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Abstract

One-tape linear-time Turing machines only have very low computational power.
In 1965 Hennie showed that one-tape linear-time deterministic Turing machines are
computationally equal to deterministic finite automata. In this paper, we consider
several types of one-tape linear-time Turing machines. By generalizing Hennie’s
method, it is shown that several types of classical one-tape linear-time Turing ma-
chine, i.e., nondeterministic one, reversible one, and probabilistic one, are all com-
putationally equal to a finite automaton. In what follows, we show that a certain
type of one-tape linear-time quantum Turing machine can recognize a non-regular
language.
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1 Introduction

One-tape linear-time Turing machines only have very low computational power. For ex-
ample, such Turing machines cannot even make a copy of an input string onto another
region of the tape since it takes n? steps to make a copy of a string of the length n. In
1965 Hennie [8] showed using crossing sequence argument that one-tape linear-time de-
terministic Turing machines are computationally equal to deterministic finite automata.
Kobayashi [11] then generalized this result to one-tape o(nlogn)-time deterministic Tur-
ing machines, where n is the length of the input. We consider the computational power
of several types of one-tape linear-time Turing machines, i.e., nondeterministic one, re-
versible one, probabilistic one, and quantum one. Apart from one-tape linear-time quan-
tum Turing machines, we proved that the above types of classical one-tape linear-time
Turing machine are all computationally equal to a finite automaton. Thus, such Turing
machines can only recognize a regular language.

In this paper, we first generalize Hennie and Kobayashi’s crossing sequence argument
to one-tape linear-time nondeterministic Turing machines to show that such Turing ma-
chines can only recognize a regular language. Using the method of a reversible simulation
of a deterministic finite automaton given by Kondacs and Watrous [12], we then see that
one-tape linear-time reversible Turing machines can recognize any regular language. By
generalizing crossing sequence argument further, we can show that one-tape linear-time
probabilistic Turing machines can only recognize a regular language with bounded error
probability.

We adopt Bernstein-Vazirani’s model of quantum Turing machine in order to study the
property of one-tape linear-time quantum Turing machines. Since every reversible Turing
machine is also a quantum Turing machine, any complexity class which is defined by one-
tape linear-time quantum Turing machines includes the set of regular languages. Using
the method for 2qcfa to recognize Ly, = {a™b™|n > 0} given by Ambainis and Watrous
[2], it is shown that the set of regular languages is properly included in NQLIN, which is
a one-tape linear-time analogue of NQP. However, it is still an open problem whether or
not a one-tape linear-time quantum Turing machine can recognize a non-regular language
with bounded error probability.

2 One-Tape Nondeterministic Turing Machines
Let N be the set of natural numbers (i.e., non-negative integers) and N* the set of positive
integers. We denote the set of regular languages by REG.

Definition 2.1 (one-tape T'(n)-time NTM). Let T: N — N. A one-tape T(n)-time
nondeterministic Turing machine (abbreviated T'(n)-1NTM) is a nondeterministic Turing
machine M such that

(1) M only has one tape of cells which has a left end and infinite cells to the right, and

(2) for each input x, the length of every computation path of M on input x is at most
T([x]).

We say a T(n)-INTM M recognizes a language L if for every x, x € L if and only if
there exists an accepting computation path of M on input x.
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Definition 2.2. Let T: N — N. The class 1-NTime(T'(n)) is defined by
1-NTime(T'(n)) ={L|3M : T(n)-INTM M recognizes L }. (1)

Then the class 1-NLIN 1is defined by

1-NLIN = | | 1-NTime(cn + ). (2)

c=1

Definition 2.3 (crossing sequence). Let M be a T'(n)-INTM. Each pair of adjacent
cells on the tape of M 1is separated by an intercell boundary. In a computation path s of
M, consider an intercell boundary b and the sequence of states of M at the steps when
the head crosses b, first from left to right, and then alternatingly in both directions. This
orderd sequence of states s called the crossing sequence at the intercell boundary b in the
computation path s of M.

Theorem 2.4 and Theorem 2.7 are generalizations of one given in [11] which deals with
the deterministic case.

Theorem 2.4. Let T: N — N, and let M be a T(n)-INTM. Suppose that T(n) =
o(nlogn). Then there exists ¢ € N such that, for every x, the length of crossing se-
quence of every intercell boundary in every computation path of M on input x is at most
c.

