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Abstract

To integer programming problems, computational algebraic approaches using Grobner
bases or standard pairs via the discreteness of toric ideals have been studied in re-
cent years. Although these approaches do not give improved time complexity bound
compared with existing methods for solving integer programming problems, these give
algebraic analysis of structure of integer programming problems. In this paper, we
focus on the minimum cost flow problems, whose structure is well-known, and analyze
using standard pairs. Especially, using results about Grébner bases for toric ideals and
hypergeometric functions, we show that the number of vertices of the (nondegenerate)
dual polyhedra for minimum cost flow problems on acyclic directed graphs is more than
1 and less than the Catalan number.



1 Introduction

Recently, some algebraic approaches to inte-
ger programming problems have been studied.
The two main approaches are using Grébner
bases [4] and standard pair decompositions [6].
Although they do not give improved complex-
ity bounds compared with existing methods,
these approaches themselves are very inter-
esting by applying computational algebraic
methods to such hard problems, and give al-
gebraic analysis of structure of integer pro-
gramming problems. The results in [4] and
[6] have given several results about struc-
ture of integer programming problems using
Grébner bases [4, 11, 13, 14, 15] and standard
pairs [6, 7].

The minimum cost network flow problem
forms a well-known subclass of integer pro-
gramming problems which can be solved in
polynomial time. Grobner basis approach for
the minimum cost flow problems is a variant
of cycle-canceling algorithmn, in the sense that,
for any feasible flow, we can obtain the opti-
mal flow by augmenting flows along the cycles
which correspond to the elements of Grébner
basis as many as possible. On the other hand,
standard pair approach for the minimum cost
flow problems first finds the set of standard
pairs, and solves linear system of equations for
each standard pair until an integer and non-
negative solution is obtained. Since each stan-
dard pair for the minimum cost flow problem
corresponds to a vertex of (nondegenerate)
dual polyhedron of the problem, this approach
is a variant of enumeration of dual bases.

The fact that each standard pair corre-
sponds to a vertex of dual polyhedron of the
minimum cost flow problem also implies that
the number of standard pairs for the minimum
cost flow problem gives the number of vertices
of dual polyhedron of the problem. The num-
ber of vertices of dual polyhedra for some spe-
cial problems have been studied. Especially
for the transportation problem on m X n bi-
partite graph, which is equivalent to the min-
imum cost flow problem on the graph with
m + n vertices, the number of vertices is at
most (™1"7?) [2]. We show that, for the min-

imum cost flow problem on an acyclic directed
graph with d vertices, the number of vertices
of the dual polyhedron is at most 1( (d 11)),
the (d—1)-th Catalan number. For the case of
the problem on the acyclic tournament graph,
there exists an example achieving this num-
ber. This upper bound is shown by combin-
ing two results, one is about the characteriza-
tion of Grobner basis for minimum cost flow
problem [8], and the other is about the special
hypergeometric function [5].

This paper is organized as follows. In Sec-
tion 2, standard pair decompositions are de-
fined and their relation with regular triangu-
lations, dual polyhedra and integer program-
ming problems are introduced. In Section 3,
we characterize the standard pairs for the min-
imum cost flow problems. In Section 4, the
minimum and the maximum number of ver-
tices of dual polyhedra are shown for the min-
imum cost flow problems on acyclic tourna-
ment graphs. The methods which are used
to show these results are also shown. For the
problems on acyclic directed graphs, these re-
sults give upper and lower bounds. Finally in
Section 5 we conclude this paper.

2 Standard pair decomposi-
tions of integer programs

In this section, we give some definitions about
standard pairs, and their relation to regu-
lar triangulations, dual polyhedra and integer
programmings. We refer to [12] for the intro-
duction of standard pairs, and [6, 7] for their
applications.

