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Planar Map Graphs
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A Abstract

We introduce and study a modified notion of planarity, in which two regions of a map
are considered adjacent when they share any point of their boundaries (not an edge, as
standard planarity requires). We seek to characterize the abstract graphs realized by such
map adjacencies. We prove some prelmunary properties of such graphs, and give a polynomial
time algorithm for the following restricted problem: given an abstract graph, decide whether
it is realized by a map in which at most four regions meet at any pomt The general
recognition problem remains open.

1 'Introduction

1.1 Motlvatlon' ’I‘opologlca.l Inference

Suppose tha.t you are told that four planar regions relate in the following way: A is inside B;

B overlaps C; C touches D on the outside; D overlaps B; D is disjoint from A; and C overlaps
A. All four planar regions are “bubbles” with no holes (to be rigorous: disc homeomorphs). Is
this possible? If so, we would like a model, a picture of four reglons ) related if not, a proof of
impossibility. :

This deceptively sxmple extension of propositional logic is known as the topological inference
problem [5], and its special cases, extensions, and variants are studied i in the area of geographic
information systems [3, 4, 10, 5, 11]. Despite much effort (and claims in the literature [12,
4]...), no decision algorithm and finite axiomatization for this problem is known —although the
problem becomes both finitely axiomatizable and polynomial-time decidable in any number of -
dimensions other than two. In fact, the following special case has been open since the 1960’ [2]:
We are given the status of all pairs of regions (we call this the fully conjunctive case) when two
regions either overlap or are disjoint (that is, no two regions contain one another or touch on the
outside). This problem is known as the string graph problem, because the information can be
captured as a graph with the regions as nodes (overlaps/disjoint corresponds to adjacent/non-

~adjacent), and we can assume that the regions are in fact one-dimensional planar curves. In other
.words, we are seeking a recognition algorithm for the intersection graphs of planar curves. As
we mentioned, it is open whether this problem is decidable; it is known that there are infinitely



many forbidden subgraphs; that recognition is
at least NP-hard [7]; and that there are string
graphs that require exponentially many string
intersections for their realization [8].

The difficulty of the string graph problem
exposes the fact that the complexity of topo-
logical inference stems to a large extent from
the messy “overlaps” relation. But many prac-
tical applications are so structured that no
two regions in them overlap (think of politi-
cal maps, for example). What if we had a
fully conjunctive formula in which the only re-
lations between two regions that are allowed
are “touches on the outside” and “disjoint”? In
other words, which graphs are the intersection
graphs of closed disc homeomorphs with dis-
Joint interiors? This is the problem we study
in this paper. It follows from our results that

it is in NP (Corollary 2); however, whether it -

is in P is a most important and intriguing open
problem, which we solve in an interesting and
natural special case.

1.2 Motivation: Planarity, Revisited

Planarity is undoubtedly one of the most ba-
sic, ancient, and influential concepts in graph
theory. The four color conjecture has been ar-
guably the most famous and productive open
problem in the area, recognizing planar graphs
motivated the development of such basic meth-
ods as depth-first search and pg-trees, and pla-

narity plays a central role in the recent work of

Robertson and Seymour. Planar graphs may
be defined as the intersection graphs of planar
regions with disjoint interiors such that no four
regions meet at a point. But what if the em-
phasized condition is removed? We obtain a
very natural, intriguing, and heretofore little-
studied class of graphs that we call planar map
graphs. For example, the adjacency graph of
the United States is a fine example of a pla-
nar map graph (in fact, in the special cate-
gory of 4-planar graphs defined and studied
later) which is non-planar (the “corner states”
Arizona-New Mexico-Colorado-Utah form a
K4, which, together with Montana, creates a
K5 minor). Actually, it is trivial to construct
planar map graphs that are non-planar, since
a pizza (Figure 1(a)) yields an arbitrarily large

clique.

