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On the maximum weight stable set problem and its extension
for claw-free graphs
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University of Electro-Communications

Abstruct: The generalized stable set problem is an extension of the maximum weight stable set problem
for undirected graphs to bidirected graphs. It is known that the latter problem is polynomially solvable for
claw-free undirected graphs. This paper show that the generalized stable set problem is also polynomially
solvable for claw-free bidirected graphs.

1 Introduction

Let G = (V, E) be an undirected graph. A subset S of V is called a stable set if any two elements of S are
nonadjacent. Given a weight vector w € RY, a mazimum weight stable set is a stable set S maximizing
w(S) = ¥ ;g wi- The problem of finding a maximum weight stable set is called the mazimum weight
stable set problem (MWSSP). It is well known that the problem.can be formulated as the following integer
programming problem:

[MWSSP] maximize w-x subjectto z;+z;<1 for (i,j)€E,
z; € {0,1} forieV.

In this paper, we consider the problem generalized as follows: for a given finite set V and for given
PN, ICV XV, '

[GSSP] maximize w-z  subject to ri+z;<1 for (i,j) € P,
-r;i—-x;< -1 for (i,j) €N,
zi—2; <0 for (i,j) €1,
z; € {0,1} for ie V.
Here we call this problem the generalized stable set problem (GSSP). To deal with the GSSP, a ‘bidirected’
graph is useful. A bidirected graph G = (V, E) has a set of vertices V and a set of edges E, in which
each edge e € E has two vertices i,j € V as its endpoints and two associated signs (plus or minus)

at 1 and j. The edges are classified into three types: the (+,+)-edges with two plus signs at their
endpoints, the (—, —)-edges with two minus signs, and the (+, —)-edges (and the (-, +)-edges) with one



plus and one minus sign. Given an instance of the GSSP, we obtain a bidirected graph by making (+, +)-
edges, (—, —)-edges and (4, —)-edges for vertex-pairs of P, N and I respectively. Conversely, for a given
bidirected graph with a weight vector on the vertices, by associating a variable x; with each vertex, we
may consider the GSSP. We call a 0—1-vector satisfying the inequality system arising from a bidirected
graph G a solution of G. We also call a subset of vertices a solution of G if its incidence vector is a
solution of G. The GSSP is an optimization problem over the solutions of a bidirected graph.

" Since several distinct bidirected graphs may have the same set of solutions, we deal with some kind
of ‘standard’ bidirected graphs. A bidirected graph is said to be transitive, if whenever there are edges
e, = (i,j) and ez = (j, k) with opposite signs at j, then there is also an edge e3 = (¢, k) whose signs at i
and k agree with those of e; and e;. Obviously, any bidirected graph and its transitive closure have the
same solutions. A bidirected graph is said to be simple if it has no loop and if it has at most one edge
for each pair of distinct vertices. Johnson and Padberg [1] showed that any transitive bidirected graph
can be reduced to simple one without essentially changing the set of solutions, or determined to have no
solution. We note that a transitive bidirected graph has no solution if and only if it has a vertex with
both a (+,+)-loep and a (~,—)-loop. For any bidirected graph, the associated simple and transitive
bidirected graph can be constructed in time polynomial in the number of vertices.

Given a bidirected graph G, its underlying graph, denoted by G, is defined as the undirected graph
obtained from G by changing all the edges to (+,+)-edges. A bidirected graph is said to be claw-free if
it is simple and transitive and if its underlying graph is claw-free (i.e., does not contain a vertex-induced
subgraph which is isomorphic to the complete bipartite graph K; 3).

It is well known that the MWSSP is NP-hard for general undirected graphs (and hence, the GSSP is
also NP-hard). However, for several classes of undirected graphs, the MWSSP is polynomially solvable.
For example, Minty [2] proposed a polynomial time algorithm for the MWSSP for claw-free undirected
graphs. On the other hand, there are several polynomial transformations from the GSSP to the MWSSP
(see [3, 4]). Unfortunately, we cannot easily derive the polynomial solvability of the GSSP for claw-free
bidirected graphs by using these transformations, because these do not preserve claw-freeness. Our aim
in this paper is to verify that the GSSP for claw-free bidirected graphs is polynomially solvable.

2 Canonical bidirected graphs and their solutions

In this section, we will give several definitions and discuss basic properties of solutions of bidirected
graphs. Let G = (V, E) be a simple and transitive bidirected graph and w be a weight vector on V. For
any subset U C V, we call the transformation which reverse the signs of the u side of all edges incident to
each u € U the reflection of G at U, and we denote it by G:U. Obviously, reflection preserves simpleness
and transitivity. Let w:U denote the vector defined by (w:U); = —w; if ¢ € U; otherwise (w:U); = w;.
For two subsets X and Y of V, let XAY denote the symmetric difference of X and Y.