2.1 Standard pairs, regular triangu-
lations and dual polyhedra

We fix a matrix A € Z%™ and a cost vec-
tor ¢ € R™, and consider the family IPae
of integer programming problems TPy ¢(b) :=
minimize{c-x | Az = b, € N"} as b varies
in {Au | u € N*} C Z¢ (N is the set of non-
negative integers, and Z is the set of integers).
We assume that ¢ is generic in the sense that
each program in IP4 ¢ has a unique optimal
solution. For a fixed ¢, let O¢c C N” be the



set of all the optimal solutions to all programs
in IP4 ¢, and Ng := N"\ Oc¢. Then there ex-
ists a unique minimal finite set {py,... ,p,} C
N™ such that Ne = U;_;(p; + N"*), where
p; + N* := {p,+u | u € N*} [13]. Alge-
braically, p;,...,p, are the set of exponent
vectors of initial terms of Ge, the reduced
Grobner bases of the toric ideal I with re-
spect to c.

For @ € N” and o C {1,...,n}, we de-
fine a set of points (a,o) in N" as (a,0) =
{a+ Dico kiei | ki € N}, where e; is a i-th
unit vector in R”.

Definition 2.1 (a,0) is a standard pair of

Oc if

(i) the support
{1,...,n}\o0,

(ii) (a'a U) c OC; and

(iii) (a,0) ¢ (b,7) for any other (b, 7) which
satisfies (i) and (ii).

of a is contained in

We denote S(O¢) the set of all standard pairs
Of Oc.

The standard pairs of O¢ induce a unique
covering of Og, which we call the standard
pair decomposition of O¢. |S(Oc)| is called
the arithmetic degree of O¢ and denoted by
arith — deg(O¢). Because of the genericity of
¢, O¢ is not empty and arith — deg(O¢) > 1.

Example 2.2 Let A be the incidence ma-
triz of the network shown in Figure 1. For
c = (3,1,2), the standard pairs of O(3,12) are
((0,0,0),{1,2}) and ((0,0,0),{2,3}), thus the
arithmetic degree of O(312) 15 2. On the other
hand, for ¢ = (1,4,2), the standard pair of
O(1,4,2) 5 ((0,0,0),{1,3}), thus the arithmetic
degree of O(1,42) 8 1.

Let {a1,...,an} be the column vectors
of A and cone(A) the cone generated by
ai,...,a,. For o C {1,...,n}, we denote

A, for the submatrix of A whose columns are
indexed by o. For a cost vector ¢, we de-
fine the regular triangulation Ac of cone(A)
as follows: cone(4,) is a face of Ae if and
only if there exists a vector y € R such that

((0,0,0), {2,3)

((0,0,0), {1,2)

(0,0,0), {1,3)

Figure 1: The network N and two types of
standard pair decompositions

*

y-a;=c; (j€o)andy-a; <c (j &o)
If cone(A,) is a face of Ag, o also is called a
face of Ae. The genericity of ¢ implies that
Ac is in fact a triangulation (i.e. each face of
Ac is simplicial) {11].

Lemma 2.3 ([10, 12]) (i) If O¢ has (x,0)
as a standard pair, then o is a face of

Ac.

(ii) Oc has ((0,...,0),0) as a standard pair
if and only if o is a mazimal face of Ac.

(iii) If a1,... ,an span an affine hyperplane,
then Ac is same as a regular triangula-
tion of conv(A) with respect to ¢, and the
number of standard pairs (x;0) for a maz-
imal face o of A¢ equals the normalized
volume of o in Ac.

When the vertices of conv(A) are in the m-
dimensional lattice L ~ Z™, we define the
normalized volume of a maximal face o of
Ac¢ by the volume of o with the normaliza-
tion that the volume of the convex hull of
0,e1,...,em is 1. Here, {€;}1<i<m are the
basis of the lattice L.

