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In this paper, we discuss the problem of computing all the integral sequences
obtained by rounding an input real valued sequence such that the discrepancy
between the input sequence and each output integral sequence is less than one.
We show that the number of such roundings is n+1 if we consider the discrepancy
with respect to the set of all subintervals, and give an efficient algorithm to report
all of them. Then, we give an optimal method to construct a compact graph to
represent the set of global roundings satisfying a weaker discrepancy condition.

1 Introduction

For a given real number «, its rounding is either |o] or [a]. Given a sequence @ = (a;)1<i<n
of real numbers, its rounding is an integral sequence b = (b;)1<i<n such that each entry b; is
a rounding of a;. Without loss of generality, we can assume that each entry of a is in the
closed interval [0, 1]. Thus, the rounding of @ becomes a binary array.

There are 2" possible roundings of a given a, and we would like to compute good-
quality roundings with respect to a given criterion. The problem is not only combinatorially
interesting but also related to coding theory, data compression, computer vision, operations
research, and Monte Carlo simulation. »

In order to give a criterion to determine quality of roundings, we define a distance in
the space A of all [0, 1]-valued sequences of n real numbers. For an element a € A, let
a(I) = ¥icr a; be the sum of entries of @ whose indices are located in an interval I C [1,n].



We fix a family of F of intervals. The ., distance between two elements a and a’ in A with
respect to J is defined by
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DistZ (a, b) is the rounding error of a rounding b of a given [0, 1]-valued sequence a mea-
sured by using the distance. The supremum of the optimal rounding error supge 4 ming,

Distl (a,b) is called the inhomogeneous discrepancy of A with respect to the family F [3].
Here, B is the set of all binary valued sequences of length n. The most popular case is where
F is the set Z,, of all integral subintervals of [1,n], and the discrepancy of with respect to
7, is sometimes called the I-dimentional discrepancy in the literature.

Abusing the notation, we often call the error Dist? (a, b) the discrepancy between a and
b with respect to F.

We say that a rounding b of a is an F-global rounding if Dist? (a,b) < 1 holds; in other
words, b is a global rounding of a if and only if b[/] is a rounding of a[l] for every I € F. It
is known that for any F, an F-global rounding exists. On the other hand, for any constant
€ > 0, there exists an input @ which has no rounding with a discrepancy less than 1 —e€ even
if we consider the family of all intervals of length 2 [1].

There are two classical algorithms to compute an F-global rounding (the output se-
quences depend on the algorithms): One is the error-diffusion algorithm, and the other is
Viterbi’s decoding algorithm. Moreover, Asano et al. [1] have recently shown that for any
given input sequence a, a binary sequence b minimizing the discrepancy can be computed
in time O(y/n|F|log?n), where |F| is the cardinality of F, and hence O(n?).

A major defect of the above algorithms is that each of them outputs only one particular
F-global rounding. This lack of flexibility causes some serious problems in some applications
such as image processing. Therefore, it is desired to design efficient algorithms to output
either (1) all F-global roundings or (2) a system so that one can efficiently select a given
number of F-global roundings uniformly random from the set of all global roundings.

In this paper, we consider the family 7, consisting of all intervals of length at most &
in [1,n]. The family is natural and important in several applications. ‘We first consider the
special case where k = n, and show that we can report all Z,-global roundings in O(n?)
time. This implies that the number of Z,, global roundings is bounded by a polynomial;
indeed, it is at most n 4 1, and exactly n + 1 under a non-degeneracy condition. Next,
we give an O(nk) time algorithm to output an acyclic network with O(nk) nodes so that
the set of all Z;-global roundings equals the set of all directed s-t paths in the network.
As byproducts, we show that several optimization rounding problems that can be solved in
O(2*qn) time by using Viterbi’s dynamic programming algorithm can be solved in O(kgn)
if we restrict the solution space to the set of Zp global roundings. Here, g is the time to
do some basic operations depending on problems. This includes an improved O(nk) time
complexity of computing the rounding b minimizing DistZ:(a, b).

The present paper mainly focuses on theoretical aspect of the problem; however, our
motivation comes from digital halftoning, which is one of the most fundamental techniques
in image processing. An intensity image can be considered as a [0, 1]-valued n x n array A
where each entry a;; corresponds to a brightness level (gray level) of the (4, j) pixel of the
pixel grid. For a color image, we consider an overlay of three such matrices representing
red, green, and blue color components, respectively. The digital halftoning is to compute
a binary n x n array B “approximating” A. The intention of this method is to convert a
given image which consists of several bits for brightness levels into a binary image having
only black and white pixels. This kind of technique is indispensable to print an image on
an output device that produces black dots only, such as facsimiles and laser printers. The
problem is not easy; for example, neither simple rounding nor randomized rounding ( round
each entry a;; to 1 with probability a; ;) generates a good halftoning image.