Lemma 2.1. Let X be any solution of G. Then, XAU is a solution of G:U. The GSSP for (G,w) is
equivalent to the GSSP for (G:U,w:U).

We say that a vertex is positive (or negative) if all edges incident have plus (or minus) signs at it, and
that a vertex is mized if it is neither positive nor negative. If a bidirected graph has no (—, —)-edge, it is
said to be pure. We say that a bidirected graph is canonical if it is simple, transitive and pure and it has
no negative vertex. For any instance (G, w) of the GSSP, we can transform it to equivalent one whose
bidirected graph is canonical as follows. From the previous section, we can assume that G is simple and
transitive. Johnson and Padberg [1] proved that G has at least one solution U C V. From Lemma 2.1,



G:U has the solution UAU = §, that is, G:U must be pure. Let W be the set of negative vertices of G:U.
Then G:U:W has no negative vertex, and furthermore, it is pure because any edge (v, w) of G:U with
w € W must be a (+,—)-edge. Since this transformation is done in polynomial time, we assume that a
given bidirected graph of the GSSP is canonical in the sequel.

For any solution X of a canonical bidirected graph G, we partition X into two parts:

Xpg={ie X|NGT*({)nX =0} and X;={ieX|N;T(E)NX #0},

where N5* (i) denotes the set of vertices adjacent to i by a (—, +)-edge incident to i with a minus sign,
N2~ (i) is defined analogously. Here we call Xp a base of X. Let

ex(Xg)=XpgU{i € V|i € Ni (z) for some z € Xg}.

If § C V is a stable set of G, we say that S is a stable set of G. It is not difficult to show the following
lemmas. )
Lemma 2.2. For any solution X of a canonical bidirected graph G, X = ex(Xpg), and hence, (ex(Xp))p =
X5g.
Lemma 2.3. For any solution X of a canonical bidirected graph G, its base Xp is a stable set of G.
Lemma 2.4. For any stable set S of a canonical bidirected graph G, ex(S) is a solution of G.

Thus there is a one-to-one correspondence between the solutions and the stable sets of G.

For any subset U of V, let G[U] denote the subgraph induced by U. We call H C V' a connected
component of G if H induces a connected component of G.
Lemma 2.5. Let X and Y be solutions of a canonical bidirected graph G. For any connected component
H of GIXpAY), XpAH and YgAH are bases of certain solutions of G. :

Let X be a specified solution of G. For any solution Y of G, let Hy,..., Hy be the connected
components of G[XpAYg]. We define the weight of H;, denoted by 6% (H;) or simply 6(H;), by

6% (H;) = w(ex(XpAH;)) — w(X).

We remark that the equation w(Y) — w(X) = Y 6(H;) may not hold because there may exist a vertex v
. such that Ng *(v) contains several vertices of distinct connected components, that is, w, may be doubly
counted. In order to avoid this obstacle, we require some additional conditions.
Lemma 2.8. For any solution X of G, there exists U C V such that G' = G:U and X' = XAU satisfy

(a) G’ is canonical,

(b) X' is a stable set of G, i.e., X' = (X")B,

(c) for each mized vertex v g X', there is a vertez u € X' adjacent to v.

We note that a subset U having the conditions of Lemma 2.6 can be found in polynomial time. The
conditions of Lemma 2.6 overcome the above obstacle.
Lemma 2.7. Let G be a canonical bidirected graph and X be a solution of G satisfying the conditions of
Lemma 2.6. For any solution Y, let Hy,..., He be the connected components of G[XpAYp|. Then,

¢

¢
wl) -w(X) = Y 6¥(H) = ) {w(ex(XpAH;)) - w(X)}.
i=1 i=1

3 A basic idea for finding an optimal solution of the GSSP

Given an instance (G, w) of the GSSP, for each i = 0,1,...,|V], let

8i = {X CV|X isasolution of G and has exactly i positive vertices },



i I w? | solution

0| 5| {e}

1|10 {be}

2| 14 | {b,e;h}

3 (13| {b,e, f.g,i}
4115 | {a,ce f,9,i}

Figure 1:

(0,°)

01 2354 ¢ N
Figure 2:
w' = maxw(X),
: XES;
5 = {Xes|uwX) =uv).

