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概要
与えられたグラフの各点の隣接辺をできるだけ均等に彩色する問題はグラフの均等辺彩色問題と呼ばれ

る。この問題は、O(kn2)時間で解けることが証明されている、ここで、nは辺の数で、kは与えられた色

の数である。その後、実行時間は O(n2/k + n|V |)に改良された。本論文では、新しいアルゴリズムを提案

し、このアルゴリズムは多重グラフの均等辺彩色問題を O(n2/k)時間で解くことを示す。
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Abstract

A nearly equitable edge-coloring of a multigraph is a coloring such that edges incident to each vertex are
colored equitably in number. This problem was solved in O(kn2) time, where n and k are the numbers of the
edges and the colors, respectively. The running time was improved to be O(n2/k + n|V |) later. We present a
more efficient algorithm for this problem that runs in O(n2/k) time.
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I. Introduction

A nearly equitable edge-coloring of a multigraph G = (V,E) is a coloring such that edges incident to
each vertex are colored equitably in number with given colors. Hilton and Werra [1] solved this problem
in O(kn2) time in 1982, where n and k are the numbers of the edges and the colors, respectively. Later
in 1995, Nakano, Suzuki and Nishizeki [2] presented a new algorithm that runs in O(n2/k + n|V |) time.
Using the idea of “balanced constraint” [2], Ono and Hirata [3] transformed a restricted case of the
Net Assignment Problem into a Balanced m-edge Coloring Problem, where m is the bound of the edges
colored with any given color for each vertex. They presented an algorithm for the Balanced m-edge
Coloring Problem of O(n2/k) time. Here, using Ono and Hirata’s technique, we present a more efficient
algorithm for the Nearly Equitable Edge-coloring Problem. The new algoirthm also runs in O(n2/k) time
and satisfies “balanced constraint”.
The rest of the paper is structured as follows. In Section II, we give some definitions. In Section III, we

introduce the results of Hilton and Werra. Sections IV and V are for the new algorithm and the results
we obtained. Finally, concluding remarks are in Section VI.

II. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will be used throughout this paper.
For a multigraph G, let V denote the vertices of G, E denote the edges of G, and n denote the number

of the edges. We use dG(v) to denote the degree of a vertex v and Ci-edge an edge with color Ci. dG(v, Ci)
stands for the number of Ci-edges incident to a vertex v in G, eG(Ci) stands for the number of Ci-edges in
G and GCiCj is the subgraph of G induced by all the Ci-edges and Cj-edges in G. We omit the subscript
G if it is clear from the context.
Given a multigraph G = (V,E) and a k-color set C = {C1, C2, ..., Ck}, the Nearly Equitable Edge-

coloring is an edge-coloring of G with the k colors such that for any vertex v ∈ V and diferent colors
Ci, Cj ∈ C, |d(v, Ci)− d(v, Cj)| ≤ 2 [1].

III. O(kn2)-time for Nearly Equitable Edge-coloring

The Nearly Equitable Edge-coloring Problem was solved by Hilton and Werra [1] in 1982. Using Euler
circuit, they presented a simple algorithm of O(kn2) time with k colors. We have a brief introduction of
their algorithm in the following.
Assign the given multigraph G with the given k colors. Whenever there exists v ∈ V and different

colors Ci, Cj ∈ C such that |d(v, Ci) − d(v, Cj)| > 2, add a new vertex w adjacent to all odd-degree
vertices in GCiCj to form a new graph G0CiCj . For any connected component in G

0
CiCj

, traverse an Euler
circuit and assign colors Ci and Cj alternately along the way, and delete the edges adjacent to the new
vertex w.
The multigraphG is nearly equitably edge-colored, that is, for any v ∈ V and different colors Ci, Cj ∈ C,

|d(v, Ci) − d(v, Cj)| ≤ 2 when the algorithm stops. The running time of the algorithm is proved to be
O(kn2).
Define

Cost =
X
v∈V

X
Ci∈C

X
Cj∈C

|d(v, Ci)− d(v, Cj)|,

then

Cost ≤
X
v∈V

X
Ci∈C

X
Cj∈C

d(v, Ci)

=
X
Cj∈C

{
X
v∈V

X
Ci∈C

d(v, Ci)}

=
X
Cj∈C

2|E| = 2kn.
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Cost decreases by at least 2 each time the Euler circuit is traversed. Each Euler circuit costs O(|E|) =
O(n) time, so after at most kn traverses of Euler circuits, Cost must be 0 and the algorithm runs in
O(kn2) time.
Euler circuit is normally used for edge-coloring [1][2][3][4][5]. We also use it for our new algorithm in

the following.

IV. A New Algorithm for Nearly Equitable Edge-coloring

Ono and Hirata [3] presented an O(n2/k)-time algorithm for the Balanced m-edge Coloring Problem.
Here, we use the same technique for the Nearly Equitable Edge-coloring Problem.

