7 by d U X A 73-4
(2000. 5. 19)

By T —TICBBREBEKE T ERECERME

rosimt EEED BE AL EEET
TR AR EETEMER Y A7 L AMRER ¥ X7 AR08
PRERERF R TERMER SHRT¥ER

BE

CORLTIE, EAAY FT—2IIBVT, EH v il L Tdw) OMELED I LR, &
ANEROSES S 2RETAMELZRS. COMEIX BRI NP-R#ETH 248, ENSIE
BHROBRANF—ECTH L5 HENOMEL B EREETREL T b, RATBEEEI
FHWT, SOERTVTYZXLCBITHELHEO L) BMAERE 52, SEERZ OniM)
25 OnM) ~NEHRTH, STl Ay b I7—20EOBTHY, Mitn DEE m O
EFORY P S IIBTARARTU-DFHERHEERT L. B3 Eh, —EOERERL
REOER*FONRLBEOMBELHEL OMnim +nlogn)) DT VT )AL ERET S,

Locating Sources to Meet Flow Demands in
Undirected Networks

Kouji Aratal  Satoru Iwata!  Kazuhisa Makino!  Satoru Fujishige'
{ Division of Systems Science, Graduate School of
Engineering Science, Osaka University,
I Department of Mathematical Engineering and Information Physics,
Graduate School of Engineering, University of Tokyo

Abstract

This paper deals with the problem of finding a minimum-cost vertex subset S in an undirected
network such that for each vertex v we can send d(v) units of flow from S to v. Although this
problem is NP-hard in general, Tamura et al. have presented a greedy algorithm for solving
the special case with uniform costs on the vertices. We give a simpler proof on the validity of
the greedy algorithm using linear programming duality and improve the running time bound
from O(n%M) to O(nM), where n is the number of vertices in the network and M denotes the
time for max-flow computation in the network with n vertices and m edges. We also present
an O(n(m + nlogn)) time algorithm for the special case with uniform demands and arbitrary
costs.

1. Introduction from S to v.

For a pair of disjoint subsets X,Y C V, we
Let M = (G,u,d,c) be an undirected network denote by A(X,Y’) the maximum flow value be-
on the underlying graph G = (V, E) with the tween X and Y in A/. We simply write A(v,Y)
vertex set V' and the edge set E. Let n = |V| and A(X,w) for v,w € V instead of A({v},Y)
and m = |E|. It is endowed with a capacity and A(X,{w}), respectively. For convenience,
function u : £ — R, a demand function d : we assign A(X,Y) = 400 if X NY % 0. Then
V — R., and a cost function ¢ : V' — R, the problem is formulated as follows.
where R, denotes the set of nonnegative reals.
This paper addresses the problem of finding a Minimize Z c(v)
minimum-cost vertex subset S C V such that vES
for each v € V' we can send d(v) units of flow subject to SCV, (1.1)



A(S,v) > d(v) (veV).
We call this problem SOURCE LOCATION. We
say that a vertex set S C V covers a vertex v
if A(S,v) > d(v). Namely, SOURCE LOCATION
asks for a minimum-cost subset S C V that
covers all the vertices in V.

A special case of this problem with a con-
stant cost function was introduced by Tamura
et al. [11]. They called it plural cover problem.
They first considered the case in which both d
and ¢ are constant and described an algorithm
that runs in O(n?M) time[10], where M de-
notes the time complexity for computing an s-t
maximum flow in a given network A [1, 3, 4].
Later Tamura et al. [11] showed that a simple
greedy algorithm solves problem SOURCE Lo-
CATION in O(n?M) time even if the demand
function d is arbitrary while the cost function
c is still constant. Ito and Yokoyama (5] de-
scribed another algorithm to improve the time
complexity to O(npM), where p is the num-
ber of distinct values of d(v) (v € V), ie,
p={d(w)|v eV}

In this paper, we analyze the greedy algo-
rithm of Tamura et al.[11] to give a simpler
proof based on the linear programming dual-
ity. We then improve the greedy algorithm to
run in O(nM) time.