Up to now, a large number of methods and algorithms for digital halftoning have been
proposed (see, e.g., [8, 4, 9, 10]). The ordered dither method [10] and the two-dimensional



error diffusion method [4] are quite popular methods. By the nature of the problem, we need
help of human’s decision to judge the quality of halftoning; however, a nice mathematical
measurement for automatically evaluating the quality is desired. Discrepancy is a nice
mathemetical measurement for the halftoning [11]. However, two dimensional rounding
problem minimizing the discrepancy is NP-hard, and even its approximation is theoretically
difficult [1, 2].

The concept and algorithms for global roundings given in this paper will be useful tools
for designing nice halftoning methods. Every Z;-global rounding (for a suitable k) gives a
good quality rounding for each row. However, if we further consider the side-effect, it is
not wise to round each row independently and combine them, since it often causes some
systematic patterns (that do not exist in the input image) in the output image: Such a
pattern is called a regular pattern created by a rounding.

We can avoid generating regular patterns if we have many candidate global roundings
for each row and select a suitable one considering the relation to the neighbor rows. Even a
random choice of a global rounding works well in our preliminary experiments: Compared
to the randomized rounding, the method to choose a global rounding randomly in each row
decreases the randomness, and hence tends to keep features of the original image better.
Moreover, we can consider several bicriteria optimization problems to compute global a
rounding of each row that simultaneously minimizes two-dimensional side effects.

2 Structure of the set of global roundings

2.1 Preliminaries

Let S(a,F) be the set of all F-global roundings of a, and let N(a,F) = |S(a, F)| be the
number of different roundings. The discrepancy satisfies the monotonicity by definition; i.e.,
DistZ (a,b) > Dist (a,b) if F D J. Therefore, S(a,F) C S(a,J) f F D J.

For a sequence c of length n, let ¢(< k) be its prefix of length k. Thus, a(< k) is the
prefix of the input sequence a of length k. Abusing the notation, we say that a binary
sequence of length k is a F-global rounding of a prefix of a if it is a global rounding of
a(< k) with respect to F(< k) = {IN[1,k| : I € F}. The following lemma is trivial, but
useful: :

Lemma 1 The prefiz of length k of a F-global rounding b of a is a F-global rounding of
the prefiz a(< k) of a. Moreover, for every F-global rounding c of a prefiz a(< k), its prefiz
of length £ < k 1is a F-global rounding of the prefiz a(< £).

Definition 1 A family F is called prefiz-complete if for any m < n and for any I € F,
INn[l,mle F.

We mainly consider prefix-complete families in this paper. Obviously, Z,, which we focus
on, is a prefix-complete family. ‘

2.2 Rounding graph

Definition 2 A rounding graph of a with respect to F is a directed acyclic graph G with a
source node such that each edge contains either 0 or 1 as a label, every path from its source
to a sink gives a global rounding (if we read the labels at edges on the path sequentially) of
a, and every global rounding appears as such a path.

There may be several different rounding graphs for a set of global roundings. We first
consider one particular rounding graph (indeed, a binary tree) of an input sequence a with



respect to a prefix-complete family F of intervals. The graph is often called the keyword tree
in the literature [6], if we consider the set of global roundings as a set of binary keywords.

The counstruction is as follows: We denote be 0 and b e 1 as the sequence obtained by
appending 0 and 1 to the end of b, respectively. We consider a node v(¢) associated with an
integral sequence ¢, and let V(a,F) = {v(c) : ¢ is a F-global rounding of a prefix of a}.
Here, we use a convention that { is a global rounding of the empty “prefix” of length 0 of
a. Consider a graph T'(a,F), which has V(a, F) as its node set, and has an arc from v(c)
to v(d) if and only if either d = ce 0 or d = c e 1: the arc has 0 (resp. 1) as its label
in the former (resp. latter) case. The following lemma is immediately obtained from the
construction and the definition of a prefix-complete family:

Lemma 2 T(a,F) is a binary directed tree rooted at v(() such that if we read the labels at
edges on the path from v(0) to a node v(c) sequentially, we have the binary string c.

The depth of the tree T(a,F) is n by the construction, and we ignore the leaves at

shallower levels, if any. In precise, let T'(a, F) be the induced subgraph of T'(a, F) consisting
of nodes on the paths from leaves of level n towards the root. T'(a, F) is a rounding graph,
since the set of paths from the root to leaves of depth n is exactly the set of F-global
roundings. Note that the size of the tree may be exponential in general.