For a polyhedron P C R" and a face F
of P, the normal cone of F' at P is the cone
Np(F) ={weR"|w -2’ >w-zforallz' €
F and z € P}. The set of normal cones for all
faces of P is called the normal fan of P.



in x +x,+2x3=0

Figure 2: The dual polyhedron P(3; o) and the
triangulation A3 2) of Example 2.2

Lemma 2.4 ([7]) Ac is the normal fan of
the polyhedron Pe := {y € Rd | yA < c}.

We remark that Pc is the dual polyhedron
of the linear relaxation problem

LPy ¢(b) := minimize{c -z | Az = b,z > 0}

of IP4¢(b). This lemma shows that there
is one-to-one correspondence between the ver-
tices of Pe and the maximal faces of Ac.

Example 2.2 (continued.) Figure 2 shows
the dual polyhedron P13y and A 2). We
remark that cone(A) is contained in the hy-
perplane z1 + z9 + 3 = 0.

2.2 Standard pair decompositions
and integer programs

Using the standard pair decomposition of Og,
IP4 c(b) can be solved by solving at most
(arithmetic degree of O¢)-many linear systems
of equations [6]. We describe the outline of
this approach.

Let uw be the optimal solution to IP4¢(b).
Since the standard pairs cover Og¢, u is cov-
ered by some standard pair (a,o). Thus
u = a+ ¢, kie; for some non-negative in-
tegers {k;}ico, and

b = Au

A (a +3 kze,>

i€o

il

Aa + Z k?ai.

i€o

Lemma 2.3 implies that {a;};c, are linearly
independent, and therefore {k;}ic, is the
unique solution to the linear system

Z.’Eiai =b— Aa. (1)
i€o
This observation induces an algorithm to solve
IPy c(b) using the standard pair decomposi-
tion of Oe¢.

Algorithm 2.3 (Solving IP4c(b) using
5(O¢c))

(i) For (a,0) € S(O¢), solve the linear sys-
tem (1). Let {k;}ico be the solution.

(ii) If {k:}ico are all both integral and non-
negative, output a + 3, kie; as the op-
timal solution. Otherwise, repeat (i) for
another standard pair.

This algorithm solves at most arith —
deg(O¢)-many linear systems of equations.
Therefore arithmetic degree of O¢ is a mea-
sure of the complexity of IP4 c.

3 Standard pairs of directed
graphs

We consider that A is the incidence matrix
of a network N = (V,E) such that [V| =
d, |[E|=n,be {Au | v € N"} and c € RE,:.
This means that IP4 ¢(b) is an uncapacitated
minimum cost flow problem on N with the de-
mand/supply vector b. In this case, N¢ has a
special property as follows.

Lemma 3.4 Let {p;,... ,p,} be the minimal
vectors such that Ne = |J;_1(p; + N*). Then
all py, ... ,p, are 0-1 vectors for any cost vec-
tor c € RZ,.

Proof: In [8], we showed that reduced Grobner
basis for T4 with respect to any ¢ corresponds
to the set of circuits in N. This implies that
the exponent vectors of reduced Grobner basis
are 0-1 vectors. 0

When Ng is generated by 0-1 vectors, the
set §(O¢) are obtained by all of the maximal
faces of Ac. :



Lemma 3.5 ([7]) Let {p1,--+,ps}
be  the minimal. wectors  such  that
NC = U’f:l(pz' + Nn) Then Pis--- yPs
are all 0-1 vectors if and only if S(Oc¢) =
{((0,...,0),0) | o is the mazimal faces of Ac}.

The edges in the optimum flow of uncapaci-
tated minimum cost flow problem define a for-
est [1]. Therefore, with the fact the dimension
of cone(A) equals d — 1, the next proposition
is implied by Lemma 2.3, 3.4 and 3.5.

Pfoposition 3.6 Any standard pair of Oc is
((0,...,0),0), where c C{1,... ,n} and o is
a spanning tree of the network N.

Since there is one-to-one correspondence be-
tween the standard pairs ((0,...,0),*) of O¢
and the vertices of dual polyhedron, Algo-
rithm 2.3 for the minimum cost flow problem
IP4c(b) is a variant of the enumeration of
dual feasible bases.