As for the case in which the demand func-
tion d is constant, we give an O(n(m+nlogn))
time algorithm. The algorithm makes use of
maximum adjacency (MA) ordering (see Sec-
tion 4 for MA ordering). The MA ordering has

been used by Nagamochi and Ibaraki for solv-
ing the problems of minimum cut [6] and of
edge-connectivity augmentation [7].

Finally, we show that SOURCE LOCATION is
in general NP-hard. We show this by reduc-
ing the knapsack problem to SOURCE Loca-
TION. Hence, it remains open to prove the
NP-hardness in the strong sense or to devise
a pseudo-polynomial time algorithm.

We summarize the time complexity of
SOURCE LOGATION in Table 1, where bold let-
ters indicate the results obtained in this paper.

The rest of the paper is organized as follows.
Section 2 formulates SOURCE LOCATION as an
integer programming problem, Section 3 con-
siders SOURCE LOCATION when the cost func-
tion ¢ is constant, and Section 4 discusses the
case in which the demand function d is con-
stant. In Section 5, we show that SOURCE Lo-
CATION is in general NP-hard.

2. Integer Programming For-

mulation

In this section, we formulate SOURCE LOCA-
TION as an integer programming problem with
an exponential number of constraints.

A cut is a proper nonempty subset of V. For
a cut X, let AX denote the set of edges that
cross X, ie, AX = {e|le = (v,w) € E,v €
X, weV — X}, and x(X) its capacity, i.e.,

Table 1: Summary of the results on SOURCE LOCATION

¢: constant ¢: arbitrary
O(’I’L2M) Tamura et al. (1992) [10]
d: constant O(nM) Ito and Yokoyama (1397) [5] O(n(m + nlogn))
O(n{m + nlogn))
O(TLQM) Tamura et al. (1998) [11]
d: arbitrary O(npM) Ito and Yokoyama (1997) [5] NP-hard
O(nM)

M: the time complexity for computing a maximum s-¢ flow in N
p: the number of distinct values of d(v) (v € V).

_20.._




If X = {v}, we write x(v) instead of x({v}).
For a disjoint pair of vertex subsets X,Y C
V, we denote x(X,Y) = Z u(e). For
e€AXNAY

v € V, we simply write x(X,v) instead of
K(X, {v}).

We also denote by d(WW) the maximum de-
mand in W ie.,

d(W) = max{d(v) |v e W}.

We say that a vertex v € W attains the mazi-
mum demand in W if d(v) = d(W). A cut W
is called deficient if s(W) < d(W). If a cut
W is deficient and no other subset X C W is
deficient, W is called a minimal deficient set.

Lemma 2.1 ([11]): Let

N = (G = (V,E),u,d,c) be an undirected net-
work. Then S C V covers all vertices in V if
and only if SNW # ( holds for every minimal
deficient set W.

Let W = {W;,Wa,---,W;} be the fam-
ily of all the minimal deficient sets and let
V = {v1,vq, --,vp}. Define an ! X n matrix
A= (Ay) by Aj; =1ifv; € Wy and A;; =0
otherwise. From Lemma 2.1, SOURCE LOCA-
TION can be written as the following 0-1 integer
programming problem:

Minimize CjT;

subject to Ajjr; > 1 (4

n
2
Jj=1
n
>
j=1

zj€{0,1} (j=
where ¢; = ¢(v;) (j = 1,2,---,n), and & =
(21,2, -+, zn) is the characteristic vector of a
subset of V.

3. The Uniform Cost Case
A Greedy Algorithm

In this section, we consider SOURCE LoOcCA-
TION with a constant cost function. Tamura
et al.[11] proposed the following greedy algo-
rithm to solve SOURCE LOCATION.

3.1.

Algorithm GREEDY

Step 0: Arrange the vertices vi,vq, -+, vy in
V such that d(v1) < d(v2) < -+ < d(vg).

Step 1: Initialize j:=1 and S5:=V.

Step 2: If § — {v;} covers all vertices in V,
then S:=S5 — {v;}.