It takes a little work even to show that the
class of planar map graphs is in NP —but it is
(Corollary 2). We want to establish that it is
in P, that is, to find a polynomial-time recog-
nition algorithm for planar map graphs. As
we point out in Section 2, a naive reduction
to ordinary planarity by “decomposing” pizzas
does not work, because mazimal cliques in pla-
nar map graphs are not necessarily pizzas. This
complicates tremendously the recognition task,
whose polynomial solution we, unfortunately,
can at present only conjecture.

But suppose that we restrict our political
maps so that no more than k regions meet at
a point; we call the resulting class k-planar
graphs. Thus, 3-planar graphs are pre-
cisely the ordinary planar graphs, and the
U.S.A. is a 4-planar graph. Our main result
is a polynomial-time recognition algorithm for
4-planar graphs. The algorithm is very compli-
cated, as it must rely on a detailed case analy-
sis of each maximal clique and its “immediate
environment” (cliques intersecting it, and con-

'nected components in the complement graph).

It is an interesting philosophical question,
why the forefathers of graph theory never both-
ered to define this class, despite the fact that
it is, in our opinion, equally natural to ordi-
nary planarity. We can think of three possible
explanations: (a) one of those random lucky
turns in intellectual history;-(b) the result of
deep foresight on the nastiness of the problem;
or (c) the desire to state the four color conjec-
ture —trivially false in the context of planar

nap graphs.

1.3 The Results of this Paper

In Section 2 we present a characterization of
planar map graphs as the half-squares of planar
bipartite graphs (Theorem 1). The half square
of a planar bipartite graph is simply the square
of the graph (two nodes are adjacent iff there
is a path of length 2 in the original graph con-
necting them) restricted to one of the two sides
of the bipartition. With a little more thought,
this implies that planar map graph recognition
is in NP (Corollary 2).




It would appear that planar map graphs can
be recognized by the following naive algorithm:

1. Find the set C of all maximal cliques of G
with four or more nodes.

2. If |C|] > 12n then reply “not a j)lana.r map
graph”.

3. Omit from G al] edges that are in a chque
in C.

4. For each maximal clique C € C, add a ver-
tex v, and edges from it to all nodes of
C.

5. Test the resulting gra.ph for planarity, and
return the result.

That is, we identify all points at which more
than three regions meet, and replace each with
a fictitious region, connected to all of them (the
graph theoretic analog of the circular piece in
the middle of the pizza one sees in some restau-
rants). The najve algorithm is based on the fol-
lowing facts: (1) planar map graphs have O(n)
maximal cliques, and (2) the maximal cliques of
any graph can be output with polynomial delay
between consecutive specimens output [6].

The reason why the naive algorithm fails
is because a mazimal clique in a planar map
graph can be realized in ways other than the
pizza, namely as a pizza with crust, a haman-
taschen, and a rice ball, see Figure 1. Theo-
rem 3 uses the chara.cterizatibn of Theorem 1
and planar graph theory techniques to prove
that these four are all possible realizations of a
cligue.

In Section 3 we prove our main result, that 4-
planar graphs can be recognized in polynomial
time (Theorem 5). Our algorithm builds on the
basic structure of the naive algorithm, examin-
ing each maximal clique of the graph in some
carefully designed order: First cliques of size 6,
then 5, then 4 (it is easy to see that 4-planar
graphs have no cliques larger than six). For
each clique, it considers its “environment” (in-
tersecting cliques, and components of a certain
“complement graph”) and succeeds —often af-
ter very sophisticated, but always linear-time,
analysis— to make progress. There are five ba-
sic kinds of progress:

o We identify a maximal clique which must
be realized as a pizza (and eventually
treated by the naive algorithm). .

e We identify four regions (as we call the
nodes of the input graph) that must meet
at a point in a specific cyclical order.

¢ We reduce the problem to one with fewer
regions.

o More interestingly (and, it turns out, more
often), we decompose the graph into com-
ponents, and reduce the problem to test-
ing whether each component is a 4-planar
graph. The reason such decompos1t10ns
are possible is that all realizations of max-
imal cliques in Figure 1, except for the
pizza, have only triangular “holes” (unoc-
cupied planar regions within which more
regions can be embedded). Thus each
component resulting from its deletion can
be separately checked for 4-planarity.

o Finally, in certain more complicated cases
we identify a way of recursing on a similar
- maximal clique, albeit in a smaller graph.