3 ZI,-global roundings

3.1 Combinatorial results

We consider the case where F = I,,. If N(a,F) is very large (say, exponential in n), we
have no hope to report all the F-global roundings in polynomial time. The following lemma
is easy to prove, but it was a surprising discovery for the authors:

Lemma 3 For any real sequence a of length n, N(a,Z,) <n+ 1.

Definition 3 A real sequence a is called non-degenerate if a(I) is non-integral for every
interval I € Z,,.

Lemma 4 T(a,Z,) = T(a,1,), and if the sequence a is non-degenerate, N(a,I,) = n+1.

These two lemmas imply that, if we apply a symbolic perturbation method to modify the
input sequence a such that a(I) is non-integral for every I, we can always have exactly
n + 1 global roundings of a with respect to Z,,.

One natural question is whether we can obtain a polynomial bound of the number of
binary sequences if we relax the discrepancy bound. The answer is negative: suppose that
we consider the relaxed condition DistZ(a,b) < 1, instead of Distir(a,b) < 1. Consider
the input sequence a of even length whose every entry is 0.5. Then, we can observe that
every binary sequences satisfying that bo;_; +bo; = 1 for i = 1,2, ...71n/2 are included in the

solution set. There are 2"/? such sequences.

3.2 Algorithm for reporting all 7,- global roundings

For the family Z,, of all intervals, we compute all n + 1 sequences. We indeed construct the
rounding graph T' = T(a,Z,) in O(n?) time and O(n) working space (ignoring the space to
store the tree). The tree T is a binary tree of height n with at most n+ 1 leaves, and it has
©(n?) nodes.

* For simplicity, we simply call a global rounding for an Z,-global rounding in this subsec-
tion. For each global rounding ¢ of a prefix (say, a(< 1)) of a, let diff(¢) = a([1,])—e([1,14]).



/ st PO O gores O O o O O ey
\". \\"-., % *, %
.“o_..; O et O wee O O s () ..lo.__. ...:o_, ....&)..., :O
=+ Edge corresponding to 0 — Edge corresponding to 0
------ > Edge corresponding to 1 «=>  Edge corresponding to 1

Figure 1: Rounding graphs for 7, (left drawing) and 73 (right drawing).

We define mazdiffic) = max{diffd) : d is a prefix of ¢} and mindiffc) = min{dif{d) :
d is a prefix of c}.

Starting from @, we construct the tree from top to bottom, increasing the depth one by
one. The level which is under construction in the algorithm is called the current level. If the
current level has a depth 4, we construct nodes corresponding to global roundings of a(<1).
We compute diff(c), mazdiffc), and mindiffc) for the nodes in the current level of the tree
by using the information of the previous level. Note that mazdiff(c) < mindiff(c) + 2 holds.

Suppose that the current level is at depth ¢, and let v(c) be a node of T" with depth i — 1
(the level with depth i — 1 has been already constructed). We want to decide whether c e 0
and/or c e 1 are global roundings of a(< ). The following result is obtained in a routine
way from the definition of a global rounding:

Lemma 5 Let C be either ce 0 or ce 1. The sequence & is a global rounding of a(< i) if
and only if mazdiff(c) — 1 < diff(€¢) < mindiffc) + 1.

Since diff(c # 0) = diff(c) — a(i) and diff{ce 1) = diff(c) + 1 — a(4), they can be computed
in O(1) time. Thus, we can decide in O(1) time whether & is a global rounding or not. it is
easy to see that mazdiff(€) and mindiff{¢) can be computed in O(1) time. Hence, we spend
O(1) time to creating a node in the graph 7. Thus, the time complexity of our algorithm is
O(n?). Since we only use the information stored in the (i — 1)-th revel to compute the i-th
level, we use O(n) working space (ignoring the space to store the output).

3.3 Compact rounding graph for a smaller family of intervals

In some applications, we do not care very long intervals. Hence, instead of Z,, we would like
to consider 7, for k < n. Unfortunately, the number of Zy-global roundings is Q((k+1)L7/2k),
and hence exponential in n/2k. Therefore, it is too expensive to report all the Z;-global
roundings explicitly. Instead, we construct a rounding graph of size O(nk), so that we can
generate global roundings in a uniformly random fashion.

Let us learn from the following simple example: Consider a fixed input @ = (0.4,0.4, ..., 0.4)
consisting of n entries with a value 0.4. A binary string is an Z,-global rounding of a if
and only if it contains no two consecutive entries 1,1. Such binary sequences correspond
to vertices of Fibonacci cube [7], and the number of such sequences equals the (n + 2)-th
Fibonacci number; Hence it is exponential. However, we have a compact rounding graph
with 2n + 1 nodes illustrated in the left drawing of the Figure 1. If we consider Z5, we have
a rounding graph in the right drawing.