Step 3: If j = n then output S and halt. Oth-
erwise, j:=7 + 1 and go to Step 2. a

In order to show the correctness of algorithm
GREEDY, we consider the linear programming
relaxation of (2.1):

n
Minimize Z CjT; (3.1)
i=1
n
subject to Y Ayzi>1 (i=1,2,--,1),
i=1
-'EJZO (j=1>27"'an)a
and its dual:
l
Maximize Z Vi (3.2)
i=1
l
subject to Ay <¢ (j=1,2,---,n),
i=1
y; >0 (t=1,2,---,0).

Recall that ¢; =1 (j = 1,2,---,n) is assumed
in this section.

We also replace Steps 1 and 2 in algorithm
GREEDY as follows.

Step 1’: Initializej := 1,8 :=V andy; :=0
fori=1,2,---,1.

Step 2’:  (2-1) If S —{v;} covers all vertices
in V, then 5:=5 — {v;}.

(2-2) Otherwise, choose a W; € W
with W; NS = {v;}, and y; := 1.

Note that Step 1’ (initialization of y) in the
revised. version might take exponential time
(since |W| might be exponential). However,
this causes no trouble since we are now inter-
ested in the validity of the algorithm. Obvi-
ously, the algorithm always keeps a feasible so-
lution S (i.e., S covers all vertices in V).

Let z* and y* be the primal and dual vari-
ables obtained at the end of the revised greedy



algorithm. Note that x* is the characteristic
vector of the output S of the algorithm.

The algorithm does not delete v; from S if
and only if it updates y; as y; := 1 for some ¢
with W;NS = {v;}. Hence, at the termination,
we have

(3.3)

n l
> T =2 v
j=1 =1

Therefore, * is a 0-1 solution satisfying (3.1)
and (3.3). By the weak duality of linear pro-
gramming problems (3.1) and (3.2), we only
need to prove the feasibility of y* in (3.2) to
show the correctness of the algorithm GREEDY.
The feasibility of y* will be proved by Lemmas
3.1 and 3.2 given below.

Recall that the cut capacity function x sat-
isfies

KX)+ ) r(X =-Y)+x(Y -X)
(X,Y CV).(3.4)

A set function satisfying (3.4) is called posi-
modular in [8].

Lemma 3.1 ([11]): Let

N = (G = (V,E),u,d,c) be an undirected flow
network. Let W1 and Wy be minimal deficient
sets in N, and for eachi=1,2, letv; € W; be a
vertex that attain the mazimum demand in W;.
IfWiNWy # 0, then we have vy € Wiy NW3 or
vy € Wi NWs.

Proof. Suppose, to the contrary, that both
v, € Wiy — Wy and vy, € Wy, — W)
hold. Since W; and W, are deficient sets,
d(v1) > wk(W1) and d(v2) > &(Ws) hold. It
follows from (3.4) that

d(v1) + d(v2) &(W1) + w(W3)

>
> H(Wl - WQ) -+ /‘J(WQ - Wl).

This means that d(v;) > s(W;—=Ws) or d(vg) >
k(Wq —W1) holds. Since we have v; € W1 —W,
and vo € Wy — W) by the assumption, it follows
that W7 — Wy or Wy — W) is deficient, which
contradicts the minimality of W; or Wa. ]

Arrange the columns of A4 in such a way that
d(v1) < d(vg) < -+ < d(vy). For each index ¢
with 1 <4 <[, let k(i) denote the maximum

number k& with vy € W;. Then Lemma 3.1 im-
plies that the matrix A does not contain

3 k(i) k(i)
i 1 1 0
ip\ 1 0 1

as a submatrix.

(3.5)

Lemma 3.2: The dual variable y* obtained by
the revised greedy algorithm is feasible to (3.2).

Proof. Suppose, to the contrary, that y* is
infeasible. There is a pair of distinct rows, 41,79
and a column j such that y;, = yf, = 1 and
A;j = Aj; = 1. Let jo be the largest such
number j, where we assume that the columns
of A is already arranged in such a way that
d(v1) < d(v2) < --+ < d{vn). Then we have
k(i1) # k(iz) since otherwise yf and y, must
be updated in the same iteration in Step 2/,
a contradiction. Note that jo = k(i;) implies
v, = 0 by the greedy algorithm. Hence we have
Jo < k(i1). Similarly, we also have jy < k(12).
Furthermore, we have A; j(;,) = 0 due to the
definition of jo. Similarly, we have 4;,x(;,) = 0.
This implies that A contains submatrix (3.5)
forbidden by Lemma 3.1. a

We have thus shown the following.