4 Arithmetic degree of

acyclic directed graphs

In the case that the network is the acyclic
tournament graph, the minimum and maxi-
mum arithmetic degrees can be obtained us-
ing some results about Grobner bases. When
the network is an acyclic directed graph, these
results give upper and lower bounds for the
arithmetic degree. Since each standard pair of
the minimum cost flow problem corresponds
to the vertex of the dual polyhedron for the
linear relaxation of the problem, these results
also give upper and lower bounds for the num-
ber of vertices of the dual polyhedron. In this
section we show that, for the acyclic tour-
nament graph with d vertices, the minimum
arithmetic degree is 1 and the maximum arith-
metic degree is -}3(221__11)), which is the (d— 1)-
Catalan number.

We assume that the vertices of acyclic di-
rected graph have labels 1,...,d such that
each edge (7,7) is oriented from the vertex ¢
to the vertex j. We denote c;; the cost of the
edge (i, j) and z;; the variable corresponds to

the egge (¢,7). The number of edges equals
n=(5).

4.1 Minimum arithmetic degree of
acyclic tournament graphs

We remark again that the genericity of ¢ im-
plies that, the arithmetic degree of O¢ is equal
to or greater than 1. We show that there ex-
ists a cost vector ¢ for which the arithmetic
degree equals 1 for any d. '

Theorem 4.1 For the acyclic tournament
graph with d vertices, the minimum arithmetic
degree of Oc which ¢ varies all generic cost
vectors equals 1.

To show this theorem, we use a characteri-
zation of one Ne¢.

Lemma 4.2 When ¢ = (cij)1<icj<d Satisfies
that Cij > Cigy1+Ciylat2 - FCi1; for any
i <j—1, then Ne = U2} (ei 441 + N*) € NP,

Proof: In [8], we showed that reduced Grobner
basis G for I4 with respect to the above ¢ is
{Zij —Tiip1Titripe - T515 | 1<i<j-1<
d — 1}. Especially, the set of initial terms of
Ge equals {r;; | 1 <i < j—1<d-1}, which
implies that Ne = Uf;ll (eisy1 +N™). O

Proof of Theorem J.1: Because of Lemma 4.2,
a = (aj)1<icj<d € N* is in O¢ for c as in
Lemma 4.2 if and only if a;; = 0 for any (3, j)
such that j —4 > 1. The set of all such points
coincides  ((0,...,0),{(1,2),(2,3),...,(d —
1,d)}). Thus only this pair is a standard pair
of Oc. O

4.2 Maximum arithmetic degree of
acyclic tournament graphs

To show the maximum arithmetic degree, we
use another integer programming problem de-
fined from the original integer programming
problem. For a general matrix A € Z9", we



define another matrix 4’ € Z(@T1)x(n+1) 55

11 1 1

0

A = A 5
0

1 1 1 1

0

= @ ay - an .(2)

0

Let a} —( )forl<z<nandan+1 be the
n+1- th column vector of A’. We remark that
ay,...,a,,a, . span an affine hyperplane.

We define another family 1Py (¢ ) of inte-
ger programming problem

IPA’,(C,O)(b’ ﬂ) =

A(er) = (3); }

(a:,,+1) Nn+1

as (g) varies in {A'u | w € N**1}. Similarly
as Og, let O¢q) C N7+ be the set of all op-
timal solutions to all programs in IPy (¢ 0),
and Nc,o) = NntL\ O(co

Proposition 4.3 (a,0) (a € N, o C
{1,...,n}) is a standard pair of O¢ if and
only if ((%),O’U {n+1}) is a standard pair
of Ozc,o)'

minimaize {c - x

Proof: We first show that (a,o) C Oc¢ if
and only if ((9),cU{n+1}) C Olc,0)- Sup-
pose that (a,0) C Oc¢ and choose any (",:’) S
(($),0U{n+1}). If there exist any other
v € N" and non-negative integer [ such
that 4'(Y) = A'(Y) and (Y) # (%), then
Au = Av, and ¢-u < c-v since u €
Oc. Therefore, (%) is the optimal solution to
IPy (c0)(Au,8) with B = 320, u;. If there
does not exist such (7), then clearly ( ) is the
optimal for this integer programming prob-
lem. This shows that ((§),cu{n+1}) C