Theorem 1 For any input sequence a, we can construct its rounding graph with at most
nk +1 ~ [k(k +1)/2] nodes representing the set of all Ty-global roundings.

The rest of this subsection is devoted to the proof of the above theorem. The proof is
constructive, and similar to the construction of a BDD (bounded decision diagram) from a



decision tree. First, we consider the tree T = T'(a,Z}) defined in the previous section. We
say two sequences ¢ and ¢ are (k — 1)-similar to each other if they have the same length
¢ > k—1, and they have the same suffix of length k — 1. The equivalence class of a sequence
c under the (k — 1)-similarlity is denoted by class(c). In this subsection, we concentrate on
the family Z, and hence simply write “global roundings” for Z;-global roundings.

Two nodes v(c) and v(c') in T are called similar to each other if ¢ and ¢’ are (k—1)-similar.
The following claim is easy to verify:

Claim A: If v and v/ in T are similar, there is an one-to-one matching between the set
of descendants of v and that of v/ such that each matching nodes are similar to each other.

We fold the tree T to obtain a graph G(a,Z) such that similar nodes are identified and
unified into a single node of G(a,Z;). The edges of T is also unified without causing conflict
because of Claim A. Inherited fom 7', The graph G(a,Z;) is a layered directed acyclic graph
with n 4 1 layers. From the definition of similarity, the unified edges should have the same
label. Due to Claim A, all the outgoing edge with a same label must be unified; thus, each
node has at most two outgoing edges. Also, each edge has a label 0 or 1 inherited from T’
without causing any conflict.

From Lemma 3.1, there are at most k different binary sequences which is a global round-
ing of a subsequence a;, @11, ..., Girk—o With respect to Zx_;. Hence, at each layer of 7', there
are at most k different suffixes of the sequences associated to node in the layer. Hence, there
are at most k nodes in each layer of G. We can also easily see that the first i-th layer has
at most 7 + 1 nodes for ¢ < k — 1. This proves the theorem.

3.4 Algorithm to compute a compact rounding graph

We want to compute G(a, Z,) efficiently. Since, Zj is prefix complete, we can apply a similar
sweeping strategy to the case of Z,,.

Each node of G(a,Z},) corresponds to an equivalence class of a prefix of @, and wrote as
v(c), where c is the representative of the equivalence class, which is the lexicographically
smallest member (in other words, the smallest member if we regard binary sequences as
integers in binary forms) in the class.

Starting from @), we construct G(a, Z;) from the source to sinks, increasing the level (i.e.,
depth) one by one. If the current level has depth i, we construct vertices corresponding
equivalence classes of the global roundings of a(< i). As we have shown in the previous
subsection, there are at most k such equivalence classes. We maintain diff{c), mazdiff,(c),
and mindiff,(c) for the representative ¢ of the equivalence class corresponding to each node
in the current level of the graph by using the information of the previous level. Let L(m)
be the set of representatives of the equivalence classes corresponding to nodes of the m-th
level of G(a, Zk).

Let £(c) be the length of a sequence c. We define

mazdiff,(c) = max{diff(d) : d is a prefix of ¢ such that ¢(d) > £(c) — k + 1} and
mindiff,(c) = min{diffd) : d is a prefix of ¢ such that £(d) > £(c) — k + 1}.

Lemma 6 Ifc= (ci,cy,...,cm) 18 a prefir of a global rounding with respect to I, €® Cmi1
(¢mi1 = 1 or 0) is a prefiz of a global rounding if and only if mazdiff_,(c) + @m41 — 1 <
Crmg1 < mindiff,_1(€) + ams1 + 1

Hence, we can select all the global roundings among {ce0:c € L(m)} and {cel:c€
L(m)} in O(k) time. Thus, we can construct G(a,Z) in O(nk + ng) time if the following
operations can be done in O(q) amortized time for each level: (1): Classify the set of global
roundings among {ce0 : c € L(m)} U{cel : ¢ € L(m)} into equivalence classes, and
choose representatives. (2): Compute information of diff, mindiff, and mazdiff; for all
representatives in L(m + 1).