Theorem 3.3: If the cost function ¢ 1s con-
stant, then algorithm GREEDY produces an op-
timal solution of SOURCE LOCATION.

3.2. An Efficient Implementation

We now analyze the time complexity of algo-
rithm GREEDY. Steps 0, 1 and 3 are clearly
executed in O(nlogn), O(1) and O(n) time,
respectively. As for Step 2, Tamura et al. [11]
checked if S — {v;} covers all vertices in V by
computing A(S—{v;},v;) (i.e., a max flow from
S — {v;} to v;) for all v;. Clearly, this requires
O(nM) time, where M is the time complex-
ity for computing a maximum s-t flow in the
network A [1, 3, 4]. Since Step 2 is iterated
n times, the required time is O(n?M) in total
[11}.

However, the following lemma implies that
Step 2 can be replaced by



Step 2:

{v;}-

Lemma 3.4: If S — {v;} covers v; in Step 2
of algorithm GREEDY, then S — {v;} covers v;
foralli <j.

1f S — {v;} covers v;, then S:=5—

Proof. Assume that some v; with ¢ < j is
not covered by S — {v;}. Then there exists a
cut X withv; € X, V—X 2 8 — {v;}, and
k(X)) < d(v;). Then, SNX C {v;} clearly
holds. Moreover, we have SN X = {v;} since
otherwise S does not cover v;, which contra-
dicts the property that GREEDY always keeps
a feasible set S. Hence, X separates v; and
S—{v;}. Since x(X) < d(v;) < d(vj), it follows
that S —{v;} does not cover v;, a contradiction.

O

Thus we have improved the time complexity.

Theorem 3.5: If the cost function c is con-
stant, then problem SOURCE LOCATION can be
solved in O(nM) time.

4. The Uniform Demand Case

In this section, we consider SOURCE LOCATION
with a constant demand function d. We assume
that d(v) = g (a fixed positive real) holds for
all v € V. We show that it can be solved in
O(n(m +nlogn)) time without maximum flow
computation. A key tool of the algorithm is
the maximum adjacency (MA) ordering.

An ordering v, vy, - -, vy of all vertices in V'
is called a mazimum adjacency (MA) ordering
if it satisfies

ik Vig1) 2 &({v,v2,0 00,03}, 05)
fori<i<j<n

k({v1,ve,- -

The MA ordering plays a crucial role in this
section through the following lemma.

Lemma 4.1 ([6, 9]): Let G = (V,E) be an

undirected graph with a nonnegative capacity

function u. Then, the following statements
hold.
(i) An MA ordering vy,vq,---,vp can be

computed in O(m + nlogn) time.

(ii) The last two vertices vp—1 and vy, for ev-
ery MA ordering in G satisfy
(4.1)

AMvp—1,vn) = &(vn).

O

We mention here that we can choose the first
vertex vy arbitrarily.

Let us note that, if the demand function d
is constant, minimal deficient sets are pairwise
disjoint by the posi-modularity 3.4 of &, i.e.,

wWinw; = 0

holds for every pair of W; and W; in W.
Therefore, in order to solve SOURCE Loca-
TION, we try to find all minimal deficient sets
W € W and construct a minimum-cost source
set S C V by choosing from each W € W a ver-
tex v € W with the minimum cost ¢(v) among
w.

Since any source set S must contain v € V
such that x(v) < g, we initialize S as S := {v €
V | 6(v) < g}. To make use of MA orderings,
we attach a new vertex s (¢ V) to a given net-
work N and, for each vertex v € S, add the
edge (s,v) with the capacity u(s,v) = g. By
this modification of N, every vertices v € V
satisfies x(v) > g, i.e., either k(v) > g holds in
the original network or v € S (i.e., the (mod-
ified) network A contains the edge (s,v) with
u(s,v) = g). We then apply to the network A
an MA ordering vo (= 8),v1,* "+, Un—1, Uy Start-
ing from s. By Lemma 4.1, we have

A(n-1,vn) = &(va) 2 g.