!
(€,0)

Conversely, suppose that
((%),ou{n-l-l}) c OZc,o) and choose

any u € (a,0). If there exists some v € N"

such that Av = Au, then A’(g) = A’('g)
for any non-negative integers p, g such
that p — ¢ = Y vi — > ui. Since
(g) e ((5), aU{n+1}) - O’co)v and
(e,0) - (1;) < (¢,0) - (q), which imply that
c-u < c-v. Therefore, u is the optimal
solution to IP4c(Au). If there does not
exist such v, then clearly = is the optimal
for this integer programming problem. Thus
(a,0) C Oc.

¥ (($),cu{n+1}) is a standard
pair of Ocg), then (($),ouf{n+1}) ¢
((%'), TU{n+ 1}) for any
((aol),TU {n+ 1}) which  satisfies the
condition (i) and (ii) in Definition 2.1 for
Ofc,o)' Since if (a,'0) C (a’,7) for any other
(a',7) which satisfies (i) and (ii) in Defini-
tion 2.1 for O, then ((§),0 U{n + 1}) must
(@), ruin+ 1}), which
contradicts the assurnption. Thus (a,0) is a
standard pair of Oc.

On the other hand, if (($),cU{n+1}) is
not a standard pair of Ozc 0y then there ex-

ists some ((‘;’c’),‘r’) such that ((Cfc’),r') con-

tains ((§),0U{n+1}) and ((a'),r’) satis-
fies (i) and (ii) in Definition 2.1 for O (€0
Then n + 1 € 7', and therefore £k = 0 by
(i) in Definition 2.1. Therefore, (a/,7) where
7 := 7'\ {n + 1} contains (a, o) and satisfies
(i) and (ii) in Definition 2.1. Thus (a,0) is
not a standard pair of O¢. This completes
the proof. O

other

be contained in

Example 2.2 (continued.) For this A, en-
larged matriz A’ is

1 1 11

, 11 0 o0

4= -1 0 1 0

0 -1 -1 0
For ¢ = (3,1,2), the standard pai’rs
of 0(31 o) are ((0,0,0,0),{1,2,4}) and
((0,0,0, 0) {2,3,4}). On the other hand,
for ¢ = (1,4,2), the standard pairs

of 01)4’2’0) are ((0,0,0,0),{1,2,3}) and



((0,0,0,0),{1,3,4}). In this case, the only
standard pair ((0,0,0,0),{1,3,4}) satisfies the
condition in Proposition 4.3, which corre-
sponds to the standard pair ((0,0,0),{1,3}) of

O(1,4,2)-

Theorem 4.4 For the acyclic tournament
graph with d vertices, the mazimum arithmetic
degree of Oc which ¢ varies oll generic cost
vectors equals

oer=3(*4-0)

which is the (d — 1)-th Catalan number.

To show this theorem, we prepare some lem-
mas. The first is by Gelfand et al. [5] which
studies about some hypergeometric function.

Lemma 4.5 ([5]) Let A’ be the enlarged ma-
triz (2) for the incidence matric A of the
acyclic tournament graph with d vertices, and
conv(A") be the convez hull of ai,... ,a; ;.
Then the normalized volume of conv(A’)
equals the (d — 1)-th Catalan number Cq_1.

Given a regular triangulation AI(C,k) of
conv(A’), the normalized volume of conv(A')
equals the sum of normalized volume for all
maximal faces in AI(C,k)' Since the column
vectors in af,...,a,,; span an affine hy-
perplane, the normalized volume of conv(A4')
gives the number of standard pairs of Ozc,k)
which correspond to the maximal faces of
A’(c,k) by Lemma 2.3 (iii).