The case a.na.lys1s involved is very tedious
(over a hundred ‘cases must be examined); in
Section 3 we include a top-level summary with-
out-detailed proofs; for a draft of the complete
proof see [1]. ‘The objects studied in the case
analysis are partial maps, that is, sets of planar
regions corresponding to the part of the graph
being examined, with space left for embedding
the rest. We refine the maps by bringing in
more regions until we reach a final map, one in
which all unoccupied holes have at most three
regions around them (and thus the graph can
be decomposed in a lossless way) —or until we
make progress in any one of the other four ways
listed above. It turns out that the methods are
very different for the three clique sizes.

The straight-forward analysis of the running
time of the algorithm yields an O(n®) upper
bound. It can be probably reduce to O(n?) by a
more careful analysis, with some hope of bring-
ing it down to O(nlogn) (the best known run-

-ning time for enumerating all maximal cliques,

see [6]).



2 Planar Map Graphs
2.1 A Characterization

Consider a collection R of n regions in the
plane, each homeomorphic to a disc, so that
no two regions overlap except possibly on their
boundaries; these adjacencies define a planar
map graph G. A typical boundary point is
shared by one or two regions, however there
may also be exceptional points where three or
more regions touch. Consider the sequence of
adjacency changes around any one region, ig-
noring “empty” stretches. A simple argument
shows this sequence is finite (in fact linear);
hence a finite collection P of points witnesses
all adjacencies among the regions of R.

In each region R we choose a representative
interior point, and connect it with arcs through
the interior of R to the points of P bounding
R..In this way we construct.a bipartite planar
graph G’ = (R, P, E'), so that any two regions
Ry and R overlap iff they have distance two
in G'. Thus G equals G"|g, the square of G’
restricted to R.

- Conversely, given a bipartite planar graph
G', we may reverse the construction to find
a corresponding arrangement of regions and
bounding points. Hence we have:

Theorem 1 A graph is a planar map graph
iff it is the half square of a planar bipartite
graph. 1

Corollary 2 The recognition ﬁroblem for pla-
nar map graphs is in NP.

We also make some simple initial remarks:

o In the bipartite graph representation,
bounding points of degree three may be
replaced by points of degree two.

o If G has no 4-clique, then it is a planar
 map graph iff it is a planar graph.

. A pla.nar map graph may contam cliques
of a.rbltrary size.

o From the previous two remarks, it is clear

that the “planar map graph” property is

not monotone, and hence cannot be char-
acterized by forbidden subgraphs or mi-
nors.

2.2 Cliques in Planai' Map Graphs

Consider a planar map cllque of size n, it may
be realized in one of the four following ways:

1. The n regions share a single boundary
point. We call this the pizza (Figure 1(a)).

2. Some n — 1 regions share a single bound-
ary point, and the one remaining region
is arbitrarily connected to them at other
points. We call this the pizza with crust

(Figure 1(b)).

3. If n > 6, there may be three points sup-
porting all adjacencies in the clique, with
"at most n — 2 regions at any one point. In
-particular, there are at most two regions

* adjacent to all three of the points. We call
this the hamantaschen (Figure 1(c)).

4. An ordinary planar cliqile (that is, with no
points of degree more than three), such as
the rice ball (the planar K4, Figure 1(d)).

Theorem 3 A planar map graph clique must
be one of the above four types.

Corollary 4 The number of cliques of size 4
or more in a planar map graph with n nodes is
at most 12n. W '

2.3 k-Planar Graphs

Our attempts at a polynomial-time algorithm
for recognizing planar map graphs have failed
(see the last section for a discussion). Con-
sider however ‘the interesting special case in
which the maps are restricted to be such that
no more than k regions share a point. We call
the class of graphs that are realized by such
maps k-planar graphs. It is easy to see that 3-
planar graphs are the ordinary planar graphs,
and that the USA graph is 4-planar. It is easy
to extend Theorem 1, to chardcterize k-planar
graphs as the half-squares of bipartite planar
graphs whose right-hand side has degrees k or
less.