Namely, every cut X that separates v,—1 and
vy, satisfies kK(X) > g. This means that ev-
ery minimal deficient set W € W (in the origi-
nal network) that separates v,_; and v, forms
W = {vp—1} or {v,}, since by the modifica-
tion of A, such a W must contain a vertex
v € V such that x(v) < g in the original net-
work, and hence we have |W| = 1. Since we
already checked whether a cut X of the type
X = {v} (v € V) is deficient, we do not have
to consider the cut X separating vn—1 and vy,.
‘We thus merge the vertices v,_1 and v, into a
single vertex 9, and check if ¥ satisfies k(0) > g.
Since £(0) < g implies that W = {v,_1,vn}isa



minimal deficient set in the original network, if
k(?) < g, we update the network A" by adding
edge (s,0) with the capacity u(s,0) = g, and
update S by adding vp—1 if c(vp-1) < c(vn);
otherwise, v,.

Now we have x(0) > g for all vertices except
for s in the resulting network /. By repeating
the above argument for N (i.e., we apply MA
ordering v (= 8),v1,"**,Vp—1, Vs to N, merge
the last two vertices v,_; and vy, and so on),
we can compute a minimum-cost source set 5.
Formally it can be written as follows.

Algorithm CONTRACT

Input: A network N = (G = (V, E),u,d,c),
where d(v) = g for all v.

Output: A minimum-cost vertex set S C V
which covers all vertices in V.

Step 0: Initialize S :=0, V' .=V U{s}, E' :=
E,and a(v) :=vforallve V.

Step 1: For each vertex v € V such that
k(v) < g, put E' := E'U{(s,v)}, u(s,v) :=
g, and § := SU{a(v)}.

Step 2:

(2-I) Compute an MA ordering v (=
8),U1, ", Vp—1,Vp starting from s in
G' = (V',E").

(2-IT) Merge the last two vertices wvp_3
and vy, in G’ into a single vertex
9. Denote the resulting graph by G’
again.

(2-1I11) If cla(up-1)) < c(a(vp)), then
a(?) = a(vp—1); Otherwise, a(0) :=
a(vg).

(2-IV) If () < g in the clrrent G', then
update E' := E' U {(s,0)}, u(s,0) :=
g, and S = S U {a(d)}.

Step 3: If |[V'| < 2 or E' contains the edges
(s,v) for all v € V/ — {s}, then output S
and halt. Otherwise go to Step 2. O

Note that the algorithm prepares «(-) for
computing from each W € W a vertex v € W
with the minimum cost ¢(v) among W. For-
mally, a(v) (v € V') stores the vertex v* in
the original network A having the minimum

cost c(v*) among P,, where P, is the set of all
vertices v in V' which are merged to v.

Theorem 4.2: Problem SOURCE LOCATION
can be solved in O(n(m + nlogn)) time if the
demand function d is constant.

Proof. Since the above discussion shows the
correctness of algorithm CONTRACT, we only
consider its time complexity. Clearly Steps 0,
1 and 3 take O(n) time. Step 2 can be executed
in O(n(m+nlogn)) time since it has n—1 iter-
ations and each iteration takes O(m + nlogn)
time from Lemma 4.1. Therefore, in total, it
requires O(n(m + nlogn)) time. 0

5. NP-hardness

Case

of General

In this section, we show the NP-hardness of
SOURCE LOCATION with non-constant cost and
demand functions.

Theorem 5.1: Problem SOURCE LOCATION
18 NP-hard, even if the undirected graph G =
(V,E) is a star, i.e., E = {(v,w) | w e V\{v}}
for someveV.

Proof. We transform Problem KNAPSACK to
this problem, where KNAPSACK is known to be
NP-hard [2].

Problemn KNAPSACK

Input: A finite set Z = {21,292, 2,} associ-
ated with a size function 0 : Z — Z; and
a value function w : Z — Z,; and posi-
tive integer b(< 30, cz0(2)). where Z
denotes the set of all nonnegative integers.