Lemma 4.6 When ¢ = (cij)1<i<j<d Satisfies
that

® cij +cjr > cip for any i < j <k and
o cip+cjt > cip+cji forany i < j <k <l

then
Ne= |J  ((eij+ew)+N)
1<i<j<k<d
U U (e +en) +N") CN™.
1<i<j<k<i<d

Proof: In [8], we showed that reduced Grobner
basis Ge¢ for I, with respect to the above
c is {.’l:ij:L‘jk—:L'ik |1 < i< j <k <
d}U{wikxﬂ—wuavjk |1 <i<j< k<
I < d}. Especially, the set of initial terms
of Ge¢ equals {zjzjn | 1 < i < j <k <
d} U {zixzji | 1 < i < j < k <1< d}, which
1mphes that Ne = U cicjcr<a((es; + i) +
N*) Ul cicjcrcical(€ir + €52) +N7). O

Proof of Theorem 4.4: Because of Propo-
sition 3.6, any standard pair of O¢ is
((0,...,0),0) for any ¢, and corresponds to
the standard pair ((0,...,0,0),cU{n+1}) of
OZC’O). Especially, ¢ U {n + 1} is a maximal
face of Azc,o)' Therefore,

arith — deg(Oc)
= H((0,...,0),0) € S(Oc)}|
= [{(@-.,0,0u{n+1}) €S (0fcy)) }

) l{(* 7 es (ogc,o))}] (3)

= normalized volume of conv(A')
Ci

where the sum in (3) is taken over all maximal
faces 7 of A 0)-

Because of Proposition 3.6 and Lemma 4.6,
for ¢ as in Lemma 4.6, ((0,...,0),0) is a stan-
dard pair of O¢ if and only if ¢ is a spanning
tree of the acyclic tournament graph which
satisfies the following two conditions:

(A) there areno 1 < i < j < k < d such that
both (i,5) and (j, k) are edges in o, and

(B) thereareno 1 <i<j<k<I<dsuch
that both (i,%) and (7,1) are edges in o.

IN

The number of spanning trees of the complete
graph with d vertices which satisfies (A) and
(B) are known to be equal to the (d — 1)-th
Catalan number (e.g. see [9]). O

We remark that the Catalan number equals
A (1+0(2)) (eg see [3).

Example 2.2 (continued.) ¢ = (3,1,2)
gives an ezample achieving the mazimum
arithmetic degree since Cy = %( ) 2. On
the other hand, ¢ = (1,4,2) gives an ezample

achieving the minimum arithmetic degree.



4.3 Arithmetic degree of acyclic di-
rected graphs

Since any acyclic directed graph G with d ver-
tices can be seen as the subgraph of acyclic
tournament graph G with same number of ver-
tices by deleting some edges, the incidence ma-
trix A of G is a submatrix of that A of G by
deleting the columns which correspond to the
deleted edges. Let A’ (resp. A') be the en-
larged matrix (2) of A (resp. A). Then the
normalized volume of conv(A’) is equal to or
less than that of conv(A), which implies that
the arithmetic degree for IP4 ¢ for any cost
vector c is equal to or less than the maximum
arithmetic degree for the acyclic tournament
graph, which is the (d—1)-th Catalan number.

5 Conclusion

In this paper, we showed the bounds for
the number of vertices of the dual polyhe-
dra for the minimum cost flow problems on
the acyclic directed graphs, using the results
from Grobner bases and hypergeometric func-
tions. We also showed two examples for
the acyclic tournament graphs, one achieves
the minimum arithmetic degree 1, and the
other achieves the maximum arithmetic de-
gree Cg.1.

On the other hand, the arithmetic degrees
for cyclic directed graphs are not known. Sim-
ilar approach may be able to attack to this
analysis, which should be a future work.
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