For each language L over an alphabet Y. Myhill-Nerode equivalence relation Rj; on
¥* is defined by 2Ry <= Vz € ¥* (xz € L <= yz € L).

The following lemma is an immediate result of Myhill-Nerode theorem which states
that the number of equivalence classes of Ry is finite if and only if L is regular.

Lemma 2.5. Let L be a language over an alphabet Y. Suppose that there exists an
eutvalence relation E on X* such that (1) the number of equivalence classes of E is finite
and (11) tEy = xRpy. Then L is reqular.

The following theorem is a generalization of one given in [8] which deals with the
deterministic case. Its proof uses Lemma 2.5.

Theorem 2.6. Let L be a language over an alphabet X, and let M be a T(n)-INTM
which recognizes L. If there exists ¢ € N such that, for every x € L, the length of crossing
sequence of every intercell boundary in every computation path of M on input x is at most
¢, then L 1s reqular.

Proof. Let S be the set of sequences of states of M whose lengths are at most ¢. For each
x € ¥* and each v € S, we say that x supports v if there exists z € ¥* such that xz € L
and v is the crossing sequence of the intercell boundary between x and z in some accepting
computation path of M on input zz. For each z € ¥*, let Sup(z) = {v € S| x supports v}.
We define an equivalence relation E on ¥* by xFy <= Sup(z) = Sup(y). Then, using
crossing sequence argument, we see that the conditions (i) and (ii) in Lemma 2.5 hold.
Hence, L is regular. O
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Theorem 2.7. Let T: N — N. Suppose that n < T(n) and T'(n) = o(nlogn). Then
REG = 1-NTime(T(n)) = co-1-NTime(T (n)). (3)

Proof. REG C 1-NTime(T(n)) is obvious. It follows from Theorem 2.4 and Theorem
2.6 that 1-NTime(7(n)) C REG. Thus, we have 1-NTime(7(n)) = REG. By noting
co-1-NTime(T'(n)) = co-REG = REG, the result is obtained. O

Remark 2.8. Let L,y be the set of palindromes, i.e., Ly = {x € {0,1}* | z = 2} where
xf is the reverse of x. We can construct a one-tape O(nlogn)-time NTM which recognizes
Lpat, 50 Ly € 1-NTime(nlogn). On the other hand, it is obvious that Lyy ¢ REG, so
L, ¢ REG. Thus, by Theorem 2.7, if n < T(n) and T(n) = o(nlogn), then

REG = 1-NTime(T(n)) G 1-NTime(nlogn) (4)
and therefore
REG = co-1-NTime(T'(n)) G co-1-NTime(nlogn). (5)

Moreover, it is shown using crossing sequence argument that L,y ¢ 1-NTime(nlogn).

Thus,
1-NTime(nlogn) ¢ co-1-NTime(n logn) (6)
and therefore

co-1-NTime(nlogn) ¢ 1-NTime(nlogn). (7)

Definition 2.9 (one-tape T'(n)-time DTM). Let T: N — N. A one-tape T(n)-time
deterministic Turing machine (abbreviated T'(n)-1DTM) is a T(n)-1NTM which has at
most one nondeterministic choice at each step.

Definition 2.10. Let T: N — N. The class 1-DTime(T'(n)) is defined by
1-DTime(T(n)) ={L|3IM : T(n)-1DTM M recognizes L }. (8)
Then the class 1-DLIN 1is defined by

1-DLIN = | 1-DTime(cn + c). (9)

c=1

Definition 2.11 (one-tape 7'(n)-time reversible DTM). Let T: N — N. A one-
tape T'(n)-time reversible deterministic Turing machine (abbreviated T'(n)-1revDTM) is a
T(n)-1DTM for which each configuration has at most one predecessor configuration.

Definition 2.12. Let T: N — N. The class 1-revDTime(T'(n)) is defined by
l-revDTime(T(n)) ={L | IM : T(n)-1revDTM M recognizes L }. (10)
Then the class 1-revDLIN s defined by

1-revDLIN = U 1-revDTime(cn + c). (11)

c=1
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Theorem 2.13. REG C 1-revDLIN.