Algorithm (G, C)
Input: a multigraph G = (V,E) with |E| = n and a color set C with |C| = k
Output: a nearly equitable edge-coloring for G
1 Assign C1, C2, ..., Ck to n edges repeatedly, so that dn/ke or bn/kc edges have the same color.
2 while there exists v ∈ V and different colors Ci, Cj ∈ C such that |d(v, Ci)− d(v, Cj)| ≥ 3 do
3 for the vertex v, find α,β ∈ C with

d(v,α) = max{d(v, Ci) : Ci ∈ C},
d(v,β) = min{d(v,Ci) : Ci ∈ C}.

4 Recolor(Gαβ ,α,β, v).

Recolor(Gαβ,α,β, v).
Input: a multigraph Gαβ with all edges colored with colors α and β and a selected vertex v
Output: a nearly equitable edge-coloring for Gαβ
1 Let x← α and y ← β.
2 for each connected component H in G do
3 Recolor-Component(H, x, y, v).
4 if H has odd number of edges then
5 Swap x and y.

Recolor-Component(H, x, y, v).
Input: a connected component H with all edges colored with colors x and y and a selected vertex v
Output: a nearly equitable edge-coloring for H
1 if H has odd-degree vertices then
2 Add a new vertex w adjacent to all the odd-degree vertices to form a new graph H 0.
3 Traverse an Euler circuit starting at the vertex w and assign colors β and α (β comes first) to the
edges alternately along the way.
4 else
5 if v is a vertex of H then
6 Let v be the start vertex u.
7 else
8 if there exists a vertex r ∈ H with |d(r, x)− d(r, y)| ≥ 2 then
9 Let r be the start vertex u.
10 Traverse an Euler circuit starting at the vertex u and assign colors α and β (α comes first) to the
edges alternately along the way.

V. Analysis of the Algorithm

A. Results of Ono and Hirata

Using the same proof as in [3], we can obtain the following results.

Lemma 1 [3] The coloring after an invocation of Recolor-Component(H,α,β, v) for a connected
graph H = (VH , EH) satisfies the following conditions:

3
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a. If all vertices in H are even-degree and |EH | is even, then d(s,α) = d(s,β) for any vertex s.
b. If all vertices in H are even-degree and |EH | is odd, then d(u,α) = d(u,β) + 2 for the start vertex

u and d(s,α) = d(s,β) for any vertex s other then u.
c. If there are odd-degree vertices in H , then |d(s,α) − d(s,β)| = 1 for any odd-degree vertex s and

d(s,α) = d(s,β) for any even-degree vertex s.

Lemma 2 [3] The coloring after an invocation of Recolor-Component(H,α,β, v) satisfies the strict
balance condition, that is,

eH(β) ≤ eH(α) ≤ eH(β) + 1.
Corollary 1 [3] Lemma 2 holds forRecolor (Gαβ ,α,β, v) instead ofRecolor-Component(H,α,β, v).

Corollary 2 [3] At any time of the algorithm, the coloring satisfies “balanced constraint”:
|eH(α)− eH(β)| ≤ 1 for any colors α and β.

Lemma 3 [3] The running time of Recolor (Gαβ ,α,β, v) is O(e(α) + e(β)).

Lemma 4 [3] e(α) = O(n/k) for any color α at any time of the algorithm.

B. Our Results

Ono and Hirata defined the excess Φ(s) for the vertex s ∈ V as follows:

Φ(s) =
X

Ci∈C:d(s,Ci)>m
(d(s,Ci)−m),

where m is the number of the connections between an FPGA and a crossbar. They proved that the excess
Φ, the summation of Φ(s) over all vertices s, must decrease by constant when running their algorithm.
It seems that we can obtain the same results if we could find a suitable m such as they did. To do

that, we first prove the following lemma.

Lemma 5 Suppose that four numbers x, y, x0, y0 satisfy that x+ y = x0 + y0 and |x− y| ≥ |x0 − y0|,
then for any real a, the inequality |x− a|+ |y − a| ≥ |x0 − a|+ |y0 − a| holds.

Proof. For the four numbers x, y, x0, y0 with x + y = x0 + y0 and |x − y| ≥ |x0 − y0|, we note that
x ≤ x0, y0 ≤ y or y ≤ x0, y0 ≤ x. Suppose by symmetry that x ≥ y and x0 ≥ y0, then y ≤ y0 ≤ x0 ≤ x and
x− y ≥ x0 − y0.
Let fa = |x − a| + |y − a|, f 0a = |x0 − a| + |y0 − a| and ∆a = f 0a − fa, now we prove that ∆a never

increase for any real a by dividing the range of a into five subranges.

1. a ≤ y
fa = x− a+ y − a = (x+ y)− 2a and f 0a = x0 − a+ y0 − a = (x0 + y0)− 2a, thus ∆a = 0.

2. y < a < y0

fa = x− a+ a− y = x− y and f 0a = (x0 + y0)− 2a, thus ∆a = 2(y − a) < 0.

3. y0 ≤ a ≤ x0
fa = x− y and f 0a = x0 − a+ a− y0 = x0 − y0, thus ∆a = (x0 − y0)− (x− y) ≤ 0.