Suppose that N denotes the smallest number j satisfying w/ = max;w'. Minty [2] showed that if a
given undirected graph is claw-free, then w® < -+ < w™. More precisely, (0,w"),...,(N, w?) lie on
an increasing concave curve. Minty’s algorithm for solving the MWSSP for claw-free undirected graphs
finds an optimal solution by tracing (i,w‘) one by one. However, even if a given bidirected graph is
claw-free, this fact does not hold as an example in Figure 1 where (+, +)-edges are drawn by lines and
(+,—)-edges by arrows whose heads mean minus signs. Thus, it seems to be difficult to trace (4, w') one
by one for the GSSP. We will use a technique of the fractional programming. Let us consider the upper
envelope of the convex hull of the set of pairs (0,w?), (1,w"),...,(N,w") as in Figure 2. We call (i, w’)
a Pareto-optimal pair if it lies on the envelope, and their solutions Pareto-optimal solutions. Obviously,
(0,%°) and (N, w™) are always Pareto-optimal. In Figure 2, (0,w°), (1,w"), (3,w®), (4, w*), (6,u°) and
(N, w™) are Pareto-optimal.

Let X' be a Pareto-optimal solution with X? € S;. Suppose that F is a subset of all the solutions
of G such that X! € F and F is defined independently to the weight vector w. Let us also consider
the Pareto-optimal solutions for the restriction on F. Obviously, X' is also Pareto-optimal in F. We
consider the following two problems

i o YY)
[MAXS] max {6(Y) = w(Y) - w(X)}, and [MAX] max {p(} )= o (7) }6(Y) > 0} .
where ¥(Y') denotes the difference of the numbers of all the positive vertices of ¥ and X*. We denote p(-)
and 6(-) for a weight vector @ by pg(-) and 84(-) explicitly. Suppose that X* is not optimal in F. Let

Y be an optimal solution of the MAXS for @° = w. We set r = pgo(¥?) and consider the new weight



vector ! defined by
(1)

. @ —r ifiis a positive vertex,
o7 otherwise.
Then, §z:(Y!) = 0. For any solution ¥ € F,

pur(Y) = M);(—)TT)L(H =paoo(Y) -

Thus, X' is Pareto-optimal in F for @'. We now assume that there is a solution ¥* with pge(¥™*) >
pan (Y1) and 640(Y™*) > 0. Then, evidently, 0 < v(¥Y*) < »(¥!). We also have 841 (Y*) = [60(Y™) ~
rov(Y*)] = v(¥*)pao (Y*) — pao(YY)] > 0. Conversely, if 651(Y*) > 0 then pgo(¥™*) > pao(Y?)
and 640(Y*) > 0. Summing up the above discussion, for an optimal solution Y? of the MAX$ for @', if
651 (Y?) = 0 then Y is an optimal solution of the MAXp for w; otherwise, by repeating the above process
at most |V| times, the MAXp for w can be solved, because of the fact that »(¥Y!) > »(¥Y?2) > .- > 0.

From the above discussion, for each Pareto-optimal solution X* € &}, if we can easily define a subset
F such that .

(Al) XfeF and 8 NF # 0 where (j,w) is the next Pareto-optimal pair, and

(A2) the MAXS for F and for any w can be solved in time polynomial in the number of vertices of G,
then we can either determine X is optimal or find a Pareto-optimal solution X* € Sf withi < k< Nin
polynomial time. (We may find (4,w*) from (1,w') in Figure 2.) In addition, if X® € 5; can be found
in polynomial time, the GSSP for (G, w) can be solved in polynomial time. In fact, this initialization is
not so difficult if we can apply the above technique for any vertex-induced subgraph of G, because it is
sufficient to solve the GSSP for the bidirected graph obtained from the current one by deleting all the
positive vertices, recursively.

Finally we introduce a tool in order to trace Pareto-optimal pairs. Let X* be a Pareto-optimal solution
with ¢ < N. Without loss of generality, we assume that X? and G satisfy the conditions of Lemma 2.6.
We say that H C V is an alternating set for X* if H is connected in G and if X*AH is a stable set of G.
We define the weight 6(H) of an alternating set H with respect to w by w(ex(X'AH)) — w(X?). -
Lemma 3.1. Let (j,w’) be the nest Pareto-optimal pair of (i,w'). Then, for any X7 € S}, there is
a connected component H of G[XgAX%] such that ex(X5AH) is a Pareto-optimal solution with more
positive vertices than X°.

Lemma 3.1 says that we can trance Pareto-optimal solutions by using alternating sets.

4 Finding a next Pareto-optimal solution

Let G,w and X be a given claw-free bidirected graph, a given weight vector on the vertices and a Pareto- ’
optimal solution with respect to w, Without loss of genera.lity, we assume that G and X satisfy the
conditions of Lemma 2.6. In this section, we explain how to find a next Pareto-optimal solution.