Proof. The result is obtained using the method used in the simulation of any deterministic
finite automaton by some two-way reversible finite automaton given in [12]. OJ

Theorem 2.14. REG = 1-revDLIN = 1-DLIN = 1-NLIN = co-1-NLIN.

Proof. It follows from Theorem 2.13 that REG C 1-revDLIN C 1-DLIN C 1-NLIN.
We have, by Theorem 2.7, 1-NLIN = REG; therefore co-1-NLIN = REG. Thus, the

result follows. O

3 One-Tape Probabilistic Turing Machines

Definition 3.1 (one-tape T'(n)-time PTM). Let T: N — N. A one-tape T(n)-time
probabilistic Turing machine (abbreviated T'(n)-1PTM) is a T'(n)-1NTM which has ezactly

two nondeterministic choices at each step in a non-final configuration.

In the above definition, we do not require that for every x, all of computations of a
T(n)-1PTM on input z halt after the same number of steps.

Definition 3.2 (accepting probability). Let T: N — N, and let M be a T(n)-1PTM.
AP(M,x) is defined as the set of all accepting computation paths of M on input x. The
length of a computation path s is denoted by I(s). Here the length of a computation path
18 the number of applications of the transition function along the path. The accepting
probability of M on input x is denoted by PM(z) and is defined as

1 I(s)
PM(z)= > (5) . (12)
s€EAP(M,x)

Let L be a language, and let 0 < e < 1/2. We say that M recognizes L with error
probability € if

(1) x € L= PM(z) >1—¢, and
(2) v ¢ L= PM(z)<e.
Definition 3.3. Let T: N — N. The class 1-BPTime(T(n)) is defined as the set
{L|3M:T(n)-1PTM Fe €10,1/2) M recognizes L with error probability e }. (13)
Then the class 1-BPLIN 1is defined by

1-BPLIN = | | 1-BPTime(cn + c). (14)

c=1

By modifying the proof of Theorem 2.6, “T'(n)-1INTM” in Theorem 2.6 can be replaced
by “T'(n)-1PTM.” Thus, using Theorem 2.4, we can prove the following theorem in stead
of Theorem 2.7.
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Theorem 3.4. Let T: N — N. Suppose that n +1 < T(n) and T(n) = o(nlogn). Then
REG = 1-BPTime(T(n)). (15)
We have the following corollary from Theorem 3.4.

Corollary 3.5. Let T: N — N, and let M be a T(n)-1PTM. Suppose that L is a non-
regular language and M recognizes L with error probability e for some ¢ € [0,1/2). Then
there exists ¢ > 0 such that for infinitely many n, T(n) > cnlogn.

Theorem 3.6. REG = 1-BPLIN.

Proof. The result follows immediately from Theorem 3.4. O

4 One-Tape Quantum Turing Machines

We adopt Bernstein-Vazirani’s model of quantum Turing machine [3]. This model is
already a one-tape quantum Turing machine (with multitrack), which we abbreviate to
QTM. See [1] and [3] for the definition and the property of QTM.

Definition 4.1. The class 1-BQLIN is defined as the set of languages L such that there
exist a stationary QTM M, a ¢ € N, and an € > 0 which have the following properties:

(1) On every input x, M halts in time c|z| + c.

(2) v € L = M accepts input x with probability greater than 1/2 + ¢.

(8) x ¢ L = M accepts input x with probability less than 1/2 — €.
Theorem 4.2. REG C 1-BQLIN.

Proof. From REG = 1-revDLIN and the fact that every reversible deterministic Turing
machine is a well-formed QTM, the result follows. 0

Remark 4.3. [t is an open problem whether or not REG = 1-BQLIN holds.

Definition 4.4. The class 1-NQLIN s defined as the set of languages L such that there
exist a stationary QTM M and a ¢ € Nt which have the following properties:

(1) On every input x, M halts in time c|z| + c.
(2) v € L <= M accepts input x with positive probability.
Theorem 4.5. REG G 1-NQLIN.

Proof. Since REG = 1-revDLIN, we see that REG C 1-NQLIN. Let L, = {a™b™|n >
0}. Then Ly ¢ REG._Using in essence the method for 2qcfa to recognize Ly, given in
[2], we can show that L., € 1-NQLIN. This completes the proof. O
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