4. x0 < a < x
fa = x− y and f 0a = a− x0 + a− y0 = 2a− (x0 + y0), thus ∆a = 2(a− x) < 0.

5. x ≤ a
fa = a− x+ a− y = 2a− (x+ y) and f 0a = 2a− (x0 + y0), thus ∆a = 0.
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For a vertex s ∈ V , let d̄(s) = bd(s)/kc, and we define the cost as the following:

Φ(s) =
X
Ci∈C

{|d(s, Ci)− (d̄(s) + 1/2)|− 1/2},

it is obvious that Φ(s) is an integer.

∆Φ(s) denotes the difference of Φ(s) before and after the invocation of Recolor(Gαβ ,α,β, v). d(s,α)
and d0(s,α) denote the numbers of α-edges before and after the invocation of Recolor, respectively. Let
v denote the special vertex selected by Algorithm (G, C), we are going to consider how ∆Φ(s) changes
and to prove the following lemmas.

Lemma 6 For any s ∈ V and s 6= v, Φ(s) does not increase by the call of Recolor.

Proof. For any s ∈ V and s 6= v, it satisfies d(s,α) + d(s,β) = d0(s,α) + d0(s,β).
If s is a start vertex when the connected component H has odd number of edges and no odd-degree

vertices, it satisfies |d0(s,α)− d0(s,β)| = 2 ≤ |d(s,α)− d(s,β)|.
Otherwise, |d0(s,α)− d0(s,β)| = 0 ≤ |d(s,α)− d(s,β)| holds for any even-degree vertex and |d0(s,α)−

d0(s,β)| ≤ 1 ≤ |d(s,α)− d(s,β)| holds for any odd-degree vertex.
Thus

∆Φ(s) =
X
Ci∈C

{|d0(s,Ci)− (d̄(s) + 1/2)|− 1/2}

−
X
Ci∈C

{|d(s, Ci)− (d̄(s) + 1/2)|− 1/2}

= {|d0(s,α)− (d̄(s) + 1/2)|+ |d0(s,β)− (d̄(s) + 1/2)|}
−{|d0(s,α)− (d̄(s) + 1/2)|+ |d0(s,β)− (d̄(s) + 1/2)|}

≤ 0

by Lemma 5.

Lemma 7 For the special vertex v, Φ(v) must decrease by the call of Recolor.

Proof. For the special vertex v selected by Algorithm (G,C) with |d(v, Ci)− d(v, Cj)| ≥ 3,
d(v,α) = max{d(v, Ci) : Ci ∈ C},
d(v,β) = min{d(v, Ci) : Ci ∈ C},

we note that d(v,α) ≥ d̄(v) + 1 and d(v,β) ≤ d̄(v). Thus d(v,β) < d̄(v) + 1/2 < d(v,α), and we
only need to consider sugranges 2, 3 and 4 same as the proof for Lemma 5. For subrange 3, it satisfies
|d0(v,α)− d0(v,β)| ≤ 2 < |d(v,α)− d(v,β)|, so ∆Φ(v) < 0.

Lemma 8 Assume that there exists a vertex v and colors α, β such that d(v,α) ≥ d̄(v) + 1, d(v,β) ≤
d̄(v) and d(v,α) − d(v,β) ≥ 3. Let Φ=Ps∈V Φ(s) be the cost of the coloring, then Φ must decrease by
at least 1 if we invoke Recolor(Gαβ ,α,β, v).

Proof. For any vertex s 6= v, Φ(s) does not increase by Lemma 6. For the special vertex v, Φ(v) must
decrease by Lemma 7 and the amount of decrease must be at least 1 because Φ(v) is an integer.

C. Result for Running Time

The cost Φ of the coloring is bounded as follows:

Φ =
X
s∈V

Φ(s)
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=
X
s∈V

X
Ci∈C

{|d(s, Ci)− (d̄(s) + 1/2)|− 1/2}

≤
X
s∈V

X
Ci∈C

{d(s, Ci) + d̄(s) + 1/2− 1/2}

=
X
s∈V

X
Ci∈C

d(s,Ci) +
X
s∈V

X
Ci∈C

d̄(s)

≤ 2d(s) = 4|E| = 4n.

We have proved Lemma 8, that is, in the course of the algorithm, the value of Φ must decrease by at
least 1 when we invoke Recolor. Thus after at most 4n invocations of Recolor, Φ must be 0. Now
we obtain the main theorem.

Theorem 1 Algorithm (G,C) solves the Nearly Equitable Edge-coloring Problem in O(n2/k) time for
any multigraph G, where n and k are the numbers of the edges and the colors, respectively.

Proof. From lemmas 3 and 4, Recolor(Gαβ,α,β, v) takes O(n/k) time, thus we conclude that the
running time of our algorithm is O(n× n/k) = O(n2/k).

VI. Concluding remarks

We use the same technique of Ono and Hirata[3] and present a new algorithm that nearly equitably
colors any multigraph G with n edges using k colors. It runs in O(n2/k) time, which slightly improves
the result of O(n2/k + n|V |) time [2].
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