We first give several definitions. We call the vertices of X black and the other vertices white. Any
white vertex is adjacent to at most two black vertices, since otherwise G must have a claw. A white
vertex is said to be bounded if it is adjacent to two black vertices, free if it is adjacent to exactly one
black vertex and otherwise super free. A cycle (or path) is called an alternating cycle (or path) if white
and black vertices appear alternately, and its white vertices form a stable set. An alternating path is
called free if its endpoints are either black or free or super free. Alternating cycles and free alternating
paths are alternating sets, and vice versa in claw-free cases. Thus, Lemma 3.1 guarantees that we deal



with only alternating cycles and free alternating paths in order to find a next Pareto-optimal solution.
An alternating cycle or a free alternating path is called an augmenting cycle or an augmenting path
respectively if it has a positive weight. For two distinct black vertices z and y, let W denote the set of
all the bounded vertices adjacent to both x and y. If W is not empty, W is called a wing adjacent to
(and y). A black vertex is called regular if it is adjacent to three or more wings, irregular if it is adjacent
to exactly two wings, and otherwise useless. An alternating cycle is said to be small if it has at most
two regular vertices; otherwise large. Here we call Cy,...,C) a large augmenting cycle family if each C;
is a large augmenting cycle and each vertex in C; is adjacent to no vertex in C; for 1 < i < j < k. From
Lemma 2.7, §(Cy U-+-U Ci) = 8(Cy) + - -+ + 6(Ci) holds. '

Our algorithm for finding a next Pareto-optimal solution is described by using the technique discussed
in the previous section:

0) w'—wandi—0;
(1) Find a small augmenting cycle A4, of the maximum weight for w' if it exists, otherwise go to (2);
Construct the new weight w**! by applying (1), i «— i + 1 and repeat (1) ;

(2) Find a large augmenting cycle family 4;,; of the maximum weight for w' if it exists, otherwise go
to (3) ;
Construct the new weight w*+! by applying (1), i « ¢ + 1 and repeat (2) ;

(3) Find an augmenting path A;;; of the maximum weight for w' if it exists, otherwise go to (4) ;

Construct the new weight wi+! by applying (1), i «— i + 1 and repeat (3) ;
(4) Ifi =0 then X is optimal, otherwise ex(X A A;) is a next Pareto-optimal solution.

Note that in (2) there is no small augmenting cycle since these are eliminated in (1), and that in (3)
there is no augmenting cycle since these are eliminated in (1) and (2). These facts are important in the
following sense. '

Theorem 4.1. For any weight vector,

e a mazimum weight small augmenting cycle can be found in polynomial time,

® a marimum weight large augmenting cycle family can be found in polynomial time if no small

augmenting cycle ezists,

o a mazimum weight augmenting path can be found in polynomial time if no augmenting cycle ezists.

By Lemma 3.1 and Theorem 4.1, our algorithm find a next Pareto-optimal solution in polynomial
time. Summing up the above discussions, we obtain our main theorem.
Theorem 4.2. The GSSP for claw-free bidirected graphs is polynomially solvable.

In the rest of the section, we briefly explain a proof of Theorem 4.1. Our approach is an extension
of Minty’s algorithm for undirected claw-free graphs. This, however, does not seem a straightforward
extension because we must overcome several problems. A significant problem is how to deal with ‘induced
weights’. Let A be an alternating cycle or a free alternating path. Then its weight is expressed as

8(A) =?w‘(A -X)-uw(XnNnA)+ Z{w(v) | v is mixed and N5¥(v) N (4 - X) #0}.



We call the 3 term the induced weight, which appears in the bidirected case but not in the undirected
case. :

We first consider cycles. Let zy,...,z; with k& > 3 be distinct black vertices and W1,..., Wi, Wi =
W, be wings such that z; is adjacent to W; and Wiy, fori = 1,...,k. Then (Wy,z(, Wa,..., Wi, zr, W)
is called a cycle of wings. It is easy to show the following:

Lemma 4.3 ([2]): Let(Wy,z1,Wa,..., Wi, 2, W1) with k 2 3 be a cycle of wings and y; € W; for
t=1,....k. Then (Y1,%1,Y2,. -~ Yks Tho Ykt = Y1) 18 an alternating cycle if and only if y; is not
adjacent to yi4q fori=1,...,k.

Lemma 4.4. Let v be a mized vertex such that N5t (v) has o bounded vertez but is not included in a
wing. Then there uniquely exists a black vertez T such that [z = v or z is adjacent to v] and all the
vertices in N5 ¥ (v) are adjacent to z.