In the next section we focus on 4-planar
graphs and their recognition algorithm. It
follows from Theorem 3 that 4-planar graphs
have no 7-cliques, that all 6-cliques are haman-
taschens, all 5-cliques are pizzas with crust,
and all 4-cliques are either pizzas, or three re-
gions touching at three points and enclosing a
fourth (variants of the rice ball). Finally, an
eight-node example, omitted in this abstract,
shows that 4-planar graphs are non-monotone
(in that deletion of an edge may turn a 4-planar
graph into a graph that is not 4-planar ), and
hence polynomial-time recognition does not fol-
low from first principles.

3 Recognition

of 4-Planar
Graphs '

We sketch the proof of our main fesult:‘

Theorem 5 4-planar graphs can be recognized
in polynomial time. j

3.1 Preliminaries

Let G be a graph. A map L is a finite set of
planar regions that are disc homeomorphs with
disjoint interiors. A map is a realization of G
(or a map of G) if its regions are in one-to-
one correspondence to the vertices of G, and
in. which two regions touch each other iff the
corresponding vertices are adjacent in G. A
map of G is called a 4-map of G if no five re-
gions meet each other at a point. To prove the
theorem, we must design a polynomial-time al-
gorithm which given G, constructs a 4-map of
G if one exists, and reports “failure” otherwise.
Since it is trivial to check whether a given map
is a realization of a given graph, we may assume
that G has a 4-map and only need to show how
to find one. Without loss of generality, we may
further assume that G is biconnected.

We call vertices of G regions. For a tegion
¢ € V(G), Ng(c) denotes the set of regions ad-
jacent to cin G. Let U C V(@) and F C E(G).
Ne(U) = UceuNg(c), and G[U] denotes the
subgraph of G induced by U. G-~ U ~ F de-
notes the graph obtained from G by deleting
the edges in F" and the regions (together with

the edges incident to them) in U. For a subset
W of U, C&F(W) ={ce V(@) -U|W =
Ng(K)YN U, where K is the connected com-
ponent of G — U — F containing ¢}. When U
or F is empty, we drop it from the notations
G - U — F and C§ p(W).

An eztensible 4-map-of G[U] is a 4-map of
G[U] that can be extended to a 4-map of G.
For k = 2, 3, 4, a k-point in a map is a point
at which exactly k regions meet. A maximal
clique of size k is denoted by MCy, (recall that
G has no MC;, with k£ > 7). Let [ be a positive
integer. We say that two maximal cliques C
and C' are l-sharing if |CNC'| = 1.

Definition 1 A correct 4-point is a cyclicly or-
dered list {cq,"...;¢3,c0) of four regions in G
such that G has a 4-map in which (1) the four
regions c¢g through c3 meet at a single point
(say, p) in this order and (2) whenever ¢y and
¢z (or ¢; and c3, respectively) together with two
other regions d’ and d” meet at a point ¢ # p,
the cyclic order of the four regions around q
is ¢cg, d', ca, d", co (respectively, ¢, d', c3, d”,
¢1). Removing a correct 4-point entails adding
a new region and replacing the 4-clique by a
wheel (in the indicated cyclic order) centered
in the new region.

Lemma 1 Let G’ be the graph obtained
from G by removing a correct 4-point P =
{co,**+,¢c3,¢0). Then, (1) G’ has a 4-map, (2)
if G’ has neither MCs nor MCg G’ has fewer
MCy’s, and (3) given an arbitrary 4-map of G,
we can construct a 4-map of G in linear time.

