) into two sets E4 and Ep as follows.
Let Ey C E be a minimal subset such that Ag,, (V -
s) > k', where Gy denotes the graph obtained from
G, by putting back the edges in Ey.. If | Ey/| is even,
then E4 = Eyr. If |Ey] is odd, then choose an edge
e* arbitrarily from Eg(s)— Ej, and let E4 be Ep U
{e*} and Gy = (V,(E — Eg(s)) U E4) be the graph
from G, obtained by putting back the edges in E4.
Then let Eg = Eg(s) — Ea, Gy, = (V,E') denote
the graph obtained from Gy by a complete feasible
splitting with respect to k' at s, and G, = (V,E'U
Ep) denote the graph obtained from G}, by putting
back the edges in Eg(s) — Ex. We find a feasible

splitting of edges at s in Gy based on a structural
information of a set of minimum cuts in G,. For
this, we review a cactus representation [2], a compact
representation of all minimum cuts in an undirected
graph. An undirected graph is called a cactus if any
two cycles (if any) have at most one common vertex.
An node w in cactus graph is called a leaf if w has
degree exactly two. Given an undirected graph G =
(V,E), we map it to an edge-weighted cactus R =
(V,€) by a mapping ¢ : V — W. For notational
convenience, we assume that cactus R in a cactus
representation (R, ¢) has no bridge. All the edges in
£ are weighted by Ag(V)/2, i.e., cr(e) = Ag(V}/2,
foralle € £.

Let C(G) ={Z |0 # Z CV, dg(Z) = Ag(V)} and
CRY={S|0#SCV, dr(S) = Ar(V)} (ie., the
sets of all minimum cuts of G and R, respectively).
In the use of mapping ¢, we use the term “vertex”
to denote an element in V, and the term “node” to
denote an element in V. Define

w(Z)
¢7H(S)

For S C V, we use the notation S =V — 5. A pair
(R, @) of an edge-weighted cactus and a mapping ¢
is a cactus representation for C(G) if it satisfies (i)
and (ii) below.

(i) For an arbitrary cut S € C(R), Z € C(G) holds,
where Z = ¢~}(S) (and hence Z = p~1(5)).

(ii) Conversely, for any cut Z € C(G), there exists
a cut § € C(R) such that § 2 ¢(Z) and § 2
p(2)-

It is known in [2] that there always exists such

a cactus representation with size [V| = O(|€]) =

O(|V]). When (R,) is a cactus representation for

C C C(G), we say that the cut Z € C(G) and the

cut § € C(R) correspond to each other if p(Z) C S

and o(Z) C 5. A node z € V with o™} (z) =0 is

called an empty node. Note that if R has an empty
node, a minimum cut in C(G) may correspond to
more than one minimum cut in C(R), while any min-
imum cut in C(R) always corresponds to exactly one
minimum cut in C(G). It is known that a cactus rep-
resentation (R,) with size |V| = O(|€]) = O(|V])
can be constructed in O(nmlog(n?/m)) time [5] and

O(nmlogm) time [9].

The following lemma show the underlying struc-
ture Gj,.

{o(v) €V |veZ}
{veV|y(v)e S}

for ZCV, and
for SCV.

i}

Lemma 9 Let G}, be the graph obtained from Gy
by a complete feasible splitting with respect to k' at
designated vertex s, B be a set of split edges in Gy,
obtained from Gy by a complete feasible splitting
with respect to k' at s and (R,p) be a cactus rep-
resentation for minimum cuts of G},. Then, for
all edges (v,v') in B, if v is mapped to the leaf in
R , v is mapped to other vertex in R by ¢, ie.,
p(v) # p(v').

Proof: For an edge ¢ = (v,v’) € B assume v
is mapped to a leaf w in R. From the definition
of leaf, Ag:, (p™*(w)) = k' + 1. Then, even if
the edge (v,v’) is deleted from G7},, the connectiv-
ity of the resulting graph G},__, does not decrease,
ie., /\G;f—a (V —s) > k’. From this, the s-based-
connectivity of the graph Gp_{(sv),(s,")}, Which is
obtained from Gy by deleting the edges (s,v) and
(s,v"), is still at least k’. This however contradicts
the minimality of E;s obtained after line 2 in ODD-
SPLIT, because at most one edge € is added to Ey
in line 4 in ODD-SPLIT. m]

Lemma 10 Let G}, be the graph obtained from G
by a complete feasible splitting with respect to k' at
designated vertex s and (R,) be a cactus represen-
tation for minimum cuts of G},. For each leaf u in
R, there exists at least one edge (v,s) € Eg(s)— E4
where v is mapped to u by .