Cutput: A subset X C Z that is an optimal
solution of

Maximize Z w(z)
ze€X

subject to Z o(z) <b, (5.1)
z€X
X CZ

It is easy to see that KNAPSACK is polyno-
mially equivalent to the problem of computing



a subset Y C Z that solves

Minimize Z w(z)
z€Y

subject to Z o(z) > Z o(z) - b,(5.2)
z€Y 2€Z
Y C Z,

by identifying Y with Z — X. Therefore, in the
following we consider (5.2) instead of (5.1).
For this problem instance, we consider an
undirected network N = (G = (V, E),u,d,c)
with V. = ZU {2}, E = {(z0,2) | z €
ZY, u(zo,2) =o0(z) fori=1,2,--,n and

) = ZZiGZU(zi)_b ifi=0
) = { 0 otherwise,
clz) = ZziEZw(zi) +1 ifi=0

' w(z) otherwise.

Note that d(z;) = 0 for all z; € Z. Therefore
S5 C V covers all vertices in V if and only if it
covers zp, i.e.,

X(S,20) > d(z0) = 3 o(zi) —b.
z;€Z

(5.3)

Moreover, since {29} and Z covers zp, and
since ¢(20) > 3_,,ez ¢(#i), an optimal S is con-
tained in Z. This implies that ‘

A(S 20) =Y ulz0,2:) = Y o(2),

% €S %ES

(5.4)

and hence (5.3) is equivalent to the constraint
in (5.2).

Since c¢(z;) = w(z;) for all 2, € Z, S C Z is
an optimal solution for the instance of problem
(5.2) if and only if it is optimal for the corre-
sponding instance for SOURCE LOCATION. O

6. Conclusion

In this paper, we have anélyzed the greedy
algorithm of Tamura et al.[11] for SOURCE
LOCATION with a constant cost function and
given a simpler proof based on the linear pro-
gramming duality. We have also improved
the greedy algorithm to run in O(nM) time.
Moreover, we have given an O(n(m + nlogn))
time algorithm for SOURCE LOCATION with a
constant demand function. Finally, we have
shown that SOURCE LOCATION is in general
NP-hard by reducing KNAPSACK t0 SOURCE
LocATION.

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Or-
lin: Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, Englewood
Cliffs, New Jersey, (1993).

[2] M. R. Garey and D. S. Johnson: Computers
and Intractability: A Guide to the Theory
of NP-Completeness, Freedman, New York,
(1979).

[3] A. V. Goldberg and S. Rao: Beyond the
flow decomposition barrier, Journal of the
ACM, 45 (1998), 783-797.

[4] A. V. Goldberg and S. Rao: Flows in undi-
rected unit capacity networks, SIAM J. Dis-
crete Mathematics, 12 (1999), 1-5.

[5] H. Ito and M. Yokoyama: Minimum size
flow-sink-set location problem with various
flow-demands of nodes, IEICE Trans. Fun-
damentals, to appear.

[6] H. Nagamochi and T. Ibaraki: Computing
edge-connectivity of multigraphs and ca-
pacitated graphs, SITAM J. Discrete Math-
ematics, 5 (1992), 54-66.

[7] H. Nagamochi and T. Ibaraki: Determinis-
tic O(nm) time edge-splitting in undirected
graphs, J. Combinatorial Optimization, 1
(1997), 5-46.

[8] H. Nagamochi and T. Ibaraki: A note on
minimizing submodular functions, Informa-
tion Processing Letters, 67 (1998), 169-
178. ‘

[9] M. Stoer, and F. Wagner: A simple min cut
algorithm, Journal of the ACM, 44, (1997)
585-591. :

[10] H. Tamura, M. Sengoku, S. Shinoda, and
T. Abe: Some covering problems in loca-
tion theory on flow networks, IEICE Trans.
Fundamentals, E75-A (1992), 678-683.

[11} H. Tamura, H. Sugawara, M. Sengoku,
and S. Shinoda: Plural cover problem on
undirected flow networks, IEICE Trans.
Fundamentals, J81-A (1998), 863-869 (in
Japanese).