Lemma 4.5. LetC = (Wy,z1, Wa,..., Wi, 2k, W1) be a cycle of wings (k > 3). Then a mazimum weight
alternating cycle included in C can be found in polynomial time.

Lemma 4.6. A mazimum weight small augmenting cycle can be found in polynomial time.

Unfortunately, a maximum weight large augmenting cycle cannot be found in polynomial time in the
same way because the number of the cycles of wings having three or more regular vertices cannot be
polynomially bounded. Before considering the step (2) in our algorithm, we introduce a useful property
relative to wings around regular vertices. For convenience, we will use some notations as below:

e v;~v; means that v; and vy are adjacent, and v v, means v; and v, are not adjacent.

- . . . + . .
) v1+~ v says there is an edge having plus and minus sings at v; and vy respectively, and vy % w3 is

its negation.
+ . ++ +— o . +
® u; ~ vy denotes either v; ~ vg or vy ~ vy, and vy % vq is the negation of vy ~ vs.
® v; 0v; says that v, and v, are contained in the same wing, and v; 4w, is its negation.

Lemma 4.7 ([2]): Given a regular vertez z, let B(z) = {v| v~z and v is bounded}. Then there exists
a partition of B(z), namely [N'(x), N*(z)], such that for any vi,vs € B(z) with vy pue,

vi~vg = [v1,v2 € N(9) or v, € N%(v)].

Moreover this partition is unigquely determined, and hence, it can be found in polynomial time.

This is the key lemma of Minty’s algorithm. If a large alternating cycle or a free alternating path passes
through v; € N'(v) and a regular vertex v, then it must pass through a vertex v, such that v, € N2(v)
and vy Av;. From this property Minty showed that by constructing a graph called the “Edmonds’ graph”
and by finding a maximum weight perfect matching of it, a maximum weight augmenting path for any
Pareto-optimal stable set can be found in polynomial time. To deal with induced weights, we require an
additional property of the partition of vertices adjacent to a regular vertex. :

Lemma 4.8. For a regular vertez ¢ and a verter v such that v = T or v~z, we define

- +-
NY(z) », N¥(z) &L 3¢ N'(z), 3b € N(z) such that ab, a'~v and b v,

e - + -
N%(z) =, N'(z) €% 3ce N*(z), 3d € N'(z) such that cibd, cv and d v

Then at most one of N'(z) =, N?(z) and N(z) >, N'(z) holds.



We add the induced weight of an alternating cycle or a free alternating path to weights of appropriate
vertices in it. We define @ : (VU (V x V)) — R by the following procedure: let @ « 0 and for each
mixed vertex v,

o if B~"(v) = {u | u is bounded, v7v+u} is empty or included in a wing, w(z) — w(u) + w(v) for
each u € B~*(v),

e otherwise there uniquely exists a black vertex z such that z = v or z~v, from Lemma 4.4,
* if  is regular, then
— if N?3(z) =, N(z), then @(u) — w(u)+ w(v) for each v € B~+(v) N N¥(z),
~ otherwise w(u) — w(u) + w(v) for each u € B~+(v)Nn NY(z),
* otherwise 2 must be nregular, and @(t, u) «— w(t, u)+w(v) for each pair of vertices t,u € B(a:)
such that ¢ Su, tbu and [t~ v or ut o).

By combining Lemmas 4.7 and 4.8, we can prove the next lemma.

Lemma 4.9. Let C = (¥1,Z1,Y2, T2, -« ¥ks Tky Yht1 = Y1) be a large alternating cycle with white ver-
tices y1,...,yx and black vertices zy,...,z¢. Then §(C) = E,_l w(y;) — E?=1 w(z;) + 2:;1 w(yi) +
Ty D vi1)- .

If there is no small augmenting cycle, by using Lemma 4.9, we can construct the Edmonds’ graph G such
that '

e each edge of G is colored black or white, and it has a weight ,
e all the black edges form a perfect matching M of G,

e if M is a maximum weight perfect matching of G then there is no large augmenting cycle family in

G,

o if (M) < @(M*) for a maximum weight perfect matching M* of G, let Cy,...,Ci be all the
augmenting cycles in M* A M; then €4,...,Cx correspond to a maximum weight large augmenting
cycle family Cy,...,Ck in G. ’

Although we omit the details about the Edmonds’ graph, we can construct it in polynomial time. Hence
the step (2) in our algorithm can be done in polynomial time. Analogously, if there is no augmenting
cycle, for any pair of vertices a and b, we can find a maximum weight augmenting path whose endpoints
are a and b, if it exists, by constructing the Edmonds’ graph and by finding a maximum weight perfect
matching in it. Now we can find a maximum weight augmenting path by trying all the pairs of vertices
a and b.
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