In order to implement the operation (1), we consider a tree T'(m) from the set of repre-
sentatives ¢ in L(m). The tree has a leaf [(c) for each ¢ € L(m), and each edge has either 0
or 1 as its label, and the path from the root to I(c) gives the suffix of length £ —1 of ¢ in the
reverse order. For example, if k =4 and ¢ =0,0,1,1,0,1, 1, the path from the root gives
the sequence 1,1,0. It is clear that T'(m) has O(k?) edges. From T'(m), we can construct
T(m + 1) by making two copies of T'(m), joining them at a new root with edges of labels 0
and 1 respectively, remove leaves which do not correspond to global roundings, and upgrades
each other leaf to its parent’s place. If two leaves are upgraded to the same position (i.e., if
they have the same parent), we know that these two leaves are corresponding to sequences
with a same equivalence class.

In order to attain the O(k) time complexity, we use a compressed form H(m) of T'(m).
Since T'(m) has only k leaves, it has at most k — 1 branching nodes. Only at most O(k)
cells storing label sequences are updated, and an update of the label sequences is either
removing the last bit of the sequence, or appending sequences in two cells; Hence, each such
operation can be done in O(1) time. Thus, we can do the operation (1) in O(k) time.

The operation (2) can be implemented in O(klogk) time by using a dynamic tree data
structure. Instead, we do it in O(k) amortized time without using a complicated data
structure. Hence, we have obtained the following theorem:

Theorem 2 The graph G(a,Zy) can be constructed in O(nk) time using O(k?) working
space.

We can compute for every node v(c) of G(a,Z;) the number n(v(c)) of global round-
ings of a that have c as their prefix. This can be done in O(nk) time by using a dynamic
programming procedure. By using this information, we can generate global roundings uni-
formly random by walking on the directed acyclic graph G(a,Z;) (directed from the source
to sinks) using n(v(c)) as the probability for choosing the next branch (i.e., next bit of the
rounding). :

4 Fast Viterbi-type algorithms and bicriteria optimiza-
tion

Let us review the Viterbi’s algorithm in a general form. For each integral subinterval
J = [i+1,i+ k] C [1,n] of length k, let us consider a function f; assigning a real value
fi(a,x) for each pair of a real sequence a € [0,1]" and a binary sequence € {0,1}" of
length n. The function f; is called local if f;(a,x) is determined by the entries of @ and =
located in the interval J.

Consider a commutative semigroup operation @ satisfying the monotonicity, i.e., if z; >
y1 and x3 > Yo then z1 & z3 > Y1 & y2. Examples of such operations are -+, max, min,
and taking the L, norm (|z;[P + |z2|P)/?. Let us consider the sum (under the @ operation)
Fla,z) = @ fii+1,i+%) (@, ), and would like to find a binary sequence x minimizing
F(a,z).

Viterbi’s dynamic programming algorithm can be applied to the above problem. It is
easy to see the following: Suppose that f;(a, ) is local and computable in O(g) amortized
time if we run the dynamic programming. Then, the binary sequence z minimizing F(a, x)
can be computed in O(2Fng) time. If we further combine our global rounding condition, we
have the following:

Theorem 3 Under the assumption as above, the global rounding sequence = of a with re-
spect to I minimizing F(a,x) can be computed in O(kng) time.

Corollary 1 The rounding minimizing the Ly, rounding error with respect to Iy can be
computed in O(kn) time.



For a family of interval F, we can consider a nonnegative valued function w on F and
define the weighted [, distance Dist] *(a,b) = (Z;cr|a(l) - b(I)[Pw(I))*? between a and
its rounding b. Although a weighted I, distance is a nice measure of quality of a rounding
if we choose suitable w and p, it is time consuming to compute the optimal rounding with
respect to this measure [2]. However, if we restrict the solution space to the set of global
roundings with respect to Zy, we have the following:

Corollary 2 Given any weight function w, the global rounding minimizing the weighted [,
error with respect to Ip, can be computed in O(k?n) time.

5 Remarks on Digital halftoning applications

From the viewpoint of practical applications, our main target is digital halftoning: We
would like to approximate a [0, 1]-valued matrix A with a binary matrix B. One natural
formulation is that we define Dist’ (A, B) = maxger |A(R) — B(R)| for a family F of
subarrays, and find B minimizing this distance. However, this problem is NP-hard, and
even an approximation algorithm with a provable constant approximation ratio is difficult
to design [1]. One heuristics method is to round rows one by one, considering the relations
to roundings of previous rows. Here, we must keep the rounding of the current row to be
similar to the input sequence (the global rounding property certifies it) to reduce the side-
effect of roundings of forthcoming rows, and also minimize the two-dimensional error effect
in the part of the matrix rounded so far (together with the current row). For the purpose,
the bicriteria method given in the preceding section will be suitable. Our experimental
results will be reported elsewhere.
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