Proof: Let G, Gy and G}, be respectively the input
graph, the graph obtained respectively in line 7 and
line 6. From lemma 9, cg:, (U) = cg,, (U) = k' hold
for each leaf v in R and U = ¢~} (u). And cc(U) =
k=K' + 1 since Ag(V —s) > k hold in G. Then, for
any leaf u in R, there must exist at least one edge
(v,5) € Eg(s) — E4 for some v € ¢~ (u). ul

4.4 Entire algorithm

Before describing the entire algorithm, we define a
depth-first-search (DFS) traversal in a cactus which
is employed in [10] to solve the Edge Augmentation
Problem, which asks to find a minimum set of edges
to add to a graph so that its edge-connectivity in-
crease by one. To explain easily, we assume different
simple cycles in a cactus are differently colored, so
that all cycle-edges in the same cycle are assigned
the same color. Since every cycle-edges is contained
in a unique cycle, such coloring is possible. Our spe-
cial DFS traversal starts at an arbitrary node and
obeys the following rule: if a node w is visited for
the first time via a cycle-edge that is colored by, say,
red, then traverse all other edges incident to w before
traversing the other red edge incident to w.

We are now ready to describe the entire algorithm
for finding a complete feasible splitting at s with re-
spect to an odd edge-connectivity in an arbitrarily
multigraph.

Algorithm ODD-SPLIT

Input: A multigraph G = (V, E) with a designated
vertex s with even degree, which satisfies (1), and a
positive odd integer k with k < Ag(V — 3).

Output: A multigraph G’ = (V, E’) obtained from G
by a complete feasible splitting (with respect to k)
at s.

— 47—

2 kKi=k-1

3 Apply MINIMAL to G = (V, E), s and k' to
obtain Gy = (V,(E — Eg(s))u Ey)
such that Ag,, (V — s) 2 k', B € Eg(s), and
E; is minimal subject to these properties;

4 if |Ey|is odd then
5 Choose an edge e* arbitrarily from
Eg(s) — Ey;
6 Ep = Ep U {e*}
7 else Ey := Ey;
8 end {if}
9 Let G, = (V,E — Eg(s)) be a graph obtained

from G by deleting all edges in Eg(s);

10 Let G denote the graph from G, obtained
by putting back the edges in E4;

11 Apply EVEN-SPLIT to Gy, s and k' to
obtain G}, = (V —s,(E — Eg(s)) UB)
from G by a complete feasible splitting with
respect to k' at s, where B is the set of
edges created by this splitting;

12 Construct a cactus representation (R, ¢) for
minimum cuts of G,;

13 Let {uj,us,--,u;} be the set of leaves in R;

14 L:=0

15 for each leaf u; of R do

16 Choose an edge e arbitrarily from

Ec(s,U;) = Ea, where U; = o™ (us3);

17 L:=Lu{e}

18 end; {for}

19 iflis odd then

20 Choose an edge € arbitrarily from
Eg(s)-K - L;
21 L:=Lu{ée}
22 end; {if}
23 Traverse R in a DSF manner, and let
e1 = (s,v1)," -, ejr| = (8,9)1)) be the edges
in L, where vy,---,vjy| appear in this order

along the DFS traversal (where v; = v;—; or
v; = viyq is possible for & = e; = (s,v;));
24 Form the pairs {(e;,e;4172) | 1<3<|L]/2}
and split all edges in L according to this pairing;
25 Let L' denote the set of edges created by this
splitting, and G’ denote the graph obtained
from G* by adding the set of edges in L';
26 Split all edges in Eg(s,U)—E4— L arbitrarily;
27 Let G’ denote the graph obtained from G’ by
adding the set of edges created this splitting;
28 Output G’ ‘
29 end. { ODD-SPLIT }

First, we show the the correctness of Algorithm
ODD-SPLIT. From Lemma 10, the edge set L in
line 16 in ODD-SPLIT is possible to be chosen. Then
we only to have to show that adding the set of edges
L’ created by the splitting executed in line 25 to the
graph G* obtained after line 11 increases the edge-
connectivity of the resulting graph by one. To prove
this, we need next lemmas.

Lemma 11 Let L be a set of edges in G obtained
after line 17 in ODD-SPLIT and be assigned num-
bers as in ODD-SPLIT. Then, for any minimum cut
X in G, all edges in L the end nodes of which are
mapped to a vertez in X have consecutive numbers
(assuming that the last number is followed by the first
number).

Proof: Suppose that a cut X is obtained by the re-
moval of two edges (from the same cycle), each of
weight k'/2. Let wy,---,w, be the vertices in this
cycle, and suppose, without loss of generality, that
w; is the first vertex of this cycle to be visited in
the DFS traversal. Then wy,---,w, must be visited
exactly in this order since any w; can be reached
from w; only via the cycle. Also, our DFS traversal
rule implies that for every w;, the subgraph that is
attached to w; by edges not from this cycle is tra-
versed before w;y;. Hence, since a cut X separates
the cycle into two consecutive parts, the edges the
end nodes of which are mapped to a vertex in X
must have consecutive members. 0

Next lemma ensures the feasibility with respect to
k of G' = (V,E') obtained from G by a complete
splitting at s by Algorithm ODD-SPLIT.