3.2 Outline of the algorithm

We say.that a 4-map £ of G[U] can be trans-
formed to another 4-map £’ of G[U] if whenever
L is extensible, so is £'. A mabp is said to be ez-
plicit if all points in it are distinct except that
for one or more holes enclosed between exactly
two regions, the two 2-points on the boundary
of each of these holes may actually be iden-
tical; a map that is not explicit is rough. A
explicit map £ is said to be final if there is no
3-point in it and every hole in it is enclosed by
at most-3 regions. Recall that G is assumed to
have a 4-map realization. Our algorithm starts



by enumerating all the maximal cliques of size
> 4 in G —by Corollary 4 there are O(|V(G)|)
of them. We deal with the MCg’s, MCs’s, and
MCy’s in G, in this order.

MCG’S. Let C = {C],Cz,. ..,CG} be an MCG
in G. It is easy to see that every extensible 4-
map of C' can be transformed into another of
the form shown in Figure 2. As in all displayed
maps of cliques, in this figure the regions 1, 2,
3, 4, 5, and 6, are a permutation of the nodes
in the clique. A typical map that we display
during the case analysis is in fact an eqaiva-
lence class of maps, in the sense that different
points in it may or may not coincide. However,
Figure 2 is ezplicit; by this we mean that differ-
ent points in it represent distinct points of the
map —with a single exception: The two points
delimiting a hole between two regions, such as
p and ¢ in this figure, could coincide. Figures
that are not explicit are called rough. We call
an explicit map final if there is no 3-point in
it and every hole in it is enclosed by at most
3 regions. Notice that Figure 2 is final. Our
treatment of MCg’s is- based on the following
result: ‘

Theorem 8 Let § = {(1,2),(3,4),(5,6),
(2,3),(2,5),(3,5), (1,4), (1,6), (4,6)}, and T =
{(2,3,5), (1,4,6)}. Then, for every permu-
tation 7 = (1,...,6) of (e1,...,c6), the 4
map in Figure 2 is extensible iff the fam-
ly F = {c&({i,s}) | (i,j) € St u
{€S({i,3,k}) | (i,4,k) € T} is a partition of
V(G)-C.

By Theorem 6, we can compute an exten-
sible 4-map of C in linear time. Then we re-
cursively find a realization of the subgraph of
G induced by {4,5} U C&({i,5}) for every pair
(i,7) € S, and one of the subgraph of G in-
duced by {i,7,k}UCE({i,j,k}) for every triple
(i,7,k) € T; each of the graphs in the recur-
sive calls has fewer MCg’s than G, and the to-
tal number of regions in these graphs is larger
than that in G by only a constant.

MCs5’s. We have thus removed all MCg’s
from G. Our algorithm then proceeds to re-
moving MCs’s from G. It is not difficult to see
that the five regions in every MCs must form

a “pizza with crust” in every 4-map of G. (A
hamantaschen of five regions is actually a pizza
with crust.) Thus, in every extensible 4-map of
an MCs C, there is a point shared by exactly
four regions in C. This motivates the following
definition:

Definition 2 Let C be an MCs in G. A
correct center of C is a cyclicly ordered list
(¢o,-..,¢3,¢o) of four regions in C such that
C has an extensible 4-map in which the four
regions cp through ¢z meet at a single paint
in this order. A correct crust of C' is a region
¢ € C such that the four regions in C — {c}
constitute a correct center of C' (in some way).

- To remove an MCs C from G, the basic idea
is to find an extensible 4-map of C' and then
remove its center.

To find an extensible 4-map of C, our algo-
rithm constructs a rough 4-map £ of C, and
then calls the following procedure with argu-
ment S = {L}:

Procedure Make_Final(S)

1. By distinguishing certain cases, from the
rough 4-maps in S, construct a set of ex-
plicit 4-maps (of the same set of regions as
in the 4-maps in §) at least one of which
must be extensible whenever an extensible
4-map (of the same set of regions) exists.
Update S to be the set of the constructed
explicit 4-maps.

2. If some 4-map in & is not final, then perform
the following steps:

2.1. Select a certain set A of regions that
has not appeared in the 4-maps in §.

2.2, For each 4-map L € 8, if there is no
way to add the regions in A into £,
then delete £ from &; otherwise, add

the regions in A into L.

2.3. If S is empty, then return “failure”;

otherwise, goto step 1.

3. For each final 4-map in S, based on a certain
necessary and sufficient condition (analo-
gous to Theorem 6), decide whether the
4-map is extensible or not.




To examine procedure Make_Final more
closely, let C = {c3,¢2,...,¢5} be an MCs in
G and let us follow it for one iteration. Fig-
ure 3 shows one of the starting rough 4-maps
of C. This figure is rough, because, for exam-
ple, any two adjacent points from among the
five contact points in the upper half-perimeter
of the circle could coincide. Qur algorithm sets
S to be the set of this rough 4-map and calls
Make_Final(S). To construct a set of explicit
4-maps from the rough 4-map in 8, procedure
Make_Final distinguishes three cases based on
nc4s, the number of MCs’s 4-sharing with C
in G.

Case 1: ncgs = 2. Then, every extensible
4-map of C can be transformed to one of the
last three 4-maps in Figure 4 each of which is
explicit. At the end of step 1 (of the first iter-
ation of procedure Make_Final), S becomes
the set of these three explicit 4-maps. Let
the two MCs’s 4-sharing with C be C; and
Cy. Let C4 - C = {cé}, Cy;-C = {67},
C - Cy ={c1}, and C — C3 = {c4}. Then, pro-
cedure Make_Final adds cg and ¢7 to the three
4-maps in § and gets three larger 4-maps as
shown in Figure 5. Figure 5(a) is final while the
other two are rough. With S being the set of
the three rough 4-maps in Figure 5, procedure
Make_Final proceeds to the second iteration.
We can prove that after at most two further
iterations, procedure Make_Final will (1) find
an extensible 4-map of C, (2) report “failure”,
or (3) succeed in decomposing G into graphs of
fewer vertices or fewer MCs’s and then recurse
on each.

Case 2': ng4s = 1. Then, every exten-
sible 4-map of C' can be transformed to one
of the last four 4-maps in Figure 4 each of
which is explicit. At the end of step 1, S be-
- comes the set of these four explicit 4-maps.
Let the MCs 4-sharing with C be C;. Let
C1 — C = {c¢} and C' — C; =-{c4}. Then, pro-

!Actually, only after removing all the MCs’s 4-
sharing with exactly two MCs’s in G, our algorithm
proceeds to removing those MCs’s 4-sharing with ex-
actly one MC; in G. Thus, during the construction of
an extensible 4-map of an MC; 4-sharing with exactly
one MC; in G, our algorithm often makes use of the
fact that every MC; in the current graph is 4-sharing
with at most one MCs.

cedure Make_Final adds cg to the four 4-maps
in § and gets four larger 4-maps. With § be-
ing the set of the four rough 4-maps, procedure
Make_Final proceeds to the second iteration.
We can prove that after at most two further it-
erations procedure Make_Final will either find
an extensible 4-map of C or report “failure”.

Case 3: ng 4, = 0. This is the last and most
involved case for MCjy’s, as we must further dis-
tinguish four cases based on nc 3,, the number
of MC,'s 3-sharing with C in G.

MC,’s. Once we have removed MCg’s and
MCs;’s from G, we proceed to the MCy’s. This
is in fact the most complex and tedious part of
the algorithm and the case analysis.

4 Discussion and Open Prob-
lems

There is an interesting variant of the problem,
in which we require that the union of the re-
gions be a simply connected region, with no
holes —that is to say, we do not allow “lakes”
between the regions. There is a similar char-
acterization as that of Theorem 1 for this case;
the only difference is that now all internal faces
of the planar bipartite graph must have length

“four and six. A variant of our algorithm works

in this case as well.

There are two more interesting generaliza-
tions of the problem, motivated by topological
inference: What if the relation between cer-
tain pairs of regions (touch/do not touch) is
left unspecified —that is, we are given a graph
with “don’t care” edges? And what if we also
allow inclusion relationships between regions?
We conjecture that the first problem is NP-
complete (for the general problem, and the 4-
planar special case), while the latter polyno-
mial.
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