Lemma 12 Let L = {(s,v1),-:+,(s,v)} be a set
of edges in G obtained after line 17 in ODD-SPLIT
and be assigned numbers as in ODD-SPLIT and
L' = {er = (vi,v1411172): e = (vizj/2,viz))}
be the set of edges created by splitting according to
the pairs {(ei,eiyz)72) : 1< i <|L|/2}. Then, the
connectivity of the graph obtained from G* by adding
the set of edges in L' increases at least one from that
of G*.

Proof: We show that at least one new edge connects
Z and W — Z for every minimum cut Z in R (and
thus connects X and V — X for every minimum cut X
in G*). Let X be a minimum cut in G*. Without loss
of generality, assume that |[{(s,v;) € L | v; € X}| >
[{(s,v:) € L | v; € V — X}| and that the end node v;
of e; is mapped to a vertex in X. Then, from Lemma
11, the end node of edge e; 1|/, must be mapped to
a vertex in V — X, thus the new edge created by
splitting the pair of e; and e;}7)/; connects X and
V-X. O

Next, we consider the running time of ODD-
SPLIT. Assume that G is given by an edge weight
function cg for links, where n = |V| and m =
|Lg|. From Lemma 8, line 3 can be carried out in
O(n(m + nlogn)) time. From Theorem 2, line 9
can be carried out in O(n(m + nlogn)log|Tg(s)|).
Constructing a cactus representation (R,¢) for
min-cuts of G* in line 10 can be carried out in
O(nm’logn?/m') or O(nm'logn) time, where m’ +
O(m + |T'g(s)|log|Tc(s)]) is the number of links
in the graph Gj,. Traversing R in a DFS man-
ner in line 18 can be carried out in linear time

of the size of R. The other executions in ODD-
SPLIT can be carried out in linear time of the size
of G. Therefore, the entire running time becomes
O(nmlogn + n?lognlog|TCe(s)])-

Theorem 3 A complete feasible splitting in a multi-
graph G = (V,E) with a designated vertez s € V
and a positive odd integer k < Ag(V — s) can be
found in O(nmlogn + n?lognlog|Tg(s)]) time (if
weight function cq is given as input) or in O(n(e +
n)log |Tg(s)]) time (if set E is given as input), where
n=|V], e=|E| and m = |Lg|. O

References

(1] G.-R. Caiand Y.-G. Sun, The minimum augmen-
tation of any graph to k-edge-connected graph,
Networks, 19, 1989, pp. 151-172.

[2] E.A. Dinits, AV. Karzanov and
M.V. Lomonosov, On the structure of a family
of minimal weighted cuts in a graph, Studies in
Discrete Optimization (in Russian), A.A. Frid-
man (Ed.), Nauka, Moscow, 1976, pp. 290-360.

[3] A. Frank, Augmenting graphs to meet edge-
connectivity requirements, SIAM J. Disc, Math.,
5, 1992, pp. 25-53.

[4] A. Frank, T. Ibaraki and H. Nagamochi, On
sparse subgraphs preserving connectivity proper-
ties, J. Graph Theory, 17, 1993, pp. 275-281.

[5] H.N. Gabow, Applications of a poset representa-
tion to edge connectivity and graph rigidity, Proc.
32nd FOCS, 1991, pp.812-821.

(6] L. Lovasz, Combinatorial Problems and Exer-
cises, North-Holland 1979.

[7] H. Nagamochi and T. Ibaraki, A linear-time al-
gorithm for finding a sparse k-connected spanning
subgraph of a k-connected graph, Algorithmica, 7,
1992, pp 583-596.

[8] H. Nagamochi and T. Ibaraki, Deterministic
O(nm) time edge-splitting in undirected graphs,
Proc. 28th STOC, 1996, pp. 64-73.

[9] H. Nagamochi, T. Ishii and T. Ibaraki, A simple
and constructive proof of a minimum cut algo-
rithm, Tech. Rep. #96001, Kyoto Univ., Dept.
of Appl. Math. and Physics, 1996.

[10] D. Naor, D. Gusfield and C. Martel, A fast al-
gorithm for optimally increasing the edge connec-
tivity, Proc. 31st FOCS, 1990, pp. 698-707.

[11] M. Stoer and F. Wagner, A simple min cut al-
gorithm, Lecture Notes in Computer Science 855,
Springer-Verlag, 2nd ESA, 1994, pp. 141-147.

[12] T. Watanabe and A. Nakamura, Edge-
connectivity augmentation problems, J. Comp.
System Sci., 35, 1987, pp.96-144.

